1
|
Xu R, Li L, Ke Y, An Z, Duan W, Guo M, Tan Z, Liu X, Liu Y, Guo H. The role of pyroptosis in environmental pollutants-induced multisystem toxicities. Life Sci 2025; 372:123632. [PMID: 40220954 DOI: 10.1016/j.lfs.2025.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
The global ecosystem is adversely affected by environmental pollutants, which have numerous deleterious consequences on both the environment and human health. A multitude of human organs and systems, including the neurological, digestive, cardiovascular, reproductive, and respiratory systems, can be adversely affected by these pollutants. Pyroptosis is a form of programmed cell death, primarily involving the Caspase-1/Gasdermin D (GSDMD) classical inflammasome pathway, Caspase-4/5/11/GSDMD non-classical inflammasome pathway, Caspase-3/8 pathway, and other signaling pathways, which induce cell death and regulate the occurrence of inflammatory responses. Pyroptosis plays an important role in a range of diseases, including cancer, neurodegenerative diseases and cardiovascular disease. Evidence has emerged in recent years indicating that environmental pollutants exert various toxic effects by modulating pyroptosis. In this review, we examine hepatotoxicity, cardiovascular toxicity, nephrotoxicity, neurotoxicity, pulmonary toxicity, reproductive toxicity and the related mechanisms caused by environmental pollutants through the regulation of pyroptosis. We aim to provide theoretical references for future toxicity research on environmental pollutants.
Collapse
Affiliation(s)
- Rui Xu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yijia Ke
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
2
|
Zhao Q, Li H, Liu D, Zhou B, Gong C, Chen L, Liao F. The SGLT2 inhibitor dapagliflozin suppresses endothelial cell pyroptosis mediated by the NF-κB/NLRP3 pathway through downregulation of CTSB. Biochem Pharmacol 2025; 236:116857. [PMID: 40058708 DOI: 10.1016/j.bcp.2025.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 04/20/2025]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, and pyroptosis-a recently discovered pro-inflammatory programmed cell death process-can exacerbate these inflammatory responses. Vascular endothelial cell pyroptosis contributes to AS progression. Cathepsin B (CTSB) is a crucial member of the cysteine protease family found in lysosomes. However, its exact role in vascular endothelial cell pyroptosis remains unclear. Dapagliflozin (DAPA), a sodium-glucose cotransporter-2 (SGLT2) inhibitor, inhibits pyroptosis and alleviates AS independent of its hypoglycemic effect. This study utilized oxidized low-density lipoprotein (ox-LDL) to induce pyroptosis in human umbilical vein endothelial cells (HUVECs) and investigated the effect of this process. The study revealed that ox-LDL induced HUVEC pyroptosis in a concentration-dependent manner, resulting in Na+ and Ca2+ overload, lysosomal damage, and increased CTSB release into the cytosol. Lentiviral vectors were used to overexpress or silence CTSB; subsequent analysis revealed that CTSB promotes NLRP3-mediated pyroptosis through nuclear factor κB (NF-κB) activation. Finally, we found that DAPA attenuated HUVEC pyroptosis by inhibiting the NF-κB/NLRP3 pathway and decreasing the expression of CTSB. This effect may be attributed to its ability to alleviate lysosomal damage caused by Na+-Ca2+ overload, thereby reducing CTSB release into the cytosol.
Collapse
Affiliation(s)
- Quanwei Zhao
- Department of Cardiovascular, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; Foshan Fusun Chancheng Hospital, Foshan, Guangdong 528000, China
| | - Hui Li
- The First People's Hospital of Qujing City, Qujing, Yunnan 655000, China; Kunming Medical University Affiliated Qujing Hospital, Qujing, Yunnan 655000, China
| | - Danan Liu
- Department of Cardiovascular, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; The Institute of Medical Science of Guizhou Medical University, Guiyang, Guizhou 550004, China.
| | - Bo Zhou
- Department of Cardiovascular, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou 551700, China
| | - Caiwei Gong
- Department of Cardiovascular, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Long Chen
- Department of Cardiovascular, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Fujun Liao
- Department of Cardiovascular, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
3
|
Hara MA, Ramadan M, Abdelhameid MK, Taher ES, Mohamed KO. Pyroptosis and chemical classification of pyroptotic agents. Mol Divers 2025; 29:2765-2782. [PMID: 39316325 PMCID: PMC12081555 DOI: 10.1007/s11030-024-10987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Pyroptosis, as a lytic-inflammatory type of programmed cell death, has garnered considerable attention due to its role in cancer chemotherapy and many inflammatory diseases. This review will discuss the biochemical classification of pyroptotic inducers according to their chemical structure, pyroptotic mechanism, and cancer type of these targets. A structure-activity relationship study on pyroptotic inducers is revealed based on the surveyed pyroptotic inducer chemotherapeutics. The shared features in the chemical structures of current pyroptotic inducer agents were displayed, including an essential cyclic head, a vital linker, and a hydrophilic tail that is significant for π-π interactions and hydrogen bonding. The presented structural features will open the way to design new hybridized classes or scaffolds as potent pyroptotic inducers in the future, which may represent a solution to the apoptotic-resistance dilemma along with synergistic chemotherapeutic advantage.
Collapse
Affiliation(s)
- Mohammed A Hara
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt
| | - Mohamed Ramadan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt.
| | - Mohammed K Abdelhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ehab S Taher
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al Azhar University (Assiut), Assiut, 71524, Egypt
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sinai University (Arish Branch), ElArich, Egypt
| |
Collapse
|
4
|
Fan G, Liu Y, Tao L, Wang D, Huang Y, Yang X. Sodium butyrate alleviates colitis by inhibiting mitochondrial ROS mediated macrophage pyroptosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167756. [PMID: 40044062 DOI: 10.1016/j.bbadis.2025.167756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory bowel disease with unclear causes and limited treatment options. Sodium butyrate (NaB), a byproduct of dietary fiber in the intestine, has demonstrated efficacy in treating inflammation. However, the precise anti-inflammatory mechanisms of NaB in colon inflammation remain largely unexplored. This study aims to investigate the effects of NaB on dextran sulfate sodium (DSS)-induced colitis in rats. The findings indicate that oral administration of NaB effectively prevent colitis and reduce levels of serum or colon inflammatory factors. Additionally, NaB demonstrated in vitro inhibition of RAW264.7 inflammation cytokines induced by LPS, along with suppression of the ERK and NF-κB signaling pathway activation. Moreover, NaB mitigated LPS and Nigericin-induced RAW264.7 pyroptosis by reducing indicators of mitochondrial damage, including increased mitochondrial membrane potential (JC-1) levels and decreased Mito-ROS production. NaB increases ZO-1 and Occludin expression in CaCo2 cells by inhibiting RAW264.7 pyroptosis. These results suggest that NaB could be utilized as a therapeutic agent or dietary supplement to alleviate colitis.
Collapse
Affiliation(s)
- Guoqiang Fan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaxin Liu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Limei Tao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Danping Wang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yizhu Huang
- Singao Xiamen Company, Xiamen 361006, PR China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
5
|
Chen B, Wang L, Xie R, Li B, Peng S, Ou Y, Zhuang R, Zhuang W, Huang H, Wu J, Huang H. Inflammation-Targeted and Antioxidative Poly(Ferulic Acid) Nanoparticles Directly Treat Chronic Nonbacterial Prostatitis via Inhibiting Pyroptosis by Disrupting Nrf2/KEAP1 Multimer Formation and as a Robust Drug Carrier. Adv Healthc Mater 2025:e2500954. [PMID: 40420639 DOI: 10.1002/adhm.202500954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/11/2025] [Indexed: 05/28/2025]
Abstract
Chronic nonbacterial prostatitis (CNP) is challenging to treat due to limited options. This study introduces a new approach using natural ferulic acid-based polymer nanoparticles to target CNP. Ferulic acid (FA) is polymerized into poly(ferulic acid) and forms nanoparticles (PFA NPs). Folic acid (Fa) is added for targeting, and celecoxib (Cel) is loaded, creating PFA-Fa@Cel NPs. These nanoparticles, ≈100 nm in size, have a 39% drug encapsulation efficiency, showing good stability, biocompatibility, controlled release, and anti-inflammatory effects, including reduced macrophage chemotaxis. PFA NPs demonstrated strong anti-inflammatory effects and targeted oxidative stress reduction while inhibiting pyroptosis. Mechanistic studies showed that PFA-Fa NPs disrupted the KEAP1/Nrf2 complex, leading to Nrf2 activation, enhanced antioxidant responses, and preservation of prostate epithelium integrity. In summary, PFA-Fa NPs effectively reduce inflammation, oxidative stress, and pyroptosis, while also delivering celecoxib to inflamed tissues, improving treatment efficacy for CNP. This approach shows significant clinical promise for CNP patients.
Collapse
Affiliation(s)
- Bingliang Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liying Wang
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Bingheng Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shirong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuan Ou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruilin Zhuang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Zhongshan North Road, Licheng District, Quanzhou, Fujian, 362000, China
| | - Hao Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
| |
Collapse
|
6
|
Tang Y, Tong W, Peng Y, Sun S. Targeting cholesterol-driven pyroptosis: a promising strategy for the prevention and treatment of atherosclerosis. Mol Biol Rep 2025; 52:459. [PMID: 40372511 DOI: 10.1007/s11033-025-10554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Funding Pyroptosis is a type of programmed cell death (PCD) pathway distinguished by inflammation. It is activated by specific inflammasomes. Once activated, it causes the physical breakdown of the cell, along with the discharge of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Abundant evidence has demonstrated the existence of pyroptotic cell death within atherosclerotic plaques, which has significance for the development of atherosclerosis (AS). As a result, pyroptosis has become a new and important topic in cardiovascular disease (CVD) research. Cholesterol, it is recognized to have a connection with inflammation, exerts a crucial function in the development process of AS, and has been linked to the initiation of pyroptosis. This review aims to briefly summarize the fundamental aspects of pyroptosis and the influence of cholesterol-related inflammation in AS. Additionally, this review will explore potential therapeutic approaches based on pyroptosis that could be utilized for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Yuehong Tang
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenjuan Tong
- Department of Gynecology and Obstetrics, First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Yujiao Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shaowei Sun
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
7
|
Wang J, Li LL, Zhao ZA, Niu CY, Zhao ZG. NLRP3 Inflammasome-mediated pyroptosis in acute lung injury: Roles of main lung cell types and therapeutic perspectives. Int Immunopharmacol 2025; 154:114560. [PMID: 40184810 DOI: 10.1016/j.intimp.2025.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
The NLRP3 inflammasome plays a pivotal role in the pathogenesis of acute lung injury (ALI) by regulating pyroptosis, a highly inflammatory form of programmed cell death. NLRP3-mediated pyroptosis leads to alveolar epithelial cell injury, increased pulmonary microvascular endothelial permeability, excessive alveolar macrophage activation, and neutrophil dysfunction, collectively driving ALI progression. In addition to the classical NLRP3-dependent pathway, the non-canonical pyroptosis pathway (caspase-4/5/11) also contributes to ALI by inducing pyroptotic cell death in AECs and ECs, further amplifying NLRP3 activation through damage-associated molecular patterns (DAMP) release. Moreover, neutrophils (NE) pyroptosis exhibits dual roles in ALI, as it enhances pathogen clearance but also exacerbates excessive inflammation and tissue damage, highlighting the complexity of its regulation. Targeting the NLRP3 inflammasome and pyroptotic pathways has emerged as a promising therapeutic strategy for ALI. Various NLRP3 inhibitors (e.g., MCC950, CY-09, OLT1177) and pyroptosis inhibitors have demonstrated significant anti-inflammatory and tissue-protective effects in preclinical models. However, the clinical translation of NLRP3-targeted therapies remains challenging due to off-target effects, potential immunosuppression, lack of patient stratification strategies, and compensatory activation of alternative inflammasomes (e.g., AIM2, NLRC4). Future studies should focus on optimizing the selectivity of NLRP3 inhibitors, developing personalized therapeutic approaches, and exploring combination strategies to enhance their clinical applicability in ALI.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Lu-Lu Li
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Chun-Yu Niu
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| |
Collapse
|
8
|
Meng Q, Huang Y, Long X, Liu L, Tang Y, He J, Luo Y. Scutellarin mitigates high glucose-induced pyroptosis in diabetic atherosclerosis: Role of Nrf2-FBXL2-mediated NLRP3 degradation. Endocr J 2025; 72:495-507. [PMID: 40010729 PMCID: PMC12086276 DOI: 10.1507/endocrj.ej24-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
This study investigated the role of scutellarin (Scu) and Nrf2 in diabetic atherosclerosis, focusing on their effects on FBXL2 and NLRP3 ubiquitination. Human umbilical vein endothelial cells were treated with high glucose (HG) to model diabetic atherosclerosis in vitro. Cell viability, cytotoxicity, pyroptosis, and inflammatory cytokine levels were assessed, and gene interactions were examined by dual-luciferase reporter assays. Ubiquitination and protein levels were analyzed through immunoprecipitation and western blotting. The results revealed that HG treatment decreased Nrf2 and FBXL2 levels and enhanced NLRP3-mediated pyroptosis. However, Scu treatment increased Nrf2 expression, improved cell viability, and inhibited pyroptosis. Nrf2 knockdown downregulated FBXL2 and reversed the protective effects of Scu. Additionally, FBXL2 promoted the ubiquitination-mediated degradation of NLRP3 and suppressed pyroptosis. The activation of NLRP3 reversed the protective effects of Scu on diabetic atherosclerosis. These findings suggest that Scu alleviated diabetic atherosclerosis by increasing Nrf2 and FBXL2 expression, promoting NLRP3 ubiquitination-mediated degradation, and suppressing pyroptosis.
