1
|
Zheng Y, Chen X, Huang Y, Lin X, Lin J, Mo Y, Gan L, Wei S, Wang Z, Song X, Tu Z. DDX27: An RNA helicase regulating cancer progression and therapeutic prospects. Int J Biol Macromol 2025; 313:144388. [PMID: 40394785 DOI: 10.1016/j.ijbiomac.2025.144388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/07/2025] [Accepted: 05/18/2025] [Indexed: 05/22/2025]
Abstract
DDX27, a member of the DEAD-box RNA helicase family, plays a crucial role in RNA metabolism, inflammation, and cancer progression. Elevated expression of DDX27 has been observed in multiple cancers, including oral squamous cell carcinoma (OSCC), breast cancer (BC), colorectal cancer (CRC), gastric cancer (GC), and hepatocellular carcinoma (HCC), where it is associated with poor prognosis, tumor growth, metastasis, and chemoresistance. DDX27 regulates the NF-κB signaling pathway, which is central to inflammation and tumor progression, and influences key cellular processes such as cell cycle regulation, apoptosis, migration, and stemness. Additionally, DDX27 promotes epithelial-mesenchymal transition (EMT), further contributing to metastasis. Its interactions with non-coding RNAs and various signaling pathways complicate treatment responses, making DDX27 a promising therapeutic target. This review explores the role of DDX27 as both a biomarker and therapeutic target, with potential strategies including small molecule inhibitors, RNA interference, and combination therapies with existing treatments such as NF-κB inhibitors or chemotherapy. Targeting DDX27 may help overcome resistance, reduce metastasis, and improve cancer treatment outcomes. Further research into its molecular mechanisms and interactions will be crucial for developing effective therapies, particularly for cancers with high metastatic potential.
Collapse
Affiliation(s)
- Yuantong Zheng
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Xinyi Chen
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Yunfei Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Xuanli Lin
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Jiaxin Lin
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Yuting Mo
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Lu Gan
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Shuhua Wei
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Zhen Wang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Xiaojuan Song
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Zhengchao Tu
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
2
|
Li B, Cui H, Liu W, Lan Z, Liu C, Yang Y, Zhao Y, Tian Z, Chen H, Yu G. DDX10 Exacerbates Exosomal PD-L1-Dependent T Cell Exhaustion via Phase Separation of Rab27b in Oral Squamous Cell Carcinoma. RESEARCH (WASHINGTON, D.C.) 2025; 8:0697. [PMID: 40352946 PMCID: PMC12063704 DOI: 10.34133/research.0697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
DEAD-box ATPase 10 (DDX10), a prominent RNA-binding protein in the DDX family, has a critical function in cancer progression. Nevertheless, its well-defined mechanisms in oral squamous cell carcinoma (OSCC) are still not well understood. Here, we identify that DDX10 is substantially increased in OSCC, which is positively correlated with poor prognosis and malignant behavior. Mechanistically, we found that DDX10 had physical interaction with Rab27b by undergoing phase separation. Knockdown of DDX10 inhibited Rab27b-mediated exosome secretion and the expression of programmed cell death-ligand 1 (PD-L1) within its contents. Furthermore, knocking down DDX10 could restore the function and infiltration of T cells, hence inhibiting the progression of OSCC. These findings highlight that the oncogenic role of DDX10 in promoting exosomal PD-L1 secretion via phase separation with Rab27b has been preliminarily validated in T cell exhaustion in OSCC. A potential strategy for improving OSCC immunotherapy may involve the inhibition of DDX10.
