1
|
Doghish AS, Elsakka EGE, Moustafa HAM, Ashraf A, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Elimam H, Rizk NI, Omran SA, Farag SA, Youssef DG, Abulsoud AI. Harnessing the power of miRNAs for precision diagnosis and treatment of male infertility. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3271-3296. [PMID: 39535597 DOI: 10.1007/s00210-024-03594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Infertility is a multifactorial reproductive system disorder, and most infertility cases occur in men. Semen testing is now thought to be the most important diagnostic test for infertile men; nonetheless, because of its limitations, the cause of infertility remains unknown for 40% of infertile men. Semen assessment's shortcomings indicate the need for improved and innovative diagnostic techniques and biomarkers worldwide. Non-coding RNAs with a length of roughly 18-22 nucleotides are called microRNAs (miRNAs). Most of our protein-coding genes are post-transcriptionally regulated by them. These molecules are unusual in bodily fluids, and aberrant variations in their expression can point to specific conditions like infertility. As a result, fresh potential biomarkers for the diagnosis and prognosis of various forms of male infertility may be represented by miRNAs. This review examined the most recent research revealing the association between different miRNAs' functions in male infertility and their expression patterns. Also, it aims to figure out the most recent strategies that could be applied for using such miRNAs as possible therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City , 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Nasr City, 11786, Egypt, Cairo
| | - Sarah A Omran
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Shimaa A Farag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Donia G Youssef
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, El-Salam City, Cairo, 11785, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
2
|
Simon CS, Hur W, Garg V, Kuo YY, Niakan KK, Hadjantonakis AK. ETV4 and ETV5 orchestrate FGF-mediated lineage specification and epiblast maturation during early mouse development. Development 2025; 152:dev204278. [PMID: 40007475 PMCID: PMC12050069 DOI: 10.1242/dev.204278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Cell fate decisions in early mammalian embryos are tightly regulated processes crucial for proper development. While FGF signalling plays key roles in early embryo patterning, its downstream effectors remain poorly understood. Our study demonstrates that the transcription factors Etv4 and Etv5 are crucial mediators of FGF signalling in cell lineage specification and maturation in mouse embryos. We show that loss of Etv5 compromises primitive endoderm formation at pre-implantation stages. Furthermore, Etv4 and Etv5 (Etv4/5) deficiency delays naïve pluripotency exit and epiblast maturation, leading to elevated NANOG and reduced OTX2 expression within the blastocyst epiblast. As a consequence of delayed pluripotency progression, Etv4/Etv5-deficient embryos exhibit anterior visceral endoderm migration defects post-implantation, a process essential for coordinated embryonic patterning and gastrulation initiation. Our results demonstrate the successive roles of these FGF signalling effectors in early lineage specification and embryonic body plan establishment, providing new insights into the molecular control of mammalian development.
Collapse
Affiliation(s)
- Claire S. Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Woonyung Hur
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Center for Studies in Physics and Biology, the Rockefeller University, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Kandemir B, Kurnaz IA. The Role of Pea3 Transcription Factor Subfamily in the Nervous System. Mol Neurobiol 2025; 62:3293-3304. [PMID: 39269548 DOI: 10.1007/s12035-024-04432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
ETS domain transcription factor superfamily is highly conserved throughout metazoa and is involved in many aspects of development and tissue morphogenesis, and as such, the deregulation of ETS proteins is quite common in many diseases, including cancer. The PEA3 subfamily in particular has been extensively studied with respect to tumorigenesis and metastasis; however, they are also involved in the development of many tissues with branching morphogenesis, such as lung or kidney development. In this review, we aim to summarize findings from various studies on the role of Pea3 subfamily members in nervous system development in the embryo, as well as their functions in the adult neurons. We further discuss the different signals that were shown to regulate the function of the Pea3 family and indicate how this signal-dependent regulation of Pea3 proteins can generate neuronal circuit specificity through unique gene regulation. Finally, we discuss how these developmental roles of Pea3 proteins relate to their role in tumorigenesis.