Collapse
Affiliation(s)
- Qingxin Meng
- School of Medicine, Changsha Social Work College, Changsha, Hunan Province 410004, China
| | - Yongpan Huang
- School of Medicine, Changsha Social Work College, Changsha, Hunan Province 410004, China
| | - Xian Long
- School of Medicine, Changsha Social Work College, Changsha, Hunan Province 410004, China
| | - Lijing Liu
- School of Medicine, Changsha Social Work College, Changsha, Hunan Province 410004, China
| | - Yani Tang
- School of Medicine, Changsha Social Work College, Changsha, Hunan Province 410004, China
| | - Jingjing He
- School of Medicine, Changsha Social Work College, Changsha, Hunan Province 410004, China
| | - Yayuan Luo
- Department of Neurology, Hunan Aerospace Hospital, Changsha, Hunan Province 410205, China
| |
Collapse
|
9
|
Zhong S, Shen H, Dai X, Liao L, Huang C. BAM15 inhibits endothelial pyroptosis via the NLRP3/ASC/caspase-1 pathway to alleviate atherosclerosis. Atherosclerosis 2025; 406:119226. [PMID: 40393254 DOI: 10.1016/j.atherosclerosis.2025.119226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/08/2025] [Accepted: 04/23/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND AND AIMS Atherosclerosis (AS) is a chronic inflammatory disease contributing to major cardiovascular events. This study aimed to investigate the effects of BAM15, a mitochondrial uncoupler, on regulating the NLRP3/ASC/caspase-1 signaling pathway to suppress endothelial cell pyroptosis and mitigate AS. METHODS AS was induced in ApoE-/- mice through a high-fat diet (HFD), and the therapeutic effects of BAM15 (5 mg/kg/day, s. c.) were evaluated. Histological analyses, including HE staining and oil red O staining, were used to assess aortic pathology and lipid deposition. Serum inflammatory cytokines (IL-1β, IL-18) were quantified by ELISA. Mouse primary aortic endothelial cells (MAECs) were treated with oxidized low-density lipoprotein (ox-LDL) to simulate AS condition in vitro. Mitochondrial reactive oxygen species (mtROS) expression and oxidized (ox)-mtDNA content were detected by Mitosox staining and ELISA, respectively. Western blot was used to assess the expression of pyroptosis-related proteins, including GSDMD-NT, NLRP3, ASC, and cleaved-caspase-1. RESULTS BAM15 reduced atherosclerotic plaque formation, lipid deposition, and inflammation, and diminished mtROS expression and ox-mtDNA content in the AS mouse models. In both in vivo and in vitro experiments, BAM15 markedly inhibited the activation of the NLRP3 inflammasome, leading to reduced pyroptosis in endothelial cells. Activation of the NLRP3/ASC/caspase-1 signaling pathway by Nigericin partially reversed the protective effects of BAM15, underscoring the pivotal role of NLRP3 inflammasome inhibition in endothelial pyroptosis suppression. CONCLUSIONS BAM15 effectively inhibits endothelial cell pyroptosis by reducing mtROS production and ox-mtDNA release to suppress the NLRP3/ASC/caspase-1 signaling pathway, thereby alleviating AS in both in vivo and in vitro models.
Collapse
Affiliation(s)
- Su Zhong
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China; Cadre Ward, Army 73rd Group Military Hospital, Xiamen, 36100, Fujian, China
| | - Hui Shen
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaoman Dai
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Lianming Liao
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Chun Huang
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China; People's Hospital of Changji Hui Autonomous Prefecture, Changji, 831100, Xinjiang, China.
| |
Collapse
|
10
|
Zhang Y, Qian C, Chu C, Yang XZ, Wu Y, Cai L, Yao S, He W, Guo Z, Chen Y. Self-Assembly of Short Peptides Activates Specific ER-Phagy and Induces Pyroptosis for Enhanced Tumor Immunotherapy. Angew Chem Int Ed Engl 2025; 64:e202422874. [PMID: 40069115 DOI: 10.1002/anie.202422874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Developing specific endoplasmic reticulum-autophagy (ER-phagy) inducers is highly desirable for discovering new ER-phagy receptors and elucidating the detailed ER-phagy mechanism and potential cancer immunotherapy. However, most of the current ER-phagy-inducing methods cause nonselective autophagy of other organelles. In this work, we report the design and synthesis of simple and stable short peptides (D-FFxFFs) that could specifically trigger ER-phagy, which further induces pyroptosis and activates the immune response against tumor cells. D-FFxFFs locate preferentially in ER and readily self-assemble to form nanosized misfolded protein mimics, which lead to distinct upregulation of dedicated ER-phagy receptors with no obvious autophagy of other organelles. Significant unfolded protein response (UPR) is activated via IRE1-JNK and PERK-ATF4 pathways. Interestingly, the persistent ER-phagy triggers ER Ca2+ release and a surge in mitochondrial Ca2+ levels, resulting in GSDMD-mediated pyroptosis other than apoptosis. The ER-phagy induces pyroptosis and activates a distinct antitumor immune response without evolving the acquired drug resistance. This work not only provides a powerful tool for investigating the mechanism and function of ER-phagy but also offers an appealing strategy for anticancer immunotherapy.
Collapse
Affiliation(s)
- Yunhua Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Chengyuan Qian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Chengyan Chu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Xiu-Zhi Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Yanping Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Linxiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210000, P.R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210000, P.R. China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210000, P.R. China
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, 210008, P.R. China
| |
Collapse
|
11
|
Zhang Y, Long T, Wei B, Zhou H, Yin X, Chen Z, Di Fazio P, Li W, Zhou H. A bibliometric analysis of the literature published on autophagy, ferroptosis, necroptosis, and pyroptosis in cardiovascular disease from 2009 to 2023. J Thorac Dis 2025; 17:2537-2562. [PMID: 40400924 PMCID: PMC12090173 DOI: 10.21037/jtd-2025-682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/24/2025] [Indexed: 05/23/2025]
Abstract
Background Programmed cell death (PCD) plays a pivotal role in the development and progression of cardiovascular disease (CVD), which remains the leading cause of mortality worldwide. Among the various types of PCD, autophagy, ferroptosis, necroptosis, and pyroptosis have garnered increasing attention due to their involvement in inflammation, oxidative stress, and cardiomyocyte survival. Although numerous studies have explored the underlying mechanisms of these pathways, their therapeutic potential in clinical practice remains limited. With the rapid growth of publications in this field, a comprehensive understanding of research trends and influential studies is essential to guide future investigations. This study aimed to characterize the progress and research hotspots of autophagy in CVD, ferroptosis in CVD, necroptosis in CVD, and pyroptosis in CVD through a bibliometric analysis to provide a comprehensive overview of PCD in CVD. Methods Publications from January 1, 2009, to December 31, 2023, were analyzed using the "bibliometrix" R package to assess research output, key contributors, and influential journals in each field. Results For the topic of autophagy in CVD, 6,426 articles published by 4,891 institutions from 90 countries/regions were retrieved. For the topic of necroptosis in CVD, 393 articles from 616 organizations in 53 countries/regions were retrieved. For the topic of pyroptosis in CVD, 640 publications from 754 institutions in 48 countries/regions were retrieved. Finally, for the topic of ferroptosis in CVD, 687 articles from 827 institutions in 49 countries/regions were retrieved. Key contributors included Adriana A (22 publications on necroptosis), Ge J, and Ye B (8 publications each on pyroptosis), and Ren J (lead contributor in autophagy and ferroptosis, with 120 and 10 publications, respectively). The most frequently co-cited journals were Cell, Nature, Free Radical Biology and Medicine, and the Journal of Biological Chemistry. Conclusions This bibliometric analysis highlights the growing interest in PCD in CVD research, with autophagy and pyroptosis being the central themes. Future studies should examine therapeutic strategies targeting ferroptosis and necroptosis to improve CVD treatment. The findings provide a roadmap for researchers to navigate emerging research hotspots and foster interdisciplinary collaboration.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Tianyi Long
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bo Wei
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huan Zhou
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinhai Yin
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhangrong Chen
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Pietro Di Fazio
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| | - Wei Li
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Haiyan Zhou
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Liu J, Ge P, Luo Y, Sun Z, Luo X, Li H, Pei B, Xun L, Zhang X, Jiang Y, Wen H, Liu J, Yang Q, Ma S, Chen H. Decoding TMAO in the Gut-Organ Axis: From Biomarkers and Cell Death Mechanisms to Therapeutic Horizons. Drug Des Devel Ther 2025; 19:3363-3393. [PMID: 40322030 PMCID: PMC12049683 DOI: 10.2147/dddt.s512207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The gut microbiota and its metabolites are bi-directionally associated with various human illnesses, which has received extensive attention. Trimethylamine N-oxide (TMAO) is a gut microbiota metabolite produced in the liver, which may serve the role of an "axis" connecting the gut and host organs. TMAO levels are significantly higher in the blood of individuals with cardiovascular, renal, neurological, and metabolic diseases. Endothelial cells are crucial for regulating microcirculation and maintaining tissue and organ barriers and are widely recognized as target cells for TMAO. TMAO not only induces endothelial dysfunction but also acts on various cell types, such as endothelial cells, epithelial cells, vascular smooth muscle cells, nerve cells, and pancreatic cells, triggering multiple cell death mechanisms, including necrosis and programmed cell death, thereby influencing host health. This paper thoroughly covers the origins, production, and metabolic pathways of TMAO, emphasizing its importance in the early detection and prognosis of human diseases in the "Gut-Organ" axis, as well as its mechanisms of influence on human diseases, particularly the cross-talk with cell death. Furthermore, we cover recent advances in treating human diseases by regulating gut microbiota structure and enzyme activity to influence TMAO metabolism and reduce TMAO levels, including the use of probiotics, prebiotics, antibiotics, anti-inflammatory drugs, antiplatelet drugs, hypoglycemic drugs, lipid-lowering drugs, and natural products.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhenxuan Sun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Huijuan Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Lu Xun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xuetao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yunfei Jiang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Qi Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
13
|
Wang S, Chen X, Wang K, Yang S. The Regulatory Role of NcRNAs in Pyroptosis and Disease Pathogenesis. Cell Biochem Biophys 2025:10.1007/s12013-025-01720-7. [PMID: 40249522 DOI: 10.1007/s12013-025-01720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 04/19/2025]
Abstract
Non-coding RNAs (ncRNAs), as critical regulators of gene expression, play a pivotal role in the modulation of pyroptosis and exhibit a close association with a wide range of diseases. Pyroptosis is a form of programmed cell death mediated by inflammasomes, characterized by cell membrane perforation, release of inflammatory cytokines, and a robust immune response. Recent studies have revealed that ncRNAs influence the initiation and execution of pyroptosis by regulating the expression of pyroptosis-related genes or modulating associated signaling pathways. This review systematically summarizes the molecular mechanisms and applications of ncRNAs in diseases such as cancer, infectious diseases, neurological disorders, cardiovascular diseases, and metabolic disorders. It further explores the potential of ncRNAs as diagnostic biomarkers and therapeutic targets, elucidates the intricate interactions among ncRNAs, pyroptosis, and diseases, and provides novel strategies and directions for the precision treatment of related diseases.
Collapse
Affiliation(s)
- Shaocong Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Sumin Yang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
He S, Gu C, Meng C, Cai C, Lai D, Qiu Q. CircTHADA regulates endothelial cell pyroptosis in diabetic retinopathy through miR-494-3p/CASP1/GSDMD-N/IL-1β pathway. Exp Cell Res 2025; 447:114496. [PMID: 40090540 DOI: 10.1016/j.yexcr.2025.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
Our study aimed to elucidate the mechanism by which circTHADA competitively adsorbs miR-494-3p to regulate CASP1-mediated endothelial cell (EC) pyroptosis in diabetic retinopathy (DR). To be specific, we used high glucose (HG)-induced human retinal microvascular endothelial cells (HRMECs) as DR cell models and streptozotocin (STZ)-treated mice as DR mouse models. The expression levels of circTHADA, miR-494-3p, CASP1, NLRP3, GSDMD-N and IL-1β were detected and flow cytrometry was applied to measure cell pyroptosis rate and dual luciferase reporter assays were utilized to determine the direct binding sites. As a result, exacerbated EC pyroptosis in DR was detected in DR cell and mouse models. Based on differentially expressed circRNA profiles by microarray and experimental verification, circTHADA was filtered and identified to regulate CASP1-mediated EC pyroptosis. miR-494-3p was then proven to be involved in circTHADA-mediated ceRNA network by bioinformatics analysis and experimental verification. Further gain- and loss-of-function experiments and rescue experiments revealed the function of the circTHADA/miR-494-3p/CASP1 axis in pyroptosis.