Collapse
Affiliation(s)
- Bowen Li
- Stomatological Hospital, School of Stomatology,
Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology,
Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Wei Liu
- Stomatological Hospital, School of Stomatology,
Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhou Lan
- Stomatological Hospital, School of Stomatology,
Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Chang Liu
- Stomatological Hospital, School of Stomatology,
Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yumiao Yang
- Stomatological Hospital, School of Stomatology,
Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yuyue Zhao
- Stomatological Hospital, School of Stomatology,
Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhen Tian
- Stomatological Hospital, School of Stomatology,
Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Hao Chen
- Stomatological Hospital, School of Stomatology,
Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Guangtao Yu
- Stomatological Hospital, School of Stomatology,
Southern Medical University, Guangzhou, Guangdong 510280, China
| |
Collapse
|
3
|
Liu L, Wang P, Guo C, Song L, Chen L, Qi H, Zheng Y, Xing X, Wang C. TRAIP enhances progression of tongue squamous cell carcinoma through EMT and Wnt/β-catenin signaling by interacting with DDX39A. BMC Cancer 2024; 24:1481. [PMID: 39623306 PMCID: PMC11610093 DOI: 10.1186/s12885-024-13130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) is one of the most common malignant tumors with high mortality and poor prognosis. Its incidence rate is increasing gradually. Tumor necrosis factor receptor-associated factor interacting protein (TRAIP), as a factor related to several tumors, reveals that its gene expression is different between normal tissue and primary tumor of head and neck squamous cell carcinoma using bioinformatics analysis. METHOD In our study, TCGA database, immunohistochemistry, proliferation assay, colony formation, wound healing assay, Transwell, cell cycle analysis and tumor xenografts model were used to determine the expression and functions of TRAIP in TSCC. RESULT We found that TRAIP may promote the proliferation, migration and invasion of TSCC. Furthermore, the results of bioinformatics analysis, mass spectrometry and co-immunoprecipitation suggested that DDX39A may be a TRAIP interacting protein. DDX39A has been proven to be an oncogene in several tumors, which may have an important effect on cell proliferation and metastasis in multiple tumors. In addition, the high expression of DDX39A implies the poor prognosis of patients. Our study demonstrated that TRAIP probably interact with DDX39A to regulate cell progression through epithelial-mesenchymal transition and Wnt/β-catenin pathway. In addition, we show that the necessary domain of DDX39A for the interaction between DDX39A and TRAIP region. CONCLUSION These results indicate that TRAIP is important in occurrence and development of TSCC and is expected to become the new promising therapeutic target.
Collapse
Affiliation(s)
- Litong Liu
- Department of Pathology, School of Basic Medicine, Qingdao University, Ningxia Road No. 308, Qingdao, Shandong, 266071, China
| | - Ping Wang
- Department of Pathology, Linyi People's Hospital, Linyi, 276000, Shandong, China
| | - Cheng Guo
- Department of Pathology, School of Basic Medicine, Qingdao University, Ningxia Road No. 308, Qingdao, Shandong, 266071, China
| | - Li Song
- Department of Pathology, School of Basic Medicine, Qingdao University, Ningxia Road No. 308, Qingdao, Shandong, 266071, China
| | - Lifang Chen
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, 266035, Shandong, China
| | - Hongbing Qi
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, 266035, Shandong, China
| | - Yangyang Zheng
- Department of Pathology, School of Basic Medicine, Qingdao University, Ningxia Road No. 308, Qingdao, Shandong, 266071, China
| | - Xiaoming Xing
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, 266035, Shandong, China
| | - Chengqin Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Ningxia Road No. 308, Qingdao, Shandong, 266071, China.
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, 266035, Shandong, China.
| |
Collapse
|
4
|
Chang YT, Hong ZJ, Tsai HH, Feng AC, Huang TY, Yu JC, Hsu KF, Huang CC, Lin WZ, Chu CM, Liang CM, Liao GS. Hub metastatic gene signature and risk score of breast cancer patients with small tumor sizes using WGCNA. Breast Cancer 2024; 31:1114-1129. [PMID: 39190284 PMCID: PMC11489208 DOI: 10.1007/s12282-024-01627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women and accounts for approximately 15% of all cancer deaths among women globally. The underlying mechanism of BC patients with small tumor size and developing distant metastasis (DM) remains elusive in clinical practices. METHODS We integrated the gene expression of BCs from ten RNAseq datasets from Gene Expression Omnibus (GEO) database to create a genetic prediction model for distant metastasis-free survival (DMFS) in BC patients with small tumor sizes (≤ 2 cm) using weighted gene co-expression network (WGCNA) analysis and LASSO cox regression. RESULTS ABHD11, DDX39A, G3BP2, GOLM1, IL1R1, MMP11, PIK3R1, SNRPB2, and VAV3 were hub metastatic genes identified by WGCNA and used to create a risk score using multivariable Cox regression. At the cut-point value of the median risk score, the high-risk score (≥ median risk score) group had a higher risk of DM than the low-risk score group in the training cohort [hazard ratio (HR) 4.51, p < 0.0001] and in the validation cohort (HR 5.48, p = 0.003). The nomogram prediction model of 3-, 5-, and 7-year DMFS shows good prediction results with C-indices of 0.72-0.76. The enriched pathways were immune regulation and cell-cell signaling. EGFR serves as the hub gene for the protein-protein interaction network of PIK3R1, IL1R1, MMP11, GOLM1, and VAV3. CONCLUSION Prognostic gene signature was predictive of DMFS for BCs with small tumor sizes. The protein-protein interaction network of PIK3R1, IL1R1, MMP11, GOLM1, and VAV3 connected by EGFR merits further experiments for elucidating the underlying mechanisms.