Collapse
Affiliation(s)
- Basak Kandemir
- Department of Molecular Biology and Genetics, Baskent University, 06790, Etimesgut, Ankara, Turkey
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Isil Aksan Kurnaz
- Department of Molecular Biology and Genetics, Molecular Neurobiology Laboratory (AxanLab), Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
4
|
Gao Z, Liu Q, Zeng W, Jiang R, Wong WH. EpiGePT: a pretrained transformer-based language model for context-specific human epigenomics. Genome Biol 2024; 25:310. [PMID: 39696471 PMCID: PMC11657395 DOI: 10.1186/s13059-024-03449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
The inherent similarities between natural language and biological sequences have inspired the use of large language models in genomics, but current models struggle to incorporate chromatin interactions or predict in unseen cellular contexts. To address this, we propose EpiGePT, a transformer-based model designed for predicting context-specific human epigenomic signals. By incorporating transcription factor activities and 3D genome interactions, EpiGePT outperforms existing methods in epigenomic signal prediction tasks, especially in cell-type-specific long-range interaction predictions and genetic variant impacts, advancing our understanding of gene regulation. A free online prediction service is available at http://health.tsinghua.edu.cn/epigept .
Collapse
Affiliation(s)
- Zijing Gao
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Qiao Liu
- Department of Statistics, Stanford University, CA, Stanford, 94305, USA.
| | - Wanwen Zeng
- Department of Statistics, Stanford University, CA, Stanford, 94305, USA
| | - Rui Jiang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Wing Hung Wong
- Department of Statistics, Stanford University, CA, Stanford, 94305, USA.
- Department of Biomedical Data Science, Bio-X Program, Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Wang S, Li H, Liu Y, Pang S, Qiao S, Su J, Wang S, Zhang Y. Connectivity Network Feature Sharing in Single-Cell RNA Sequencing Data Identifies Rare Cells. J Chem Inf Model 2024; 64:6596-6609. [PMID: 39096508 DOI: 10.1021/acs.jcim.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Single-cell RNA sequencing is a valuable technique for identifying diverse cell subtypes. A key challenge in this process is that the detection of rare cells is often missed by conventional methods due to low abundance and subtle features of these cells. To overcome this, we developed SCLCNF (Local Connectivity Network Feature Sharing in Single-Cell RNA sequencing), a novel approach that identifies rare cells by analyzing features uniquely expressed in these cells. SCLCNF creates a cellular connectivity network, considering how each cell relates to its neighbors. This network helps to pinpoint coexpression patterns unique to rare cells, utilizing a rarity score to confirm their presence. Our method performs better in detecting rare cells than existing techniques, offering enhanced robustness. It has proven to be effective in human gastrula data sets for accurately pinpointing rare cells, and in sepsis data sets where it uncovers previously unidentified rare cell populations.
Collapse
Affiliation(s)
- Shudong Wang
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Hengxiao Li
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yahui Liu
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Shanchen Pang
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Sibo Qiao
- The College of Software, Tiangong University, Tianjin 300387, China
| | - Jionglong Su
- School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China
| | - Shaoqiang Wang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Yulin Zhang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
6
|
Simon CS, Garg V, Kuo YY, Niakan KK, Hadjantonakis AK. ETV4 and ETV5 Orchestrate FGF-Mediated Lineage Specification and Epiblast Maturation during Early Mouse Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604964. [PMID: 39091858 PMCID: PMC11291132 DOI: 10.1101/2024.07.24.604964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cell fate decisions in early mammalian embryos are tightly regulated processes crucial for proper development. While FGF signaling plays key roles in early embryo patterning, its downstream effectors remain poorly understood. Our study demonstrates that the transcription factors Etv4 and Etv5 are critical mediators of FGF signaling in cell lineage specification and maturation in mouse embryos. We show that loss of Etv5 compromises primitive endoderm formation at pre-implantation stages. Furthermore, Etv4/5 deficiency delays naïve pluripotency exit and epiblast maturation, leading to elevated NANOG and reduced OTX2 expression within the blastocyst epiblast. As a consequence of delayed pluripotency progression, Etv4/5 deficient embryos exhibit anterior visceral endoderm migration defects post-implantation, a process essential for coordinated embryonic patterning and gastrulation initiation. Our results demonstrate the successive roles of these FGF signaling effectors in early lineage specification and embryonic body plan establishment, providing new insights into the molecular control of mammalian development.
Collapse
Affiliation(s)
- Claire S. Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
7
|
Gao Z, Liu Q, Zeng W, Jiang R, Wong WH. EpiGePT: a Pretrained Transformer model for epigenomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.15.549134. [PMID: 37502861 PMCID: PMC10370089 DOI: 10.1101/2023.07.15.549134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The inherent similarities between natural language and biological sequences have given rise to great interest in adapting the transformer-based large language models (LLMs) underlying recent breakthroughs in natural language processing (references), for applications in genomics. However, current LLMs for genomics suffer from several limitations such as the inability to include chromatin interactions in the training data, and the inability to make prediction in new cellular contexts not represented in the training data. To mitigate these problems, we propose EpiGePT, a transformer-based pretrained language model for predicting context-specific epigenomic signals and chromatin contacts. By taking the context-specific activities of transcription factors (TFs) and 3D genome interactions into consideration, EpiGePT offers wider applicability and deeper biological insights than models trained on DNA sequence only. In a series of experiments, EpiGePT demonstrates superior performance in a diverse set of epigenomic signals prediction tasks when compared to existing methods. In particular, our model enables cross-cell-type prediction of long-range interactions and offers insight on the functional impact of genetic variants under different cellular contexts. These new capabilities will enhance the usefulness of LLM in the study of gene regulatory mechanisms. We provide free online prediction service of EpiGePT through http://health.tsinghua.edu.cn/epigept/.