Collapse
Affiliation(s)
- Shuai He
- School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, Institute of Basic Medical Science, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, PR China
| | - Chufeng Gu
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, PR China; Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, PR China.
| | - Chunren Meng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Chunyang Cai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
15
|
Asemi R, Omidi Najafabadi E, Mahmoudian Z, Reiter RJ, Mansournia MA, Asemi Z. Melatonin as a treatment for atherosclerosis: focus on programmed cell death, inflammation and oxidative stress. J Cardiothorac Surg 2025; 20:194. [PMID: 40221806 PMCID: PMC11993989 DOI: 10.1186/s13019-025-03423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/06/2025] [Indexed: 04/14/2025] Open
Abstract
Delaying the development of atherosclerosis (AS) and decreasing cardiac ischemia-reperfusion damage remain serious challenges for the medical community. Chronic arterial disease, i.e., AS, is frequently linked to oxidative stress and inflammation as significant contributing causes. AS risk factors, such as hyperlipidemia, high blood pressure, age, hyperglycemia, smoking, high cholesterol, and irregular sleep patterns, can exacerbate AS in the carotid artery and further shrink its lumen. Finding new approaches that support plaque inhibition or stability is an ongoing problem. The last ten years have shown us that melatonin (MLT) affects the cardiovascular system, although its exact mechanisms of action are yet unknown. MLT's direct free radical scavenger activity, its indirect antioxidant qualities, and its anti-inflammatory capabilities all contribute to its atheroprotective effects on several pathogenic signaling pathways. Herein, we examine the evidence showing that MLT treatment has significant protective effects against AS and AS-related cardiovascular diseases. The numerous pieces of the puzzle that have been as for epigenetic and biogenetic targets for prevention and therapy against the atherosclerotic pathogenic processes are identified.
Collapse
Affiliation(s)
- Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zahra Mahmoudian
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
16
|
Yang N, Hua R, Lai Y, Zhu P, Ding J, Ma X, Yu G, Xia Y, Liang C, Gao W, Wang Z, Zhang H, Yang L, Zhou K, Ge L. Microenvironment-adaptive nanomedicine MXene promotes flap survival by inhibiting ROS cascade and endothelial pyroptosis. J Nanobiotechnology 2025; 23:282. [PMID: 40197477 PMCID: PMC11978011 DOI: 10.1186/s12951-025-03343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
In the field of large-area trauma flap transplantation, preventing avascular necrosis remains a critical challenge. Key mechanisms for improving flap viability include angiogenesis promotion, oxidative stress inhibition, and cell death prevention. Recently, two-dimensional ultrathin Ti3C2TX (MXene) nanosheets have gained attention for their potential contributions to these processes, though MXene's physiological impact on flap survival had not been previously investigated. This study is the first to confirm MXene's biological effects on the ischaemic microenvironment post-skin flap transplantation. Findings indicated that MXene significantly decreased the necrotic area in ischaemic flaps (37.96% ± 2.00%), with reductions of 30.40% ± 1.86% at 1 mg/mL and 20.19% ± 2.11% at 2 mg/mL in a concentration-dependent manner. Mechanistically, MXene facilitated in situ angiogenesis, mitigated oxidative stress, suppressed pro-inflammatory pyroptosis, and activated the PI3K-Akt pathway, particularly influencing vascular endothelial cells. Comparative transcriptome analysis of skin tissues with and without MXene treatment provided additional evidence, highlighting mechanisms such as pro-inflammatory pyroptosis, ROS metabolic processes, endothelial cell proliferation regulation, and PI3K-Akt signaling pathway activation. Overall, MXene demonstrated biological activity, effectively promoting ischaemic flaps survival and presenting a novel strategy for addressing ischaemic necrosis in skin flaps.
Collapse
Affiliation(s)
- Ningning Yang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Rongrong Hua
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yingying Lai
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Peijun Zhu
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jian Ding
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xianhui Ma
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Gaoxiang Yu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yiheng Xia
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
| | - Chao Liang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
| | - Weiyang Gao
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhouguang Wang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Liangliang Yang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Kailiang Zhou
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, 325027, Zhejiang, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| | - Lu Ge
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
| |
Collapse
|
17
|
Yao Q, Lei Y, Zhang Y, Chen H, Dong X, Ye Z, Liang H. EZH2-H3K27me3-Mediated Epigenetic Silencing of DKK1 Induces Nucleus Pulposus Cell Pyroptosis in Intervertebral Disc Degeneration by Activating NLRP3 and NAIP/NLRC4. Inflammation 2025; 48:902-918. [PMID: 39052181 DOI: 10.1007/s10753-024-02096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Nucleus pulposus (NP) cell pyroptosis is crucial for intervertebral disc degeneration (IDD). However, the precise mechanisms underlying pyroptosis in IDD remain elusive. Therefore, this study aimed to investigate how dickkopf-1 (DKK1) influences NP cell pyroptosis and delineate the regulatory mechanisms of IDD. Behavioral tests and histological examinations were conducted in rat IDD models to assess the effect of DKK1 on the structure and function of intervertebral discs. Detected pyroptosis levels using Hoechst 33,342/propidium iodide (PI) double staining, and determined pyroptosis-related protein expression via western blotting. The cellular mechanisms of DKK1 in pyroptosis were explored in interleukin (IL)-1β-induced NP cells transfected with or without DKK1 overexpression plasmids (oe-DKK1). In addition, IL-1β-treated NP cells transfected with sh-EZH2 and/or sh-DKK1 were utilized to clarify the interplay between the enhancer of zeste homologue 2 (EZH2) and DKK1 in pyroptosis. Additionally, the epigenetic regulation of DKK1 by EZH2 was explored in NP cells treated with the EZH2 inhibitors GSK126/DZNep. DKK1 expression decreased in IDD rats. Transfection with oe-DKK1 reduced pro-inflammatory factors and extracellular matrix markers in IDD rats. In IL-1β-induced NP cells, DKK1 overexpression suppressed pyroptosis and inhibited the NLRP3 and NAIP/NLRC4 inflammasome activation. EZH2 knockdown increased DKK1 expression and reduced pyroptosis-related proteins. Conversely, DKK1 downregulation reversed the inhibitory effects of EZH2 knockdown on pyroptosis. Furthermore, EZH2 suppressed DKK1 expression via H3K27 methylation at the DKK1 promoter. EZH2 negatively regulates DKK1 expression via H3K27me3 methylation, promoting NP cell pyroptosis in IDD patients. This regulatory effect involves the activation of NLRP3 and NAIP/NLRC4 inflammasomes.
Collapse
Affiliation(s)
- Qijun Yao
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Yue Lei
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Yongxu Zhang
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Haoran Chen
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Xiaowei Dong
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Zhiqiang Ye
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Haidong Liang
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China.
| |
Collapse
|
18
|
Bai H, Chen H, Du S, Qiu D, Li S, Ma T, Gao R, Zhang Z. N-Acetylcysteine Mitigates Ketamine Neurotoxicity in Young Rats by Modulating ROS-Mediated Pyroptosis and Ferroptosis. Mol Neurobiol 2025:10.1007/s12035-025-04860-2. [PMID: 40111652 DOI: 10.1007/s12035-025-04860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Ketamine, an N-methyl-D-aspartate receptor antagonist with anesthetic and analgesic properties, is extensively utilized for the induction and maintenance of pediatric perioperative anesthesia. Increasing evidence suggests that prolonged exposure to ketamine may induce neurotoxicity in developing animals, adversely affecting their long-term cognitive function. N-acetylcysteine (NAC) is an organic sulfur compound in the Allium genus; however, the mechanisms through which it alleviates ketamine-induced neurotoxicity during developmental stages remain inadequately understood. Refine the investigation of the mechanisms by which Nac mitigates ketamine-induced neurotoxicity during development via ferroptosis and pyroptosis pathways. Postnatal day 7 in SD rats PC12 cells and HAPI cells were used in this study. The neuroprotective mechanism of Nac was elucidated through pathological, histological, and molecular biological methodologies to assess pyroptosis, ferroptosis, hippocampal tissue damage, and behavioral modifications in adulthood. The results suggest that prior administration of Nac reduced lipid peroxidation and mitochondrial injury, along with pyroptosis activated by the NLRP3/caspase-1 pathway, hippocampal damage, and cognitive deficits after exposure to ketamine. In summary, our findings from both in vivo and in vitro studies indicate that ROS plays a significant regulatory role in the neurotoxic effects of ketamine during development. Furthermore, Nac mitigates hippocampal damage and cognitive deficits associated with ketamine exposure by inhibiting ROS-mediated ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Hui Bai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Di Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruifeng Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
| | - Zhiheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
19
|
Zhang F, Zhang SH, Liu T, Xie GS, Deng SH, Zhang T, Wang XB, Yang YY, Chen ZX, Wu DM, Xu Y. Golgicide A induces pyroptosis of lung cancer stem cells by regulating dTGN formation via GOLPH3/MYO18A complex. Stem Cell Res Ther 2025; 16:121. [PMID: 40055842 PMCID: PMC11887147 DOI: 10.1186/s13287-025-04246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/20/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Lung cancer is a common malignant neoplasm, one of the leading causes of death worldwide. Cancer stem cells (CSCs) drive tumor recurrence, progression, and therapeutic resistance. Thus, targeting CSCs may contribute to lung cancer treatment and improve clinical outcomes. METHODS We induced stem cell formation in serum-free suspension culture. Cell viability was assessed using the cell counting-kit 8 assay, and cell membrane integrity was evaluated using the lactate dehydrogenase release assay. Caspase-1 activity assays, western blotting, enzyme-linked immunosorbent assay, and flow cytometry were used to analyze pyroptosis in cells. Confocal microscopy was used to detect protein co-localization. Quantification of fluorescence intensity and co-localization was carried out using ImageJ software. Co-immunoprecipitation was performed to assess the interaction between GOLPH3 and MYO18A. An animal study was conducted to evaluate the effects of golgicide A (GCA) on tumor growth in vivo. RESULTS GCA induced cell death via pyroptosis in both H1650- and A549-derived CSCs. GCA enhanced the binding of GOLPH3 and MYO18A, resulting in trans-Golgi network (TGN) dispersion. In turn, the dispersed TGN (dTGN) recruited NLRP3. Our xenograft animal model study confirmed that GCA can inhibit tumor growth. CONCLUSIONS GCA induced pyroptosis by promoting the interaction between GOLPH3 and MYO18A, resulting in dTGN formation in lung CSCs. Our findings provide a novel molecular insight into the anti-cancer activities of GCA in lung CSCs.
Collapse
Affiliation(s)
- Feng Zhang
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Sun-Han Zhang
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Teng Liu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Guang-Su Xie
- Xindu District People's Hospital of Chengdu, Sichuan, PR China
| | - Shi-Hua Deng
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Ting Zhang
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Xiao-Bian Wang
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Yue-Yan Yang
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Zi-Xin Chen
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Dong-Ming Wu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
- Clinical laboratory, the First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, P.R. China.
| | - Ying Xu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
- Clinical laboratory, the First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, P.R. China.
| |
Collapse
|
20
|
Ji Y, Lv N, Dang A. Association of Smoking and Alcohol with Abdominal Aortic Calcification in the General Middle-Aged and Elderly Populations. Rev Cardiovasc Med 2025; 26:26087. [PMID: 40160599 PMCID: PMC11951275 DOI: 10.31083/rcm26087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 04/02/2025] Open
Abstract
Background Research results on the association between alcohol consumption and abdominal aortic calcification (AAC) has yielded inconsistent results. There is a paucity of evidence on the association of smoking and alcohol consumption with AAC in the general middle-aged and elderly population, including age subgroups. This study utilizes nationwide survey data to explore these associations. Methods Data from middle-aged and elderly National Health and Nutrition Examination Survey (NHANES) 2013-2014 participants receiving dual X-ray absorptiometry were analyzed. AAC severity was assessed using a scoring system with a maximum value of 24. Presence of AAC was defined as an AAC score >0, and severe AAC as an AAC score ≥6. Binary logistic regression was employed for analyzing the association of smoking and alcohol consumption-related indices with the presence of AAC, while cumulative odds logistic regression explored their associations with severe AAC. Results Data of 3135 participants were analyzed. Investigation in the entire population found that smoking history was linked to both AAC and severe AAC. In contrast, alcohol consumption history was not linked to AAC or severe AAC. After adjusting for confounders, the findings confirmed a significant association of smoking history with AAC and severe AAC. No significant associations were found for current alcohol consumption with either AAC or severe AAC. Compared with never smokers, former smokers and current smokers experienced increased AAC risk. Former smokers had a significantly lower AAC risk compared to current smokers. Compared with never alcohol consumers, neither former nor current alcohol consumers experienced a different AAC risk. No difference in AAC risk was found between former and current alcohol consumers. Individuals consuming more than 2 drinks of alcohol per day suffered from a significant increase in risk of AAC. Subgroup analyses found elderly ever and current smokers suffered from a significantly elevated AAC risk, as did middle-aged ever smokers. Elderly ever and current alcohol consumers also experienced increased risk of AAC. Conclusions Smoking history is significantly associated with both AAC and severe AAC. The cardiovascular benefits associated with smoking cessation primarily manifest as reduction in risk of AAC presence rather than severe AAC. Elderly smokers are exposed to a greater risk of AAC. In contrast, alcohol consumption shows no association with severe AAC. Alcohol consumption is not associated with AAC except in heavy drinking and elderly subpopulations.