Collapse
Affiliation(s)
- Yu-Tien Chang
- School of Public Health, National Defense Medical Center, Taipei City, Taiwan
| | - Zhi-Jie Hong
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei City, 114202, Taiwan
| | - Hsueh-Han Tsai
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei City, 114202, Taiwan
| | - An-Chieh Feng
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei City, 114202, Taiwan
| | - Tzu-Ya Huang
- School of Public Health, National Defense Medical Center, Taipei City, Taiwan
| | - Jyh-Cherng Yu
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei City, 114202, Taiwan
| | - Kuo-Feng Hsu
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei City, 114202, Taiwan
| | - Chi-Cheng Huang
- Department of Surgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei City, 100, Taiwan
| | - Wei-Zhi Lin
- AIoT Center, Tri-Service General Hospital, Taipei City, Taiwan
| | - Chi-Ming Chu
- School of Public Health, National Defense Medical Center, Taipei City, Taiwan
| | - Chia-Ming Liang
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei City, 114202, Taiwan
| | - Guo-Shiou Liao
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei City, 114202, Taiwan.
| |
Collapse
|
5
|
Tapescu I, Cherry S. DDX RNA helicases: key players in cellular homeostasis and innate antiviral immunity. J Virol 2024; 98:e0004024. [PMID: 39212449 PMCID: PMC11494928 DOI: 10.1128/jvi.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA helicases are integral in RNA metabolism, performing important roles in cellular homeostasis and stress responses. In particular, the DExD/H-box (DDX) helicase family possesses a conserved catalytic core that binds structural features rather than specific sequences in RNA targets. DDXs have critical roles in all aspects of RNA metabolism including ribosome biogenesis, translation, RNA export, and RNA stability. Importantly, functional specialization within this family arises from divergent N and C termini and is driven at least in part by gene duplications with 18 of the 42 human helicases having paralogs. In addition to their key roles in the homeostatic control of cellular RNA, these factors have critical roles in RNA virus infection. The canonical RIG-I-like receptors (RLRs) play pivotal roles in cytoplasmic sensing of viral RNA structures, inducing antiviral gene expression. Additional RNA helicases function as viral sensors or regulators, further diversifying the innate immune defense arsenal. Moreover, some of these helicases have been coopted by viruses to facilitate their replication. Altogether, DDX helicases exhibit functional specificity, playing intricate roles in RNA metabolism and host defense. This review will discuss the mechanisms by which these RNA helicases recognize diverse RNA structures in cellular and viral RNAs, and how this impacts RNA processing and innate immune responses.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Zhu Z, Li T, Wang H, Jiao L. AQP5 promotes epithelial-mesenchymal transition and tumor growth through activating the Wnt/β-catenin pathway in triple-negative breast cancer. Mutat Res 2024; 829:111868. [PMID: 38959561 DOI: 10.1016/j.mrfmmm.2024.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Emerging data identifies aquaporin 5 (AQP5) as a vital player in many kinds of cancers. Over expression of AQP5 was associated with increased metastasis and poor prognosis, suggesting that AQP5 may facilitate cancer cell proliferation and migration. Our previous studies also showed that AQP3 and AQP5 were highly expressed in triple-negative breast cancer (TNBC) and the expression of AQP3 and AQP5 in TNBC tissue was positive correlated with advanced clinical stage. OBJECTIVE We aim to investigate the role of AQP5 in TNBC oncogenesis and development. METHODS MDA-MB-231 cells were transfected with siRNA-AQP5 and AQP5 overexpression vector to establish a differential expression system for AQP5. Cell proliferation and apoptosis of MDA-MB-231 cells were detected by CCK-8 (Cell Counting Kit-8) and FCM (flow cytometry), respectively. Cell migration and invasion abilities were evaluated by wound healing assay and transwell assay. The qRT-PCR and western blot assays were used to study the effect of AQP5 expression level on the expression of epithelial-to-mesenchymal transition (EMT) related molecules. The effects of ICG-001, a Wnt/β-catenin signaling pathway inhibitor, on the invasive and migratory capabilities of overexpressed AQP5 cells and downstream molecules were measured. RESULTS 1. The expression of AQP5 in the MDA-MB-231 cells was significantly higher than that in the MCF-10A cells. 