Collapse
Affiliation(s)
- Zijing Gao
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Qiao Liu
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Wanwen Zeng
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Rui Jiang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wing Hung Wong
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Bio-X Program, Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Wei Y, Han S, Wen J, Liao J, Liang J, Yu J, Chen X, Xiang S, Huang Z, Zhang B. E26 transformation-specific transcription variant 5 in development and cancer: modification, regulation and function. J Biomed Sci 2023; 30:17. [PMID: 36872348 PMCID: PMC9987099 DOI: 10.1186/s12929-023-00909-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
E26 transformation-specific (ETS) transcription variant 5 (ETV5), also known as ETS-related molecule (ERM), exerts versatile functions in normal physiological processes, including branching morphogenesis, neural system development, fertility, embryonic development, immune regulation, and cell metabolism. In addition, ETV5 is repeatedly found to be overexpressed in multiple malignant tumors, where it is involved in cancer progression as an oncogenic transcription factor. Its roles in cancer metastasis, proliferation, oxidative stress response and drug resistance indicate that it is a potential prognostic biomarker, as well as a therapeutic target for cancer treatment. Post-translational modifications, gene fusion events, sophisticated cellular signaling crosstalk and non-coding RNAs contribute to the dysregulation and abnormal activities of ETV5. However, few studies to date systematically summarized the role and molecular mechanisms of ETV5 in benign diseases and in oncogenic progression. In this review, we specify the molecular structure and post-translational modifications of ETV5. In addition, its critical roles in benign and malignant diseases are summarized to draw a panorama for specialists and clinicians. The updated molecular mechanisms of ETV5 in cancer biology and tumor progression are delineated. Finally, we prospect the further direction of ETV5 research in oncology and its potential translational applications in the clinic.
Collapse
Affiliation(s)
- Yi Wei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
9
|
Hasani Fard AH, Valizadeh M, Mazaheri Z, Hosseini SJ. miR-106b-5p Intensifies the Proliferative Potential of Spermatogonial Stem Cells as a Prerequisite for Male Infertility Treatment. Reprod Sci 2022; 29:3394-3403. [PMID: 35320579 DOI: 10.1007/s43032-022-00884-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/09/2022] [Indexed: 12/14/2022]
Abstract
Although numerous studies have investigated the molecular basis of male infertility, various aspects of this area have remained uncovered. Over the past years, researchers have reported the significant potential of miRNAs in posttranscriptional regulatory roles. By targeting mRNAs, these notable molecules can modulate the processes related to male infertility. On the other side, the outstanding potential of male germline stem cells, SSCs, includes their application in infertility treatment. SSCs retain normal spermatogenesis and fertility by adjusting both SSC self-renewal and differentiation. Therefore, for the characterization and manipulation of SSCs, effective and efficient in vitro culture methods are essential in supporting their maintenance and development. In this regard, the present investigation was undertaken to evaluate the impact of one of the recently conspicuous miRNAs, miR-106b, in SSCs enrichment. As a result, we first found that the SSCs induced with miR-106b-5p highly express TGF-β1, which is known as a regulator of epigenetic modifiers and downstream genes. We next sought to show that self-renewal markers, including c-Myc, Oct-4, and Sox2, are increased in the induced SSC group. The intended miRNA also induced the inhibitor of differentiation 4 (ID4) and aided to remain unmethylated in SSCs. Additionally, for the tumorigenicity possibility of the manipulation, we indicated that PTEN, a tumor-suppressor gene, expressed remarkably in the induced SSCs. In conclusion, our findings showed that miR-106b-5p enhances the proliferative potential of SSCs, making it a substantial factor for therapeutic strategies of male infertility.