Collapse
Affiliation(s)
- Yinze Ji
- Premium Care Center, Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, 100037 Beijing, China
| | - Naqiang Lv
- Premium Care Center, Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, 100037 Beijing, China
| | - Aimin Dang
- Premium Care Center, Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, 100037 Beijing, China
| |
Collapse
|
21
|
Zhang RL, Wang WM, Li JQ, Li RW, Zhang J, Wu Y, Liu Y. The role of miR-155 in cardiovascular diseases: Potential diagnostic and therapeutic targets. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2025; 24:200355. [PMID: 39760132 PMCID: PMC11699627 DOI: 10.1016/j.ijcrp.2024.200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
Cardiovascular diseases (CVDs), such as atherosclerotic cardiovascular diseases, heart failure (HF), and acute coronary syndrome, represent a significant threat to global health and impose considerable socioeconomic burdens. The intricate pathogenesis of CVD involves various regulatory mechanisms, among which microRNAs (miRNAs) have emerged as critical posttranscriptional regulators. In particular, miR-155 has demonstrated differential expression patterns across a spectrum of CVD and is implicated in the etiology and progression of arterial disorders. This systematic review synthesizes current evidence on the multifaceted roles of miR-155 in the modulation of genes and pathological processes associated with CVD. We delineate the potential of miR-155 as a diagnostic biomarker and therapeutic target, highlighting its significant regulatory influence on conditions such as atherosclerosis, aneurysm, hypertension, HF, myocardial hypertrophy, and oxidative stress. Our analysis underscores the transformative potential of miR-155 as a target for intervention in cardiovascular medicine, warranting further investigation into its clinical applicability.
Collapse
Affiliation(s)
- Rui-Lin Zhang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Wei-Ming Wang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Ji-Qiang Li
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Run-Wen Li
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jie Zhang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
22
|
Liu H, Ma X, Yang X, Xiao S, Ouyang S, Hu Z, Zhou Z, Jiang Z. E. coli Nissle 1917 improves gut microbiota composition and serum metabolites to counteract atherosclerosis via the homocitrulline/Caspase 1/NLRP3/GSDMD axis. Int J Med Microbiol 2025; 318:151642. [PMID: 39742694 DOI: 10.1016/j.ijmm.2024.151642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The probiotic E. coli Nissle 1917 (EcN) alleviates the progression of various diseases, including colitis and tumors. However, EcN has not been studied in atherosclerosis. The study investigated the effects of EcN on atherosclerosis model mice and the potential mechanisms. METHODS Mice in the high-fat diet (HFD) model were given EcN (1 × 109 CFU/g) or homocitrulline (150 mg/L) by oral administration for 12 weeks. The EcN + antibiotic group was set up to investigate the effects of EcN combined with antibiotics on gut microbiota. The control group was utilized as the negative control. Atherosclerosis status, pyroptosis, gut microbiota, and serum metabolites of mice were examined. RESULTS EcN treatment alleviated HFD-caused atherosclerotic plaque and lipid droplet production. EcN treatment reversed HFD-induced increases in total cholesterol, triglycerides, and low-density lipoprotein levels and decreases in high-density lipoprotein levels. EcN inhibited the HFD-caused rise in the expression of pyroptosis-related indicators (cleaved Caspase 1, GSDMD-N, NLRP3, IL-18, and IL-1β). The antibiotics partially reversed the effects of EcN on the model mice, suggesting that EcN regulated pyroptosis in the model mice through gut microbiota. Probiotic bacteria, such as Lactobacillus and Muribaculum, were mainly enriched in the EcN and EcN + antibiotic groups, while Helicobacter, Alistipes, and Rikenella were depleted, suggesting that EcN and EcN + antibiotics could alleviate disorders of gut microbiota in the model mice. EcN reversed the trend of HFD-induced decrease of some metabolites, such as 2-methyl-5-nitroimidazole-1-ethanol, methionine sulfoxide, and shikimate 3-phosphate, and inhibited the increase of some metabolites, such as kynurenine, oxoadipate, and homocitrulline. In addition, homocitrulline showed the opposite effects of EcN in the model mice. Homocitrulline could bind to pyroptosis-related proteins to aggravate ox-LDL-induced endothelial cell pyroptosis. CONCLUSION EcN could alleviate atherosclerosis development by ameliorating HFD-induced disorders of gut microbiota and serum metabolites (such as homocitrulline) to alleviate pyroptosis, which may be associated with homocitrulline/Caspase 1/NLRP3/GSDMD axis. Our study lays the foundation for the development of promising drugs for atherosclerosis in the future.
Collapse
Affiliation(s)
- Huan Liu
- Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China; Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofeng Ma
- Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuefeng Yang
- Department of Gastroenterology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, University of South China, Hengyang, Hunan 421001, China
| | - Sujun Xiao
- Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shao Ouyang
- Department of Cardiology, the Second Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhihao Hu
- Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhixiang Zhou
- Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Zhisheng Jiang
- Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
23
|
Tang K, Wang L, Ye J, Yuan F. Association between life's crucial 9 and severe abdominal aortic calcification in U.S. Adults: the mediating role of the systemic inflammatory response index. Front Endocrinol (Lausanne) 2025; 16:1526114. [PMID: 40093753 PMCID: PMC11906346 DOI: 10.3389/fendo.2025.1526114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Background Life's Crucial 9 (LC9) is an emerging cardiovascular health scoring system that incorporates Life's Essential 8 (LE8) alongside mental health factors. However, its relationship with severe abdominal aortic calcification (SAAC) remains poorly understood. Objectives The objective of this study is to investigate the relationship between LC9 scores and the incidence of SAAC in the US population. Methods Data from 2,323 participants were analyzed, originating from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) cycle. In exploring the dynamics of LC9, its constituents, and their relationship with SAAC, we employed advanced statistical methodologies, specifically multivariable logistic regression and weighted quantile sum regression. Subgroup interaction analyses were conducted to reinforce the conclusions, and mediation analysis was employed to investigate how the systemic inflammatory response index (SIRI) influences the connection between LC9 and SAAC. Results In fully adjusted models, an increase of 10 points in LC9 scores was associated with a 26% reduction in the prevalence of SAAC, achieving statistical significance (P < 0.001). As LC9 scores increased, a significant decline in SAAC prevalence was noted (P < 0.05). The WQS analysis pinpointed strong links between the occurrence of SAAC and variables including exposure to tobacco, blood pressure levels, blood glucose concentrations, and mental health status, the odds ratio stood at 0.244, with the 95% CI extending from 0.119 to 0.495. SIRI was positively correlated with SAAC (P < 0.05) and decreased with rising LC9 scores (β = -0.09, P < 0.001). Mediation analysis revealed that the SIRI significantly influenced the linkage between LC9 and SAAC, accounting for 5.8% of the mediation effect, with a statistically significant p-value (P < 0.001). Conclusion This research highlights a robust inverse relationship between elevated LC9 scores and reduced SAAC incidence, suggesting the significant role of LC9 as a key factor in diminishing the frequency of SAAC. Furthermore, SIRI mediates this relationship.
Collapse
Affiliation(s)
- Kaifeng Tang
- Department of Vascular Surgery, Zhejiang Hospital, Hangzhou, China
| | - Linping Wang
- Department of Gynecology, Zhejiang Hospital, Hangzhou, China
| | - Jinming Ye
- Department of Vascular Surgery, Zhejiang Hospital, Hangzhou, China
| | - Feng Yuan
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
24
|
Liu S, Zhang Y, Liang X, Yin L, He C. α-Cyperone Alleviates LPS-Induced Pyroptosis in Rat Aortic Endothelial Cells via the PI3K/AKT Signaling Pathway. Pharmaceuticals (Basel) 2025; 18:303. [PMID: 40143082 PMCID: PMC11945463 DOI: 10.3390/ph18030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Objective: To investigate the effect and underlying mechanism of α-cyperone in inhibiting pyroptosis in rat aortic endothelial cells (RAECs). Methods: Molecular docking technology was used to predict the potential binding affinity of α-cyperone to pyroptosis-related proteins. A pyroptosis model was established in RAECs using rat serum containing 10% LPS, with α-cyperone administered as a preventive treatment for 9 h. Cell viability and membrane integrity were assessed using propidium iodide (PI) staining and the CCK-8 assay. The release of IL-1β and IL-18 was quantified by ELISA. Western blot and RT-qPCR were performed to evaluate the expression levels of NLRP3, ASC, caspase-1 p20, and N-GSDMD. Additionally, RNA sequencing analysis was conducted to identify differentially expressed genes related to pyroptosis in LPS-induced RAECs following α-cyperone treatment, and key differential genes were validated by Western blot. Results: Molecular docking analysis reveals that α-cyperone exhibits a strong binding affinity to pyroptosis-related targets. α-Cyperone significantly improves LPS-induced cell viability (p < 0.001), reduces IL-1β and IL-18 release (p < 0.001), and downregulates the mRNA and protein expression of NLRP3, ASC, caspase-1, and GSDMD (p < 0.001). RNA sequencing indicates that α-cyperone primarily modulates pyroptosis-related gene expression in RAECs through the PI3K/AKT signaling pathway. Western blot validation further confirmed that α-cyperone effectively inhibited the protein expression of phosphorylated and total PI3K and AKT in RAECs (p < 0.001). Conclusions: α-Cyperone significantly alleviates morphological damage in the RAEC pyroptosis model, suppresses the release of proinflammatory cytokines IL-1β and IL-18, and potentially inhibits NLRP3/caspase-1/GSDMD activation through the PI3K/AKT signaling pathway, thereby attenuating LPS-induced pyroptosis in RAECs.
Collapse
Affiliation(s)
- Shuanghui Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (Y.Z.)
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (L.Y.)
| | - Yankun Zhang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (Y.Z.)
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (L.Y.)
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (L.Y.)
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (L.Y.)
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (L.Y.)
- Department of Clinical Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
25
|
Rahman M, Alatiqi M, Al Jarallah M, Hussain MY, Monayem A, Panduranga P, Rajan R. Cardiovascular Effects of Smoking and Smoking Cessation: A 2024 Update. Glob Heart 2025; 20:15. [PMID: 39991592 PMCID: PMC11843939 DOI: 10.5334/gh.1399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Smoking is a significant risk factor for both acute and chronic cardiovascular diseases. These diseases contribute to approximately twenty percent of all-cause mortality. Research indicates that quitting smoking can substantially reduce or even reverse the harmful effects associated with smoking on cardiovascular health. Notably, these benefits can be observed in a relatively short period compared to the duration of smoking history. This article aims to provide data to understand the effects of smoking on the cardiovascular system locally as well as its effects as a pandemic globally and hence provide comprehensive strategies in the management of cardiovascular patients for smoking cessation.
Collapse
Affiliation(s)
| | | | - Mohammed Al Jarallah
- Department of Cardiology, Sabah Al Ahmed Cardiac Centre, Al Amiri Hospital, Kuwait City, Kuwait
| | | | | | - Prashant Panduranga
- Department of Cardiology, Royal Hospital, and Director General of Specialized Medical Care, Ministry of Health, Muscat, Oman
| | - Rajesh Rajan
- Department of Cardiology, Sabah Al Ahmed Cardiac Centre, Al Amiri Hospital, Kuwait City, Kuwait
| |
Collapse
|
26
|
Zhang X, Zhu H, Zhang J. Oxidative Stress on the Ground and in the Microgravity Environment: Pathophysiological Effects and Treatment. Antioxidants (Basel) 2025; 14:231. [PMID: 40002415 PMCID: PMC11852023 DOI: 10.3390/antiox14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
With the continued exploration of the universe, there is an increasingly urgent need to address the health challenges arising from spaceflight. In space, astronauts are exposed to radiation, confinement and isolation, circadian rhythm dysregulation, and microgravity conditions that are different from those on Earth. These risk factors jeopardize astronauts' health, thus affecting the quality of space missions. Among these factors, gravitational changes influence the balance between oxidation and antioxidants, stimulating the production of reactive oxygen species (ROS), finally leading to oxidative stress (OS). OS leads to oxidative damage of biomolecules such as lipids, proteins, and DNA, which causes the development of various diseases. The occurrence of OS is increased in microgravity and affects multiple systems, including the musculoskeletal, cardiovascular, nervous, and immune systems. In this review, we discuss the mechanisms of OS, the physiological effects on different systems caused by OS in microgravity environment, and potential treatments for OS. Finally, treatment strategies for oxidative stress in microgravity are summarized, providing some promising approaches for protecting the health of astronauts in future space exploration.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (X.Z.); (H.Z.)
| | - Huaiying Zhu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (X.Z.); (H.Z.)
| | - Jinhua Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (X.Z.); (H.Z.)