2. Up-regulation of AQP5 significantly promoted the proliferation, migration and invasion of TNBC cells, while inhibited the cell apoptosis; in addition, up-regulation of AQP5 increased the expression of Bcl-2 and decreased the expression of Caspase-3. However, knockdown of AQP5 presented the adverse effects of AQP5 overexpression. 3. Overexpressed AQP5 induced the overexpression of EMT-related factors, which further promoted the migration and invasion of cells. 4. Overexpression of AQP5 could up-regulate the expression of β-catenin in the nucleus followed by increasing the expression levels of downstream genes in Wnt/β-catenin signaling pathway. Moreover, ICG-001, the inhibitor of Wnt/β-catenin signaling pathway, could significantly attenuate the effect of overexpression of AQP5 on cells, further confirming that AQP5 may promote the proliferation, migration and invasion of TNBC cells by activating Wnt/β-catenin signaling pathway. CONCLUSIONS In the TNBC cells, AQP5 modulates the expression levels of EMT-related proteins through activation of Wnt/β-catenin signaling pathway, thus enhancing the cell proliferation, migration and invasion while inhibiting the cell apoptosis.
Collapse
Affiliation(s)
- Zhengcai Zhu
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 215300, PR China
| | - Tao Li
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 215300, PR China
| | - Honggang Wang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 215300, PR China
| | - Lianghe Jiao
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 215300, PR China.
| |
Collapse
|
7
|
Ni Y, Zhuang Z. DDX24 promotes tumor progression by mediating hexokinase-1 induced glycolysis in gastric cancer. Cell Signal 2024; 114:110995. [PMID: 38043669 DOI: 10.1016/j.cellsig.2023.110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Metabolic reprogramming allows tumor cells to meet high demand of biogenesis and increased energy for rapid proliferation. Gastric cancer (GC) ranks among the most prevalent malignancies globally. Exploring the underlying mechanisms of glycolytic reprogramming in GC could provide new therapeutic target for GC treatment. Here, we showed that DEAD-box helicase 24 (DDX24) played a critical role in hexokinase-1 (HK1) induced glycolysis. DDX24 expression was significantly elevated in GC tissues and was closely associated with worse survival in GC patients. In addition, DDX24 promoted glucose uptake and lactate production in GC cells. Mechanistically, DDX24 could bind the HK1 mRNA and positively regulated HK1 level at the transcriptional level. Moreover, DDX24 promoted the proliferation, migration, and invasion ability of GC cells by upregulating HK1. Collectively, these results suggested that DDX24 was a critical player in the regulation of glycolytic reprogramming and also implicated DDX24 as a valuable therapeutic target for GC.
Collapse
Affiliation(s)
- Yuanyuan Ni
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215008, Jiangsu Province, PR China; Department of Radiation Oncology, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, PR China
| | - Zhixiang Zhuang
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215008, Jiangsu Province, PR China.
| |
Collapse
|
8
|
Fujita KI, Ito M, Irie M, Harada K, Fujiwara N, Ikeda Y, Yoshioka H, Yamazaki T, Kojima M, Mikami B, Mayeda A, Masuda S. Structural differences between the closely related RNA helicases, UAP56 and URH49, fashion distinct functional apo-complexes. Nat Commun 2024; 15:455. [PMID: 38225262 PMCID: PMC10789772 DOI: 10.1038/s41467-023-44217-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
mRNA export is an essential pathway for the regulation of gene expression. In humans, closely related RNA helicases, UAP56 and URH49, shape selective mRNA export pathways through the formation of distinct complexes, known as apo-TREX and apo-AREX complexes, and their subsequent remodeling into similar ATP-bound complexes. Therefore, defining the unidentified components of the apo-AREX complex and elucidating the molecular mechanisms underlying the formation of distinct apo-complexes is key to understanding their functional divergence. In this study, we identify additional apo-AREX components physically and functionally associated with URH49. Furthermore, by comparing the structures of UAP56 and URH49 and performing an integrated analysis of their chimeric mutants, we exhibit unique structural features that would contribute to the formation of their respective complexes. This study provides insights into the specific structural and functional diversification of these two helicases that diverged from the common ancestral gene Sub2.