Collapse
Affiliation(s)
- Amir Hossein Hasani Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Valizadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Jalil Hosseini
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Chakraborty A, Wang JG, Ay F. dcHiC detects differential compartments across multiple Hi-C datasets. Nat Commun 2022; 13:6827. [PMID: 36369226 PMCID: PMC9652325 DOI: 10.1038/s41467-022-34626-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
The compartmental organization of mammalian genomes and its changes play important roles in distinct biological processes. Here, we introduce dcHiC, which utilizes a multivariate distance measure to identify significant changes in compartmentalization among multiple contact maps. Evaluating dcHiC on four collections of bulk and single-cell contact maps from in vitro mouse neural differentiation (n = 3), mouse hematopoiesis (n = 10), human LCLs (n = 20) and post-natal mouse brain development (n = 3 stages), we show its effectiveness and sensitivity in detecting biologically relevant changes, including those orthogonally validated. dcHiC reported regions with dynamically regulated genes associated with cell identity, along with correlated changes in chromatin states, subcompartments, replication timing and lamin association. With its efficient implementation, dcHiC enables high-resolution compartment analysis as well as standalone browser visualization, differential interaction identification and time-series clustering. dcHiC is an essential addition to the Hi-C analysis toolbox for the ever-growing number of bulk and single-cell contact maps. Available at: https://github.com/ay-lab/dcHiC .
Collapse
Affiliation(s)
- Abhijit Chakraborty
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Jeffrey G Wang
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- The Bishop's School, La Jolla, CA, 92037, USA
- Harvard College, Cambridge, MA, 02138, USA
| | - Ferhat Ay
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Siahpirani AF, Knaack S, Chasman D, Seirup M, Sridharan R, Stewart R, Thomson J, Roy S. Dynamic regulatory module networks for inference of cell type-specific transcriptional networks. Genome Res 2022; 32:1367-1384. [PMID: 35705328 PMCID: PMC9341506 DOI: 10.1101/gr.276542.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/02/2022] [Indexed: 11/25/2022]
Abstract
Changes in transcriptional regulatory networks can significantly alter cell fate. To gain insight into transcriptional dynamics, several studies have profiled bulk multi-omic data sets with parallel transcriptomic and epigenomic measurements at different stages of a developmental process. However, integrating these data to infer cell type-specific regulatory networks is a major challenge. We present dynamic regulatory module networks (DRMNs), a novel approach to infer cell type-specific cis-regulatory networks and their dynamics. DRMN integrates expression, chromatin state, and accessibility to predict cis-regulators of context-specific expression, where context can be cell type, developmental stage, or time point, and uses multitask learning to capture network dynamics across linearly and hierarchically related contexts. We applied DRMNs to study regulatory network dynamics in three developmental processes, each showing different temporal relationships and measuring a different combination of regulatory genomic data sets: cellular reprogramming, liver dedifferentiation, and forward differentiation. DRMN identified known and novel regulators driving cell type-specific expression patterns, showing its broad applicability to examine dynamics of gene regulatory networks from linearly and hierarchically related multi-omic data sets.
Collapse
Affiliation(s)
- Alireza Fotuhi Siahpirani
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin 53715, USA
- Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin 53715, USA
| | - Sara Knaack
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin 53715, USA
| | - Deborah Chasman
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin 53715, USA
| | - Morten Seirup
- Morgridge Institute for Research, Madison, Wisconsin 53715, USA
- Molecular and Environmental Toxicology Program, University of Wisconsin, Madison, Wisconsin 53715, USA
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin 53715, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, Wisconsin 53715, USA
| | - James Thomson
- Morgridge Institute for Research, Madison, Wisconsin 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin 53715, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93117, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin 53715, USA
- Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin 53715, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53715, USA
| |
Collapse
|
12
|
Zhu K, Liu Y, Fan C, Zhang M, Cao H, He X, Li N, Chu D, Li F, Zou M, Hua J, Wang H, Wang Y, Fan G, Zhang S. Etv5 safeguards trophoblast stem cells differentiation from mouse EPSCs by regulating fibroblast growth factor receptor 2. Mol Biol Rep 2020; 47:9259-9269. [PMID: 33159233 DOI: 10.1007/s11033-020-05969-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated that transcription factor Etv5 plays an important role in the segregation between epiblast and primitive endoderm at the second fate decision of early embryo. However, it remains elusive whether Etv5 functions in the segregation between inner cell mass and trophectoderm at the first cell fate decision. In this study, we firstly generated Etv5 knockout mouse embryonic stem cells (mESCs) by CRISPR/Cas9, then converted them into extended potential stem cells (EPSCs) by culturing the cells in small molecule cocktail medium LCDM (LIF, CHIR99021, (S)-(+)-dimethindene maleate, minocycline hydrochloride), and finally investigated their differentiation efficiency of trophoblast stem cells (TSCs). The results showed that Etv5 knockout significantly decreased the efficiency of TSCs (CDX2+) differentiated from EPSCs. In addition, Etv5 knockout resulted in higher incidence of the differentiated cells with tetraploid and octoploid than that from wild type. Mechanistically, Etv5 was activated by extracellular-signal-regulated kinase (ERK) signaling pathway; in turn, Etv5 had a positive feedback on the expression of fibroblast growth factor receptor 2 (FGFR2) which lies upstream of ERK. Etv5 knockout decreased the expression of FGFR2, whose binding with fibroblast growth factor 4 was essentially needed for TSCs differentiation. Collectively, the findings in this study suggest that Etv5 is required to safeguard the TSCs differentiation by regulating FGFR2 and provide new clues to understand the specification of trophectoderm in vivo.