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
27
|
Wu X, Tian Y, Wang H, Chen H, Hou H, Hu Q. Dual Regulation of Nicotine on NLRP3 Inflammasome in Macrophages with the Involvement of Lysosomal Destabilization, ROS and α7nAChR. Inflammation 2025; 48:61-74. [PMID: 38717634 DOI: 10.1007/s10753-024-02036-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 02/09/2025]
Abstract
Nicotine, the primary alkaloid in tobacco products, has been shown to have immunoregulatory function in at least 20 diseases. The biological mechanism of action of nicotine immunoregulation is complex, resulting in an improvement of some disease states and exacerbation of others. Given the central role of the NLRP3 inflammasome in macrophages among multiple inflammatory diseases, this study examined how nicotine alters NLRP3 inflammasome activation in macrophages. NLRP3 inflammasome activation was examined mechanistically in the context of different nicotine dosages. We show NLRP3 inflammasome activation, apoptosis-associated speck-like protein (ASC) expression, caspase-1 activity and subsequent IL-1β secretion were positively correlated with nicotine in a dose-dependent relationship, and destabilization of lysosomes and ROS production were also involved. At high concentrations of nicotine surpassing 0.25 mM, NLRP3 inflammasome activity declined, along with increased expression of the anti-inflammatory Alpha7 nicotinic acetylcholine receptor (α7nAChR) and the inhibition of TLR4/NF-κB signaling. Consequently, high doses of nicotine also reduced ASC expression, caspase-1 activity and IL-1β secretion in macrophages. Collectively, these results suggest a dual regulatory function of nicotine on NLRP3 inflammasome activation in macrophages, that is involved with the pro-inflammatory effects of lysosomal destabilization and ROS production. We also show nicotine mediates anti-inflammatory effects by activating α7nAChR at high doses.
Collapse
Affiliation(s)
- Xiaqing Wu
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Key Laboratory of Tobacco Biological Effects, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Beijing Life Science Academy, Lutuan East Road, Beijing, 102200, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Lutuan East Road, Beijing, 102200, China
| | - Yushan Tian
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Key Laboratory of Tobacco Biological Effects, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Beijing Life Science Academy, Lutuan East Road, Beijing, 102200, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Lutuan East Road, Beijing, 102200, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Key Laboratory of Tobacco Biological Effects, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Beijing Life Science Academy, Lutuan East Road, Beijing, 102200, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Lutuan East Road, Beijing, 102200, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Key Laboratory of Tobacco Biological Effects, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Beijing Life Science Academy, Lutuan East Road, Beijing, 102200, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Lutuan East Road, Beijing, 102200, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China.
- Key Laboratory of Tobacco Biological Effects, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China.
- Beijing Life Science Academy, Lutuan East Road, Beijing, 102200, China.
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Lutuan East Road, Beijing, 102200, China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China.
- Key Laboratory of Tobacco Biological Effects, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China.
- Beijing Life Science Academy, Lutuan East Road, Beijing, 102200, China.
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Lutuan East Road, Beijing, 102200, China.
| |
Collapse
|
28
|
Yesitayi G, Wang Q, Wang M, Ainiwan M, Kadier K, Aizitiaili A, Ma Y, Ma X. LPS-LBP complex induced endothelial cell pyroptosis in aortic dissection is associated with gut dysbiosis. Microbes Infect 2025; 27:105406. [PMID: 39168178 DOI: 10.1016/j.micinf.2024.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Acute aortic dissection (AAD) is the most severe traumatic disease affecting the aorta. Pyroptosis-mediated vascular wall inflammation is a crucial trigger for AAD, and the exact mechanism requires further investigation. In this study, our proteomic analysis showed that Lipopolysaccharide (LPS)-binding protein (LBP) was significantly upregulated in the plasma and aortic tissue of patients with AAD. Further, 16S rRNA sequencing of stool samples suggested that patients with AAD exhibit gut dysbiosis, which may lead to an impaired intestinal barrier and LPS leakage. By comparing with control mice, we found that LBP, including Pyrin Domain Containing Protein3 (NLRP3), the CARD-containing adapter apoptosis-associated speck-like protein (ASC), and Cleaved caspase-1, were upregulated in the AAD aorta, whereas gut intestinal barrier-related proteins were downregulated. Moreover, treated with LBPK95A (an LBP inhibitor) attenuated the incidence of AAD, the expression levels of pyroptosis-related factors, and the extent of vascular pathological changes compared to those in AAD mice. In addition, LPS and LBP treatment of human umbilical vein endothelial cells (HUVECs) activated TLR4 signaling and intracellular reactive oxygen species (ROS) production, which stimulated NLRP3 inflammasome formation and mediated pyroptosis in endothelial cells. Our findings showed that gut dysbiosis mediates pyroptosis by the LPS-LBP complex, thus providing new insights into developing AAD.
Collapse
Affiliation(s)
- Gulinazi Yesitayi
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Qi Wang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Mengmeng Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.
| | - Mierxiati Ainiwan
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Kaisaierjiang Kadier
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Aliya Aizitiaili
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Yitong Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Xiang Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| |
Collapse
|
29
|
Sun Y, Pu Z, Zhao H, Deng Y, Zhang J, Li S, Jiang Y, Sun M, Zhu J, Alam A, Ma D, Han R. Vitamin D can mitigate sepsis-associated neurodegeneration by inhibiting exogenous histone-induced pyroptosis and ferroptosis: Implications for brain protection and cognitive preservation. Brain Behav Immun 2025; 124:40-54. [PMID: 39566666 DOI: 10.1016/j.bbi.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Sepsis-induced neurodegeneration and cognitive dysfunction remain critical challenges worldwide. Vitamin D was reported to reduce neuronal injury and neurotoxicity and its deficiency was associated with neurocognitive disorders. This study investigates the mechanisms by which vitamin D exerts neuroprotective potential against damage-associated molecular patterns (DAMPs), specifically extracellular histones, in sepsis-related brain dysfunction. METHODS The cultured mouse hippocampal neuronal HT22 cells were exposed to 20 µg/ml exogenous histone for 24 h to induce pyroptosis and ferroptosis in the presence or absence of the active form of vitamin D, calcitriol (1 nM). A cecal ligation and puncture mouse sepsis model was used to evaluate histone release and pyroptosis/ferroptosis biomarkers in the brain together with neurobehavioral performance with or without calcitriol treatment (1 µg/kg, i.p. injection) at 24 h or 1 week after sepsis onset. RESULTS In vitro, histone exposure triggered both pyroptosis and ferroptosis in neuronal cells, which was significantly suppressed by calcitriol treatment with the reduced expression of caspase-1 by 38 %, GSDMD by 30 %, ACSL4 by 33 %, and the increased expression of GPX4 by 35 % (n = 6, P < 0.05). Similarly, in vivo, calcitriol treatment inhibited both neuronal pyroptosis and ferroptosis by reducing expression of pyroptosis marker, GSDMD/NeuN (11.6 ± 1.2 % vs. 19.4 ± 1.1 %) and increasing expression of ferroptosis marker, GPX4/NeuN (21.4 ± 1.7 % vs. 13.5 ± 1.1 %), in the brain of septic mice (n = 6, P < 0.01). In addition, calcitriol increased survival rate (72 % vs. 41 %) and ameliorated cognitive dysfunction of septic mice (n = 8-13, P < 0.05). CONCLUSIONS This study demonstrates that vitamin D exerts a neuroprotective effect against sepsis by attenuating histone-induced pyroptosis and ferroptosis. These findings highlight the potential therapeutic role of vitamin D supplementation in mitigating brain dysfunction associated with sepsis which needs for further investigation.
Collapse
Affiliation(s)
- Yibing Sun
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhuonan Pu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Yuxuan Deng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Jing Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Shiwei Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yingying Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Ming Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Jinpiao Zhu
- Perioperative and Systems Medicine Laboratory, Department of Anesthesiology and Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, PR China
| | - Azeem Alam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Perioperative and Systems Medicine Laboratory, Department of Anesthesiology and Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, PR China.
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
30
|
Abusara OH, Hammad AM, Debas R, Al-Shalabi E, Waleed M, Scott Hall F. The inflammation and oxidative status of rat lung tissue following smoke/vapor exposure via E-cigarette, cigarette, and waterpipe. Gene 2025; 935:149066. [PMID: 39491601 DOI: 10.1016/j.gene.2024.149066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Tobacco smoking is a major worldwide health issue that contributes to millions of deaths annually. Electronic cigarettes (E-cigarettes) are also harmful. Smoke/vapor from E-cigarettes and tobacco products consists of free radicals and other toxic substances. Tissue damage in smokers, such as lungs, is highly observed and is linked to oxidative damage and inflammation. METHODS The inflammation and oxidative status of rat lung tissues was examined following whole-body smoke/vapor exposure via E-cigarette, cigarette, and waterpipe for 2 h daily, 5 days per week for 8 weeks. RESULTS Lung tissue damage was higher in cigarettes and waterpipe groups compared to the E-cigarette group. Collectively, there was a significant increase (p < 0.05) in the mRNA expression of pro-inflammatory mediators (TNF-α, NF-κB, IL-1β) with the exception of IL-1β in the E-cigarettes group. As for the anti-inflammatory mediators (Nrf2 and IL-10), a significant reduction (p < 0.05) of mRNA expression was observed with the exception of Nrf2 in the E-cigarette group. As for IL-6, there was a significant increase in its mRNA expression (p < 0.05) in the cigarette and waterpipe groups. There was also a significant decrease (p < 0.05) in the antioxidant activity of all antioxidants tested (GPx, SOD, and CAT) in all groups with the exception of SOD in the cigarette group. CONCLUSION Smoke/vapor administered via E-cigarette, cigarette, and waterpipe elicits inflammation and oxidative stress in rat lungs that is accompanied by histopathological changes.
Collapse
Affiliation(s)
- Osama H Abusara
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Rasha Debas
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Eveen Al-Shalabi
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mohammed Waleed
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
31
|
Zheng E, Warchoł I, Mejza M, Możdżan M, Strzemińska M, Bajer A, Madura P, Żak J, Plewka M. Exploring Anti-Inflammatory Treatment as Upstream Therapy in the Management of Atrial Fibrillation. J Clin Med 2025; 14:882. [PMID: 39941553 PMCID: PMC11818443 DOI: 10.3390/jcm14030882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Inflammation has been widely recognized as one of the major pathophysiological drivers of the development of atrial fibrillation (AF), which works in tandem with other risk factors of AF including obesity, diabetes, hypertension, and heart failure (HF). Our current understanding of the role of inflammation in the natural history of AF remains elusive; however, several key players, including the NLRP3 (NLR family pyrin domain containing 3) inflammasome, have been acknowledged to be heavily influential on chronic inflammation in the atrial myocardium, which leads to fibrosis and eventual degradation of its electrical function. Nevertheless, our current methods of pharmacological modalities with reported immunomodulatory properties, including well-established classes of drugs e.g., drugs targeting the renin-angiotensin-aldosterone system (RAAS), statins, and vitamin D, have proven effective in reducing the overall risk of developing AF, the onset of postoperative atrial fibrillation (POAF), and reducing overall mortality among patients with AF. This might bring hope for further progress in developing new treatment modalities targeting cellular checkpoints of the NLRP3 inflammasome pathway, or revisiting other well-known anti-inflammatory drugs e.g., colchicine, vitamin C, nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticosteroids, and antimalarial drugs. In our review, we aim to find relevant upstream anti-inflammatory treatment methods for the management of AF and present the most current real-world evidence of their clinical utility.
Collapse
|
32
|
Fang X, Zhuang X, Zheng L, Lv Y, Gao F, Mo C, Zheng X. SQSTM1 upregulation-induced iron overload triggers endothelial ferroptosis in nicotine-exacerbated atherosclerosis. Life Sci 2025; 361:123330. [PMID: 39719169 DOI: 10.1016/j.lfs.2024.123330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
AIMS Nicotine-exacerbated atherosclerosis significantly increases global mortality. Endothelial cells, which line the interior of blood vessels, are crucial for maintaining vascular function. How nicotine is involved in vascular remodeling in atherosclerosis via modulating endothelial dysfunction remains unknown. MATERIALS AND METHODS Comprehensive gene expression analyses identified key genes upregulated in the ferroptosis pathway in smoking-exacerbated atherosclerosis. Predictive models integrating these ferroptosis-related genes were constructed to differentiate atherosclerotic plaques. KEY FINDINGS Here, we reveal that ferroptosis mediates nicotine-induced endothelial dysfunction, exacerbating atherosclerosis. Mechanistically, nicotine elevates sequestosome 1 (SQSTM1), leading to iron overload and an increase in reactive oxygen species (ROS) and the levels of ferroptosis markers heme-oxygenase 1 (HMOX1) and prostaglandin-endoperoxide synthase 2 (PTGS2), contributing to ferroptosis in endothelial cells and the aberrant production of inflammatory factors. Pharmacological inhibition of ferroptosis and normalization of iron levels by knocking down SQSTM1 mitigate endothelial ferroptosis and reduce production of pro-inflammatory factors. Diagnostically, human plasma levels of HMOX1, SQSTM1, and PTGS2 are elevated in smokers with atherosclerosis but reduce in ex-smokers. Predictive models, including a support vector machine integrating these ferroptosis-related genes, effectively differentiate between early- and advanced-stage atherosclerotic plaques. SIGNIFICANCE SQSTM1 upregulation-induced iron overload triggers endothelial ferroptosis in nicotine-exacerbated atherosclerosis, suggesting excellent predictive efficacy for atherosclerosis development and potential for clinical applications. TRIAL REGISTRATION This study has been registered in the Chinese Clinical Trial Registry (ChiCTR2400083484, Registration Date: April 26, 2024).