Collapse
Affiliation(s)
- Ken-Ichi Fujita
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
- Division of Gene Expression Mechanism, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
- Division of Cancer Stem Cell, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Misa Ito
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Midori Irie
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Kotaro Harada
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Naoko Fujiwara
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Yuya Ikeda
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Hanae Yoshioka
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Tomohiro Yamazaki
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Masaki Kojima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, 611-0011, Japan
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Seiji Masuda
- Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
- Department of Food Science and Nutrition, Faculty of Agriculture Kindai University, Nara, Nara, 631-8505, Japan.
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Nara, 631-8505, Japan.
- Antiaging Center, Kindai University, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
9
|
Lv Z, Gao W, Du Z, Zheng Y, Liu T, Hao C, Xue D. Alternative splicing of IRF3 plays an important role in the development of hepatocarcinoma. Epigenetics 2023; 18:2276371. [PMID: 37926963 PMCID: PMC10629432 DOI: 10.1080/15592294.2023.2276371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
Alternative splicing is a process causing mRNA translation to produce different proteins, and it is crucial for the development of tumours. In this study, we constructed a prognostic model related to alternative splicing events in hepatocarcinoma using bioinformatics analysis, including the alternative splicing of CSAD, AFMID, ZDHHC16, and IRF3. The model is an independent prognostic factor and can accurately predict a patient's prognosis. IRF3 is a transcription factor related to the immune response. Its alternative splicing can affect the expression of various genes related to prognosis and plays an essential role in the tumour microenvironment. We also verified the expression of IRF3 exon skipping isoform in hepatocarcinoma at the mRNA level. In conclusion, we discovered that the alternative splicing of IRF3 is essential for the development of hepatocarcinoma. This study provides new insight into the development of treatments for hepatocarcinoma.
Collapse
Affiliation(s)
- Zhenyi Lv
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenqi Gao
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhiwei Du
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Zheng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianming Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chenjun Hao
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongbo Xue
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Feng T, Li S, Zhao G, Li Q, Yuan H, Zhang J, Gu R, Ou D, Guo Y, Kou Q, Wang Q, Li K, Lin P. DDX39B facilitates the malignant progression of hepatocellular carcinoma via activation of SREBP1-mediated de novo lipid synthesis. Cell Oncol (Dordr) 2023; 46:1235-1252. [PMID: 37052853 DOI: 10.1007/s13402-023-00807-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE The detailed molecular mechanisms of aberrant lipid metabolism in HCC remain unclear. Herein, we focused on the potential role of DDX39B in aberrant lipogenesis and malignant development in HCC. METHODS DDX39B expression in HCC and para-cancer tissues was measured by immunohistochemistry. CCK-8, colony formation and Transwell assays were utilized to detect HCC cell proliferation, migration and invasion in vitro. Oil red O and Nile red staining and triglyceride and cholesterol detection were used to measure lipogenesis. Coimmunoprecipitation was used to detect interactions between DDX39B and SREBP1. Immunofluorescence assays were performed to investigate the impact of DDX39B on SREBP1 nuclear translocation. A luciferase assay was used to explore the transcriptional activity of SREBP1. The subcutaneous and orthotopic xenograft models in nude mice were generated to verify the contribution of the DDX39B/SREBP1 axis to tumor growth, lung metastasis and lipid synthesis in vivo. RESULTS DDX39B is upregulated in HCC tissues and predicts a worse prognosis. Upregulated DDX39B contributes to the proliferation, metastasis and lipogenesis of HCC cells. Mechanistically, DDX39B directly interacts with SREBP1, and silencing DDX39B impairs the stabilization of the SREBP1 protein through FBXW7-mediated ubiquitination and degradation of SREBP1. Furthermore, DDX39B deficiency decreases the nuclear translocation and activation of SREBP1 and transcription of SREBP1 downstream genes, resulting in reduced lipid accumulation. CONCLUSIONS Our study reveals a novel mechanism by which DDX39B facilitates the malignant progression of HCC via activation of SREBP1-mediated de novo lipogenesis, implicating DDX39B as both a potential predictor of recurrence and prognosis and a promising therapeutic target.