Collapse
Affiliation(s)
- Kui Zhu
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, 712100, Yangling, China
| | - Yuan Liu
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, 712100, Yangling, China
| | - Chen Fan
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, 712100, Yangling, China
| | - Mengyao Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, 712100, Yangling, China
| | - Hongxia Cao
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, 712100, Yangling, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, 712100, Yangling, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, 712100, Yangling, China
| | - Dianfeng Chu
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co.Ltd of Qingdao, Qingdao, China
| | - Fang Li
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co.Ltd of Qingdao, Qingdao, China
| | - Min Zou
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co.Ltd of Qingdao, Qingdao, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, 712100, Yangling, China
| | - Huayan Wang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, 712100, Yangling, China
| | - Yan Wang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, 712100, Yangling, China
| | - Gencheng Fan
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co.Ltd of Qingdao, Qingdao, China.
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, 712100, Yangling, China.
| |
Collapse
|
13
|
He X, Chi G, Li M, Xu J, Zhang L, Song Y, Wang L, Li Y. Characterisation of extraembryonic endoderm-like cells from mouse embryonic fibroblasts induced using chemicals alone. Stem Cell Res Ther 2020; 11:157. [PMID: 32299508 PMCID: PMC7164364 DOI: 10.1186/s13287-020-01664-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 11/10/2022] Open
Abstract
Background The development of somatic reprogramming, especially purely chemical reprogramming, has significantly advanced biological research. And chemical-induced extraembryonic endoderm-like (ciXEN) cells have been confirmed to be an indispensable intermediate stage of chemical reprogramming. They resemble extraembryonic endoderm (XEN) cells in terms of transcriptome, reprogramming potential, and developmental ability in vivo. However, the other characteristics of ciXEN cells and the effects of chemicals and bFGF on the in vitro culture of ciXEN cells have not been systematically reported. Methods Chemicals and bFGF in combination with Matrigel were used to induce the generation of ciXEN cells derived from mouse embryonic fibroblasts (MEFs). RNA sequencing was utilised to examine the transcriptome of ciXEN cells, and PCR/qPCR assays were performed to evaluate the mRNA levels of the genes involved in this study. Hepatic functions were investigated by periodic acid-Schiff staining and indocyanine green assay. Lactate production, ATP detection, and extracellular metabolic flux analysis were used to analyse the energy metabolism of ciXEN cells. Results ciXEN cells expressed XEN-related genes, exhibited high proliferative capacity, had the ability to differentiate into visceral endoderm in vitro, and possessed the plasticity allowing for their differentiation into induced hepatocytes (iHeps). Additionally, the upregulated biological processes of ciXEN cells compared to those in MEFs focused on metabolism, but their energy production was independent of glycolysis. Furthermore, without the cocktail of chemicals and bFGF, which are indispensable for the generation of ciXEN cells, induced XEN (iXEN) cells remained the expression of XEN markers, the high proliferative capacity, and the plasticity to differentiate into iHeps in vitro. Conclusions ciXEN cells had high plasticity, and energy metabolism was reconstructed during chemical reprogramming, but it did not change from aerobic oxidation to glycolysis. And the cocktail of chemicals and bFGF were non-essential for the in vitro culture of ciXEN cells.
Collapse
Affiliation(s)
- Xia He
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Lihong Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yaolin Song
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Lina Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.,Department of Paediatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
14
|
Pluripotency on Lockdown after Deletion of Three Transcription Regulators. Cell Stem Cell 2020; 24:681-683. [PMID: 31051130 DOI: 10.1016/j.stem.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Exit from the naive pluripotent state occurs through a series of changes in the gene regulatory circuitry, allowing cells to become primed for lineage commitment. In this issue of Cell Stem Cell, Kalkan et al. (2019) show that three transcription regulators are required for naive mouse embryonic stem cells (ESCs) to exit the pluripotent state.
Collapse
|