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.
| | - Xiu'e Zhuang
- Department of Anesthesiology, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian 362000, China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Yi Lv
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Fei Gao
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Medicine, Fujian Provincial Co-constructed Laboratory of "Belt and Road", Fuzhou, Fujian 350001, China.
| |
Collapse
|
33
|
Datta S, Rahman MA, Koka S, Boini KM. High mobility group box 1 (HMGB1) mediates nicotine-induced podocyte injury. Front Pharmacol 2025; 15:1540639. [PMID: 39840112 PMCID: PMC11747285 DOI: 10.3389/fphar.2024.1540639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Cigarette smoking is a well-established risk factor for renal dysfunction. Smoking associated with renal damage bears distinct physiological correlations in conditions such as diabetic nephropathy and obesity-induced glomerulopathy. However, the cellular and molecular basis of such an association remains poorly understood. High mobility group box 1(HMGB1) is a highly conserved non-histone chromatin associated protein that largely contributes to the pathogenesis of chronic inflammatory and autoimmune diseases such as sepsis, atherosclerosis, and chronic kidney diseases. Hence, the present study tested whether HMGB1 contributes to nicotine-induced podocyte injury. Methods and Results Biochemical analysis showed that nicotine treatment significantly increased the HMGB1 expression and release compared to vehicle treated podocytes. However, prior treatment with glycyrrhizin (Gly), a HMGB1 binder, abolished the nicotine-induced HMGB1 expression and release in podocytes. Furthermore, immunofluorescent analysis showed that nicotine treatment significantly decreased the expression of podocyte functional proteins- podocin and nephrin as compared to control cells. However, prior treatment with Gly attenuated the nicotine-induced nephrin and podocin reduction. In addition, nicotine treatment significantly increased desmin expression and cell permeability compared to vehicle treated podocytes. However, prior treatment with Gly attenuated the nicotine-induced desmin expression and cell permeability. Mechanistic elucidation revealed that nicotine treatment augmented the expression of toll like receptor 4 (TLR4) and pre-treatment with Gly abolished nicotine induced TLR4 upregulation. Pharmacological inhibition of TLR4 with Resatorvid, a TLR4 specific inhibitor, also attenuated nicotine induced podocyte damage. Conclusion HMGB1 is one of the important mediators of nicotine-induced podocyte injury through TLR4 activation.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX, United States
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
34
|
Liu X, Zhang X, Mi L, Zhang H, Shi W. Ferulic Acid Regulates GSDMD through the ROS/JNK/Bax Mitochondrial Apoptosis Pathway to Induce Pyroptosis in Lung Cancer. Curr Pharm Biotechnol 2025; 26:902-910. [PMID: 39289934 DOI: 10.2174/0113892010303032240902063213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND To improve the prognosis outcome of lung cancer patients, more investigations are still needed. Previous reports have demonstrated the function of Ferulic Acid (FA) in lung cancer; thus, we have attempted to probe more molecular mechanisms underlying FA application in lung cancer. METHODS CCK8 and colony formation experiments have been employed to explore cell viability and proliferation. Cell apoptosis was evaluated through flow cytometry. Cell morphology was observed with a microscope. MMP was assessed by JC-1 and LDH activity was evaluated by relative kit. Western blot assays were performed to examine the expression levels of GSDMD, GSDMD-N, caspase family proteins, and ROS/JNK/Bax mitochondrial apoptosis pathway downstream proteins. Flow cytometry analysis also measured the level of ROS. Tissues from animal models were taken for IHC analysis of C-caspase-1. RESULTS FA was found to inhibit proliferation, change cell morphology, decrease MMP, and enhance LDH activity, suggesting its ability to induce pyroptosis of lung cancer cells. Both caspase-1 and GSDMD were found to be involved in the pyroptosis of lung cancer cells treated with FA, and caspase-1 mediated GSDMD. Moreover, FA was validated to regulate pyroptosis by ROS/JNK/Bax mitochondrial apoptosis pathway in vitro and in vivo. CONCLUSION In summary, FA regulates GSDMD through ROS/JNK/Bax mitochondrial apoptosis pathway to induce pyroptosis in lung cancer cells, which may offer a theoretical basis for pyroptosis in the occurrence of lung cancer.
Collapse
Affiliation(s)
- Xingchen Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, Jiangsu, 224000, China
| | - Xin Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, Jiangsu, 224000, China
| | - Lida Mi
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, Jiangsu, 224000, China
| | - Hailin Zhang
- Department of Pneumology, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, Jiangsu, 224000, China
| | - Woda Shi
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, Jiangsu, 224000, China
| |
Collapse
|
35
|
Antoniewicz L, Melnikov G, Lyytinen G, Blomberg A, Bosson JA, Hedman L, Mobarrez F, Lundbäck M. Vascular Stress Markers Following Inhalation of Heated Tobacco Products: A Study on Extracellular Vesicles. Cardiovasc Toxicol 2025; 25:1-8. [PMID: 39472409 PMCID: PMC11739193 DOI: 10.1007/s12012-024-09934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/18/2024] [Indexed: 01/19/2025]
Abstract
The advent of heated tobacco products (HTPs) has introduced new variables in the study of nicotine delivery systems and their health implications. Amidst concerns over cardiovascular effects, this study aims to elucidate the acute impact of HTP inhalation on extracellular vesicles (EV) levels in young, healthy individuals. In this controlled, acute exposure study, 23 young, healthy volunteers were subjected to HTP inhalation. EV levels of endothelial and platelet origin were quantified through flow cytometry before and after exposure. Data analysis was performed using multiple measures ANOVA to assess changes in EV concentrations. Our findings reveal a significant increase in EVs of endothelial and platelet origin following short-term HTP inhalation with nicotine. Notably, no significant change was observed in leukocyte- and neutrophil-derived EVs. This increase in EVs suggests acute vascular stress, with peak levels observed 4 h post-exposure. The rise in endothelial and platelet-derived EVs aligns with documented responses to acute vascular injury, paralleling the effects seen with traditional cigarette and e-cigarette use. Despite HTPs being marketed as safer alternatives, our results indicate that nicotine-containing HTPs may still pose significant vascular risks. These findings contribute to the growing body of evidence cautioning against the perceived safety of HTPs and reinforce the importance of regulatory oversight and public health initiatives targeting nicotine delivery technologies. Trial Registrations: ClinicalTrials.gov ID: NCT04824495, registered 2021-01-07.
Collapse
Affiliation(s)
- Lukasz Antoniewicz
- Department of Medicine II, Division of Pulmonology, Medical University of Vienna, 1090, Vienna, Austria.
| | - Georgy Melnikov
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Gustaf Lyytinen
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jenny A Bosson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Linnea Hedman
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, The OLIN Unit, Umeå, Sweden
| | | | - Magnus Lundbäck
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Zhang S, Wang D, Ding Y, Li Y, Wang Y, Zeng J. Inhibition of calpain reduces oxidative stress and attenuates pyroptosis and ferroptosis in Clostridium perfringens Beta-1 toxin-induced macrophages. Microbiol Res 2024; 289:127916. [PMID: 39342748 DOI: 10.1016/j.micres.2024.127916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Clostridium perfringens Beta-1 toxin (CPB1) is a lethal toxin, which can lead to necrotic enteritis, but the pathological mechanism has not been elucidated. We investigated whether reactive oxygen species (ROS) participated in CPB1-induced pyroptosis and ferroptosis, and investigated the effects of calpain on CPB1-induced oxidative stress and inflammation. Scavenging ROS by N-Acetyl-L cysteine (NAC) led to the reduction of ROS, inhibited the death of macrophages, cytoplasmic swelling and membrane rupture, the expression of pyroptosis-related proteins and proinflammatory factor, while increased the expression of anti-inflammatory factors in cells treated with rCPB1. Adenosine triphosphate (ATP) synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 (ATP5A1) was identified specifically interact with rCPB1. Silencing ATP5A1 inhibited accumulation of ATP and ROS, leaded to less cytoplasmic swelling and membrane rupture, attenuated pyroptosis and inflammation in rCPB1-treated cells. We also found that rCPB1 induces ferroptosis in macrophages, and the level of ferroptosis was similar with H2O2. Of note, H2O2 is a major ROS source, indicated that ROS production may play a major role in the regulation of ferroptosis in macrophages treated with rCPB1. This finding was further corroborated in rCPB1- induced human acute monocytic leukemia cells, which were treated with NAC. In addition, the inhibition of ferroptosis using liproxstatin-1 inhibited the shriveled mitochondrial morphology, increased the expression of glutathione peroxidase 4, nicotinamide adenine dinucleotide (phosphate) hydrogen: quinone oxidoreductase 1 and cysteine/glutamic acid reverse transport solute carrier family 7 members 11, decreased the expression of heme oxygenase 1, nuclear receptor coactivator 4 and transferrin receptor proteins, reduced malondialdehyde and lipid peroxidation levels, and increased intracellular L-glutathione levels in cells treated with rCPB1. Furthermore, calpain inhibitor PD151746 was used to investigate how pyroptosis and ferroptosis were involved simultaneously in rCPB1-treated macrophages. We showed that PD151746 inhibited ATP and ROS production, reversed the representative pyroptosis/ferroptosis indicators and subsequently reduced inflammation. The above findings indicate that rCPB1 might lead to macrophage pyroptosis and ferroptosis through the large and sustained increase in intracellular calpain and oxidative stress, further lead to inflammation.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Dong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Yawen Ding
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China.
| | - Jin Zeng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
37
|
Liu C, Zhang Y, Zhao J, Zhang J, Meng Z, Yang Y, Xie Y, Jiao X, Liang B, Cao J, Wang Y. Vaping/e-cigarette-induced pulmonary extracellular vesicles contribute to exacerbated cardiomyocyte impairment through the translocation of ERK5. Life Sci 2024; 358:123195. [PMID: 39481834 DOI: 10.1016/j.lfs.2024.123195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
AIMS The impact of e-cigarettes/vaping on cardiac function remains contradictory owing to insufficient direct evidence of interorgan communication. Extracellular vesicles (EVs) have protective or detrimental effects depending on pathological conditions, making it crucial to understand their role in lung-cardiac cell interactions mediated by vaping inhalation. METHODS AND KEY FINDINGS Pulmonary EVs were characterized from animals that underwent 12 weeks of nicotine inhalation (vaping component) (EVsNicotine) or vehicle control (EVsVehicle). EVsNicotine significantly increased in size and abundance compared with EVsVehicle. The direct effect of EVs Nicotine and EVs Vehicle on cardiomyocytes was then assessed in vitro and in vivo. EVs Nicotine led to a decrease in cardiac function as manifested by reduced cardiac contractility and impaired relaxation. EVs Nicotine induced increased levels of cleaved caspase-1 and cleaved caspase-11 in cardiomyocytes, indicating the promotion of pyroptosis. Meanwhile, EVsNicotine stimulated the secretion of fibrotic factors. Further analysis revealed that nicotine inhalation stimulated EVs Nicotine enriched with high levels of ERK5 (EVs Nicotine-ERK5). It was discovered that these EVs derived from pulmonary epithelial cells. Furthermore, inhibiting cardiac ERK5 blunted the EVs Nicotine-induced pyroptosis and fibrotic factor secretion. We further identified GATA4, a pro-pyroptosis transcription factor, as being activated through ERK5-dependent phosphorylation. SIGNIFICANCE Our research demonstrates that nicotine inhalation exacerbates cardiac injury through the activation of EVs derived from the lungs during e-cigarettes/vaping. Specifically, the EVs containing ERK5 play a crucial role in mediating the detrimental effects on cardiac function. This research provides new insights into the cardiac toxicity of vaping and highlights the role of EVs Nicotine-ERK5 in this process.
Collapse
Affiliation(s)
- Caihong Liu
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yanwei Zhang
- Department of Cardiology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jianli Zhao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhijun Meng
- Clinical Laboratory, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yuhui Yang
- Department of Anesthesiology, Guangdong Medical University, Guangzhou 510182, Guangdong, China
| | - Yaoli Xie
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiangying Jiao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Bin Liang
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Department of Cardiology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jimin Cao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
38
|
Li Y, Sun Y, Xie D, Chen H, Zhang Q, Zhang S, Wen F, Ou JS, Zhang M, Su L, Li X, Wen WP, Chi W. AIP1 Regulates Ocular Angiogenesis Via NLRP12-ASC-Caspase-8 Inflammasome-Mediated Endothelial Pyroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405834. [PMID: 39527457 DOI: 10.1002/advs.202405834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Pathological ocular angiogenesis is a significant cause of irreversible vision loss and blindness worldwide. Currently, most studies have focused on the angiogenesis factors in ocular vascular diseases, and very few endogenous anti-angiogenic compounds have been found. Moreover, although inflammation is closely related to the predominant processes involved in angiogenesis, the mechanisms by which inflammation regulates pathological ocular angiogenesis remain obscure. In this study, a vascular endothelial cells (VECs)-specific anti-angiogenic factor is identified, apoptosis signal-regulating kinase 1(ASK1)-interacting protein-1 (AIP1) as a key pathogenic regulator in a typical ocular angiogenesis model, oxygen-induced retinopathy (OIR), using single-cell RNA sequencing. It is demonstrated that AIP1 inhibited pathological angiogenesis by preventing a particular inflammatory death pathway, namely pyroptosis, in retinal VECs. The assembly of a noncanonical inflammasome is further uncovered, the NLRP12-ASC-caspase-8 inflammasome, which is promoted by decreased AIP1 in OIR. This inflammasome elicited gasdermin D (GSDMD)-dependent endothelial pyroptosis, which in turn promoted the release of vascular endothelial growth factor (VEGF) and interleukin (IL)-1β. Suppression of NLRP12-CASP8-GSDMD axis and AIP1 upregulation reduced VEGF signaling, limiting new vessel formation. These findings reveal a previously uncharacterized inflammatory angiogenic process involving VECs pyroptosis-inducing retinal neovascularization, paving the way for promising therapeutic avenues targeting angiogenesis via AIP1 or pyroptosis.
Collapse
Affiliation(s)
- Yonghao Li
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, Guangdong, 518043, China
| | - Yimeng Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Dasen Xie
- Xiamen Key Laboratory of Ophthalmology, Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, Fujian, 361003, China
| | - Hui Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, Guangdong, 518043, China
| | - Feng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Min Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Lishi Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Wei-Ping Wen
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Wei Chi
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, Guangdong, 518043, China
| |
Collapse
|
39
|
Wang ZM, Li MK, Yang QL, Duan SX, Lou XY, Yang XY, Liu Y, Zhong YW, Qiao Y, Wang ZS, Sun L, Qian F. Recombinant human adenovirus type 5 promotes anti-tumor immunity via inducing pyroptosis in tumor endothelial cells. Acta Pharmacol Sin 2024; 45:2646-2656. [PMID: 39030309 PMCID: PMC11579340 DOI: 10.1038/s41401-024-01349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
Recombinant human type 5 adenovirus (H101) is an oncolytic virus used to treat nasopharyngeal carcinoma. Owing to the deletion of the E1B-55kD and E3 regions, H101 is believed to selectively inhibit nasopharyngeal carcinoma. Whether H101 inhibits other type of tumors via different mechanisms remains unclear. In this study we investigated the effects of H101 on melanomas. We established B16F10 melanoma xenograft mouse model, and treated the mice with H101 (1 × 108 TCID50) via intratumoral injection for five consecutive days. We found that H101 treatment significantly inhibited B16F10 melanoma growth in the mice. H101 treatment significantly increased the infiltration of CD8+ T cells and reduced the proportion of M2-type macrophages. We demonstrated that H101 exhibited low cytotoxicity against B16F10 cells, but the endothelial cells were more sensitive to H101 treatment. H101 induced endothelial cell pyroptosis in a caspase-1/GSDMD-dependent manner. Furthermore, we showed that the combination of H101 with the immune checkpoint inhibitor PD-L1 antibody (10 mg/kg, i.p., every three days for three times) exerted synergic suppression on B16F10 tumor growth in the mice. This study demonstrates that, in addition to oncolysis, H101 inhibits melanoma growth by promoting anti-tumor immunity and inducing pyroptosis of vascular endothelial cells.
Collapse
Affiliation(s)
- Zhi-Ming Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meng-Kai Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing-Ling Yang
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu, 233030, China
| | - Shi-Xin Duan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Yi Lou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Yi Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Liu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Wen Zhong
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Qiao
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu, 233030, China
| | - Zi-Shu Wang
- Department of Medical Oncology, Anhui Province Key Laboratory of Translational Cancer Research, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical University, Bengbu, 233004, China.
| | - Lei Sun
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
40
|
Nesci A, Ruggieri V, Manilla V, Spinelli I, Santoro L, Di Giorgio A, Santoliquido A, Ponziani FR. Endothelial Dysfunction and Liver Cirrhosis: Unraveling of a Complex Relationship. Int J Mol Sci 2024; 25:12859. [PMID: 39684569 DOI: 10.3390/ijms252312859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Endothelial dysfunction (ED) is the in the background of multiple metabolic diseases and a key process in liver disease progression and cirrhosis decompensation. ED affects liver sinusoidal endothelial cells (LSECs) in response to different damaging agents, causing their progressive dedifferentiation, unavoidably associated with an increase in intrahepatic resistance that leads to portal hypertension and hyperdynamic circulation with increased cardiac output and low peripheral artery resistance. These changes are driven by a continuous interplay between different hepatic cell types, invariably leading to increased reactive oxygen species (ROS) formation, increased release of pro-inflammatory cytokines and chemokines, and reduced nitric oxide (NO) bioavailability, with a subsequent loss of proper vascular tone regulation and fibrosis development. ED evaluation is often accomplished by serum markers and the flow-mediated dilation (FMD) measurement of the brachial artery to assess its NO-dependent response to shear stress, which usually decreases in ED. In the context of liver cirrhosis, the ED assessment could help understand the complex hemodynamic changes occurring in the early and late stages of the disease. However, the instauration of a hyperdynamic state and the different NO bioavailability in intrahepatic and systemic circulation-often defined as the NO paradox-must be considered confounding factors during FMD analysis. The primary purpose of this review is to describe the main features of ED and highlight the key findings of the dynamic and intriguing relationship between ED and liver disease. We will also focus on the significance of FMD evaluation in this setting, pointing out its key role as a therapeutic target in the never-ending battle against liver cirrhosis progression.
Collapse
Affiliation(s)
- Antonio Nesci
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittorio Ruggieri
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittoria Manilla
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Irene Spinelli
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Santoro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angela Di Giorgio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angelo Santoliquido
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
41
|
Deng S, Lao M, Zheng H, Hao J. Forkhead box P1 transcriptionally activates IGF-1 to lighten ox-LDL-induced endothelial cellular senescence by inactivating NLRP3 inflammasome. Biogerontology 2024; 26:15. [PMID: 39585426 DOI: 10.1007/s10522-024-10151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
Endothelial cell (EC) senescence is a major contributor in atherosclerosis (AS) development. Herein, the role of forkhead box P transcription factor 1 (FOXP1) and insulin-like growth factor (IGF)-1 in regulating EC senescence during AS progression was investigated. The mRNA and protein expressions were assessed using qRT-PCR and western blot. IL-1β and IL-18 secretion levels were analyzed by ELISA. Cell viability and pyroptosis were determined by MTT assay and flow cytometry, respectively. SA β-Gal staining was used to measure cell senescence. Tube formation assay was adopted to detect the angiogenesis ability. Dual-luciferase reporter and ChIP assays were used to investigate the relationship between FOXP1 and IGF‑1. ox-LDL stimulation significantly reduced FOXP1 and IGF-1 expression levels in human aortic endothelial cells (HAECs). FOXP1 or IGF-1 overexpression both mitigated ox-LDL-induced cellular senescence and NLRP3 activation in HAECs. It was subsequently revealed that FOXB1 transcriptionally activated IGF-1 expression in HAECs by binding to IGF-1 promoter. Rescue experiments demonstrated that IGF-1 silencing abolished the inhibitory impact of FOXP1 overexpression on ox-LDL-induced cellular senescence and NLRP3 activation in HAECs. FOXP1 transcriptionally activated IGF-1 to lighten ox-LDL-induced endothelial cellular senescence by inactivating NLRP3 inflammasome.
Collapse
Affiliation(s)
- Siqi Deng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, No. 3, Xueyuan Road, Longhua District, Haikou, 571199, Hainan Province, China
| | - Meili Lao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, No. 3, Xueyuan Road, Longhua District, Haikou, 571199, Hainan Province, China
| | - Huihui Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, No. 3, Xueyuan Road, Longhua District, Haikou, 571199, Hainan Province, China
| | - Jingwen Hao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Brain Science Research Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University, No. 3, Xueyuan Road, Longhua District, Haikou, 571199, Hainan Province, China.
| |
Collapse
|
42
|
Shamas S, Rahil RR, Kaushal L, Sharma VK, Wani NA, Qureshi SH, Ahmad SF, Attia SM, Zargar MA, Hamid A, Bhat OM. Pyroptosis in Endothelial Cells and Extracellular Vesicle Release in Atherosclerosis via NF-κB-Caspase-4/5-GSDM-D Pathway. Pharmaceuticals (Basel) 2024; 17:1568. [PMID: 39770410 PMCID: PMC11677252 DOI: 10.3390/ph17121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Pyroptosis, an inflammatory cell death, is involved in the progression of atherosclerosis. Pyroptosis in endothelial cells (ECs) and its underlying mechanisms in atherosclerosis are poorly understood. Here, we investigated the role of a caspase-4/5-NF-κB pathway in pyroptosis in palmitic acid (PA)-stimulated ECs and EVs as players in pyroptosis. Methods: Human umbilical vein endothelial cells (HUVECs) were cultured in an endothelial cell medium, treated with Ox-LDL, PA, caspase-4/5 inhibitor, NF-κB inhibitor, and sEV release inhibitor for 24 h, respectively. The cytotoxicity of PA was determined using an MTT assay, cell migration using a scratch-wound-healing assay, cell morphology using bright field microscopy, and lipid deposition using oil red O staining. The mRNA and protein expression of GSDM-D, CASP4, CASP5, NF-κB, NLRP3, IL-1β, and IL-18 were determined with RT-PCR and Western blot. Immunofluorescence was used to determine NLRP3 and ICAM-1 expressions. Extracellular vesicles (EVs) were isolated using an exosome isolation kit and were characterized by Western blot and scanning electron microscopy. Results: PA stimulation significantly changed the morphology of the HUVECs characterized by cell swelling, plasma membrane rupture, and increased LDH release, which are features of pyroptosis. PA significantly increased lipid accumulation and reduced cell migration. PA also triggered inflammation and endothelial dysfunction, as evidenced by NLRP3 activation, upregulation of ICAM-1 (endothelial activation marker), and pyroptotic markers (NLRP3, GSDM-D, IL-1β, IL-18). Inhibition of caspase-4/5 (Ac-FLTD-CMK) and NF-κB (trifluoroacetate salt (TFA)) resulted in a significant reduction in LDH release and expression of caspase-4/5, NF-κB, and gasdermin D (GSDM-D) in PA-treated HUVECs. Furthermore, GW4869, an exosome release inhibitor, markedly reduced LDH release in PA-stimulated HUVECs. EVs derived from PA-treated HUVECs exacerbated pyroptosis, as indicated by significantly increased LDH release and augmented expression of GSDM-D, NF-κB. Conclusions: The present study revealed that inflammatory, non-canonical caspase-4/5-NF-κB signaling may be one of the crucial mechanistic pathways associated with pyroptosis in ECs, and pyroptotic EVs facilitated pyroptosis in normal ECs during atherosclerosis.
Collapse
Affiliation(s)
- Salman Shamas
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Razia Rashid Rahil
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Laveena Kaushal
- Department of Dermatology, Venereology & Leprology, Postgraduate Institute for Medical Education and Research, Chandigarh 160012, India; (L.K.); (V.K.S.)
| | - Vinod Kumar Sharma
- Department of Dermatology, Venereology & Leprology, Postgraduate Institute for Medical Education and Research, Chandigarh 160012, India; (L.K.); (V.K.S.)
| | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Shabir H. Qureshi
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (S.M.A.)
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (S.M.A.)
| | - Mohammad Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Abid Hamid
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| | - Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India; (S.S.); (R.R.R.); (N.A.W.); (S.H.Q.); (M.A.Z.)
| |
Collapse
|
43
|
Liu Z, Xiang P, Zeng S, Weng P, Wen Y, Zhang W, Hu H, Zhao D, Ma L, Yu C. N-Acetylneuraminic acid triggers endothelial pyroptosis and promotes atherosclerosis progression via GLS2-mediated glutaminolysis pathway. Cell Death Discov 2024; 10:467. [PMID: 39537619 PMCID: PMC11561128 DOI: 10.1038/s41420-024-02233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Vascular endothelial injury initiates atherosclerosis (AS) progression. N-Acetylneuraminic acid (Neu5Ac) metabolic disorder was found to intensify endothelial mitochondrial damage. And GLS2-associated glutaminolysis disorder contributed to mitochondrial dysfunction. However, mechanisms underlying Neu5Ac-associated mitochondrial dysfunction as well as its association with GLS2 remains unclear. In this study, we constructed GLS2-/-ApoE-/- mice by using HBLV-GLS2 shRNA injection. And methods like immunofluorescence, western blotting, transmission electron microscopy were applied to detect profiles of endothelial injury and AS progression both in vivo and in vitro. We demonstrated that Neu5Ac accumulation increased GLS2 expression and promoted glutaminolysis disorder, which further induced endothelial mitochondrial dysfunction via a pyroptosis-dependent pathway in vivo and in vitro. Mechanically, Neu5Ac interacted with SIRT3 and led to FOXO3a deacetylation and phosphorylation, further facilitated c-Myc antagonism and ultimately increased GLS2 levels. Inhibition of GLS2 could improve mitochondrial function and mitigate pyroptosis process. In addition, blocking Neu5Ac production using neuraminidases (NEUs) inhibitor could rescue endothelial damage and alleviate AS development in ApoE-/- mice. These findings proposed that Neu5Ac induced GLS2-mediated glutaminolysis disorder and then promoted mitochondrial dysfunction in a pyroptosis-dependent pathway. Targeting GLS2 or inhibiting Neu5Ac production could prevent AS progression.
Collapse
Affiliation(s)
- Zhaohong Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Peng Xiang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Shengmei Zeng
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Ping Weng
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Yilin Wen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Wanping Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Hui Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Dezhang Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Research Center for Innovative Pharmaceutical and Experiment Analysis Technology, Chongqing, China
| | - Limei Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.
| |
Collapse
|
44
|
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it commonly results from atherosclerotic plaque progression. One of the increasingly recognized drivers of atherosclerosis is dysfunctional efferocytosis, a homeostatic mechanism responsible for the clearance of dead cells and the resolution of inflammation. In atherosclerosis, the capacity of phagocytes to participate in efferocytosis is hampered, leading to the accumulation of apoptotic and necrotic tissue within the plaque, which results in enlargement of the necrotic core, increased luminal stenosis and plaque inflammation, and predisposition to plaque rupture or erosion. In this Review, we describe the different forms of programmed cell death that can occur in the atherosclerotic plaque and highlight the efferocytic machinery that is normally implicated in cardiovascular physiology. We then discuss the mechanisms by which efferocytosis fails in atherosclerosis and other cardiovascular and cardiometabolic diseases, including myocardial infarction and diabetes mellitus, and discuss therapeutic approaches that might reverse this pathological process.
Collapse
Affiliation(s)
- Shaunak S Adkar
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Nicholas J Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
45
|
Huo C, Zhu Y, Fang X, Cui J, Ye H, Zhao H, Ye L, Zhou L. Polystyrene Microplastics Induce Injury to the Vascular Endothelial Through NLRP3-Mediated Pyroptosis. ENVIRONMENTAL TOXICOLOGY 2024; 39:5086-5098. [PMID: 39087870 DOI: 10.1002/tox.24387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/20/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
The health risks associated with microplastics have attracted widespread attention. Polystyrene microplastics (PS-MPs) can induce damage to cardiac tissue, while pyroptosis-mediated injury to the vascular endothelial plays a vital role in the pathogenesis of cardiovascular diseases. The study intended to explore the role and mechanism of NLR family pyrin domain containing 3 (NLRP3) mediated pyroptosis in PS-MPs causing the injury of vascular endothelial cells. In vivo, Wistar rats were exposed to 0.5, 5, and 50 mg/kg/d 0.5 μm PS-MPs. In vitro, the human vascular endothelial cells (HUVECs) were used for mechanistic studies. siRNA was used for silencing the NILRP3 gene. H&E staining and flow cytometry were performed to examine the vascular injury and cell membrane damage. The oxidative stress was detected by flow cytometry, immunofluorescence, and corresponding kits. ELISA were used to measure the levels of inflammatory factors. Real-time PCR and western blot were used to measure the expression of pyroptosis signaling pathway. In rats, PS-MPs could cause vascular damage, oxidative stress, and inflammatory response, and activated the pyroptosis signaling pathway. HUVECs exposure to PS-MPs, the vitality decreased in a dose-dependent manner, ROS and MDA were significantly increased while SOD was decreased. PS-MPs induced the onset of pyroptosis signaling pathway in HUVECs. Cell membrane damage and the levels of IL-Iβ and IL-18 in HUVECs significantly increased, those are symbols for the development of pyroptosis. Inhibition of NLRP3-mediated pyroptosis effectively protected HUVECs from PS-MPs-induced damage. Pyroptosis played a vital role in controlling the vascular endothelial injury caused by PS-MPs.
Collapse
Affiliation(s)
- Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaoqi Fang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Hui Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
46
|
Wang H, Song TY, Reyes-García J, Wang YX. Hypoxia-Induced Mitochondrial ROS and Function in Pulmonary Arterial Endothelial Cells. Cells 2024; 13:1807. [PMID: 39513914 PMCID: PMC11545379 DOI: 10.3390/cells13211807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary artery endothelial cells (PAECs) are a major contributor to hypoxic pulmonary hypertension (PH) due to the possible roles of reactive oxygen species (ROS). However, the molecular mechanisms and functional roles of ROS in PAECs are not well established. In this study, we first used Amplex UltraRed reagent to assess hydrogen peroxide (H2O2) generation. The result indicated that hypoxic exposure resulted in a significant increase in Amplex UltraRed-derived fluorescence (i.e., H2O2 production) in human PAECs. To complement this result, we employed lucigenin as a probe to detect superoxide (O2-) production. Our assays showed that hypoxia largely increased O2- production. Hypoxia also enhanced H2O2 production in the mitochondria from PAECs. Using the genetically encoded H2O2 sensor HyPer, we further revealed the hypoxic ROS production in PAECs, which was fully blocked by the mitochondrial inhibitor rotenone or myxothiazol. Interestingly, hypoxia caused an increase in the migration of PAECs, determined by scratch wound assay. In contrast, nicotine, a major cigarette or e-cigarette component, had no effect. Moreover, hypoxia and nicotine co-exposure further increased migration. Transfection of lentiviral shRNAs specific for the mitochondrial Rieske iron-sulfur protein (RISP), which knocked down its expression and associated ROS generation, inhibited the hypoxic migration of PAECs. Hypoxia largely increased the proliferation of PAECs, determined using Ki67 staining and direct cell number accounting. Similarly, nicotine caused a large increase in proliferation. Moreover, hypoxia/nicotine co-exposure elicited a further increase in cell proliferation. RISP knockdown inhibited the proliferation of PAECs following hypoxia, nicotine exposure, and hypoxia/nicotine co-exposure. Taken together, our data demonstrate that hypoxia increases RISP-mediated mitochondrial ROS production, migration, and proliferation in human PAECs; nicotine has no effect on migration, increases proliferation, and promotes hypoxic proliferation; the effects of nicotine are largely mediated by RISP-dependent mitochondrial ROS signaling. Conceivably, PAECs may contribute to PH via the RISP-mediated mitochondrial ROS.
Collapse
Affiliation(s)
- Harrison Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
| | - Teng-Yao Song
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
| | - Jorge Reyes-García
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Yong-Xiao Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
| |
Collapse
|
47
|
Gao K, Liu Y, Sun C, Wang Y, Bao H, Liu G, Ou J, Sun P. TNF-ɑ induces mitochondrial dysfunction to drive NLRP3/Caspase-1/GSDMD-mediated pyroptosis in MCF-7 cells. Sci Rep 2024; 14:25880. [PMID: 39468189 PMCID: PMC11519391 DOI: 10.1038/s41598-024-76997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Pyroptosis is a gasdermin-mediated pro-inflammatory form of programmed cell death (PCD). Tumor necrosis factor-ɑ (TNF-ɑ) is an inflammatory cytokine, and some studies have shown that TNF-ɑ can cause pyroptosis of cells and exert anti-tumor effects. However, whether TNF-ɑ exerts anti-tumor effects on breast cancer cells by inducing pyroptosis has not been reported. In this study, to explore the impact of TNF-ɑ on pyroptosis in breast cancer cells, we treated MCF-7 cells with TNF-ɑ and found that TNF-ɑ induced cell death. Moreover, we observed that the dead cells were swollen with obvious balloon-like bubbles, which was a typical sign of pyroptosis. Further studies have found that the anti-tumor effect of TNF-ɑ on breast cancer cells in vitro was achieved through the canonical pyroptosis pathway. In addition, TNF-ɑ-induced pyroptosis in MCF-7 cells was associated with mitochondrial dysfunction, in which mitochondrial membrane potential was decreased and mitochondrial ROS production was increased. After inhibiting ROS production, the activation effect of TNF-ɑ on NLRP3/Caspase-1/GSDMD pathway was weakened, and the inhibitory effect of TNF-ɑ on the growth of MCF-7 cells in vitro was also decreased, further confirming the involvement of ROS in TNF-ɑ-induced pyroptosis. Overall, our study revealed a new mechanism by which TNF-ɑ exerts an anti-tumor effect by inducing pyroptosis in MCF-7 cells through the ROS/NLRP3/Caspase-1/GSDMD pathway, which may provide new therapeutic ideas for the treatment of breast cancer.
Collapse
Affiliation(s)
- Kexin Gao
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China
| | - Yancui Liu
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China
| | - Cheng Sun
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China
| | - Ying Wang
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China
| | - Hongrong Bao
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China
| | - Guoyang Liu
- Department of Nuclear Medicine, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China
| | - Jinrui Ou
- Department of Nuclear Magnetic, the Second People's Hospital of Mudanjiang City, Mudanjiang City, 157000, Heilongjiang, China
| | - Ping Sun
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China.
| |
Collapse
|
48
|
Keane AM, Swartz TH. The impacts of tobacco and nicotine on HIV-1 infection, inflammation, and the blood-brain barrier in the central nervous system. Front Pharmacol 2024; 15:1477845. [PMID: 39529883 PMCID: PMC11550980 DOI: 10.3389/fphar.2024.1477845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Human immunodeficiency virus (HIV-1) remains a persistent global health crisis. Even while successfully virologically suppressed, people with HIV (PWH) experience a higher risk for inflammatory disorders such as HIV-associated neurocognitive disorder (HAND). Tobacco use puts PWH at higher risk for neurocognitive symptoms resulting from HIV-associated neuroinflammation. The NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome has been implicated as a driver of HIV-associated inflammation, including HAND. Nicotine, the psychoactive component of tobacco smoke, has also been shown to signal through the NLRP3 inflammasome and modulate inflammatory signaling in the CNS. Here, we explore the impacts of nicotine and tobacco on the complex neurobiology of HAND, including effects on cognition, inflammation, viral latency, and blood-brain barrier integrity. We outline nicotine's role in the establishment of active and latent infection in the brain and posit the NLRP3 inflammasome as a common pathway by which HIV-1 and nicotine promote neuroinflammation in PWH.
Collapse
Affiliation(s)
- Aislinn M. Keane
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
49
|
Zhou SY, Du JM, Li WJ, Liu QY, Zhang QY, Su GH, Li Y. The roles and regulatory mechanisms of cigarette smoke constituents in vascular remodeling. Int Immunopharmacol 2024; 140:112784. [PMID: 39083928 DOI: 10.1016/j.intimp.2024.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Vascular remodeling is a dynamic process involving cellular and molecular changes, including cell proliferation, migration, apoptosis and extracellular matrix (ECM) synthesis or degradation, which disrupt the homeostasis of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Cigarette smoke exposure (CSE) is thought to promote vascular remodeling, but the components are complex and the mechanisms are unclear. In this review, we overview the progression of major components of cigarette smoke (CS), such as nicotine and acrolein, involved in vascular remodeling in terms of ECs injury, VSMCs proliferation, migration, apoptosis, and ECM disruption. The aim was to elucidate the effects of different components of CS on different cells of the vascular system, to discover the relevance of their actions, and to provide new references for future studies.
Collapse
Affiliation(s)
- Si-Yuan Zhou
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jia-Min Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Wen-Jing Li
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qi-Yun Liu
- Department of Cardiology, Shandong Second Medical University, Weifang, China
| | - Qun-Ye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Guo-Hai Su
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
50
|
Han J, Ye L, Wang Y. Pyroptosis: An Accomplice in the Induction of Multisystem Complications Triggered by Obstructive Sleep Apnea. Biomolecules 2024; 14:1349. [PMID: 39595526 PMCID: PMC11592050 DOI: 10.3390/biom14111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a common respiratory disorder, primarily characterized by two pathological features: chronic intermittent hypoxia (CIH) and sleep deprivation (SD). OSA has been identified as a risk factor for numerous diseases, and the inflammatory response related to programmed cell necrosis is believed to play a significant role in the occurrence and progression of multisystem damage induced by OSA, with increasing attention being paid to pyroptosis. Recent studies have indicated that OSA can elevate oxidative stress levels in the body, activating the process of pyroptosis within different tissues, ultimately accelerating organ dysfunction. However, the molecular mechanisms of pyroptosis in the multisystem damage induced by OSA remain unclear. Therefore, this review focuses on four major systems that have received concentrated attention in existing research in order to explore the role of pyroptosis in promoting renal diseases, cardiovascular diseases, neurocognitive diseases, and skin diseases in OSA patients. Furthermore, we provide a comprehensive overview of methods for inhibiting pyroptosis at different molecular levels, with the goal of identifying viable targets and therapeutic strategies for addressing OSA-related complications.
Collapse
Affiliation(s)
- Jingwen Han
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; (J.H.); (L.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Lisong Ye
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; (J.H.); (L.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Yan Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| |
Collapse
|