Collapse
Affiliation(s)
- Tianyu Feng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Siqi Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Gang Zhao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Qin Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Hang Yuan
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jie Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Rui Gu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Deqiong Ou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yafei Guo
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Qiming Kou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Qijing Wang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Kai Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
- Hi-Tech Development, 1# Keyuan 4 Road, Gaopeng Avenue, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Ping Lin
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
- Hi-Tech Development, 1# Keyuan 4 Road, Gaopeng Avenue, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
11
|
Xie Y, Gao S, Zhang K, Bhat P, Clarke BP, Batten K, Mei M, Gazzara M, Shay JW, Lynch KW, Angelos AE, Hill PS, Ivey AL, Fontoura BMA, Ren Y. Structural basis for high-order complex of SARNP and DDX39B to facilitate mRNP assembly. Cell Rep 2023; 42:112988. [PMID: 37578863 PMCID: PMC10508174 DOI: 10.1016/j.celrep.2023.112988] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/10/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
mRNA in eukaryotic cells is packaged into highly compacted ribonucleoprotein particles (mRNPs) in the nucleus and exported to the cytoplasm for translation. mRNP packaging and export require the evolutionarily conserved transcription-export (TREX) complex. TREX facilitates loading of various RNA-binding proteins on mRNA through the action of its DDX39B subunit. SARNP (Tho1 [transcriptional defect of Hpr1 by overexpression 1] in yeast) is shown to interact with DDX39B and affect mRNA export. The molecular mechanism of how SARNP recognizes DDX39B and functions in mRNP assembly is unclear. Here, we determine the crystal structure of a Tho1/DDX39B/RNA complex, revealing a multivalent interaction mediated by tandem DDX39B interacting motifs in SARNP/Tho1. The high-order complex of SARNP and DDX39B is evolutionarily conserved, and human SARNP can engage with five DDX39B molecules. RNA sequencing (RNA-seq) from SARNP knockdown cells shows the most affected RNAs in export are GC rich. Our work suggests the role of the high-order SARNP/DDX39B/RNA complex in mRNP assembly and export.
Collapse
Affiliation(s)
- Yihu Xie
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Shengyan Gao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Ke Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Prasanna Bhat
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Bradley P Clarke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Kimberly Batten
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Menghan Mei
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Matthew Gazzara
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexia E Angelos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Pate S Hill
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Austin L Ivey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA.
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| |
Collapse
|
12
|
Ye SP, Yu HX, Lu WJ, Wang JF, Li TY, Shi J, Cheng XY. Stratifin Promotes Hepatocellular Carcinoma Progression by Modulating the Wnt/ β-Catenin Pathway. Int J Genomics 2023; 2023:9731675. [PMID: 37587914 PMCID: PMC10427227 DOI: 10.1155/2023/9731675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Abnormal stratifin (SFN) expression is closely related to the progression of several human cancers, but the potential roles of SFN in hepatocellular carcinoma (HCC) remain largely unknown. In this study, we found that SFN was upregulated in HCC cell lines and tissues and was positively associated with tumor size, poor differentiation, Tumor Node Metastasis (TNM) stage, and vascular invasion. In addition, high expression levels of SFN were associated with poor overall survival and disease-free survival. Biologically, downregulation of SFN suppressed tumor cell proliferation, epithelial-mesenchymal transition (EMT), invasion, and migration in vitro and tumor growth in vivo. However, overexpression of SFN promoted cell proliferation, EMT, invasion, and migration in vitro and tumor growth in vivo. Mechanistically, overexpression of SFN activated the Wnt/β-catenin pathway by promoting Glycogen synthase kinase-3 beta (GSK-3β) phosphorylation, decreasing β-catenin phosphorylation, promoting β-catenin transport into the nucleus, and enhancing the expression of c-Myc, whereas depletion of SFN inhibited the Wnt/β-catenin pathway. In addition, TOPFlash/FOPFlash reporter assays showed that overexpression or downregulation of SFN obviously increased or decreased, respectively, the activity of the Wnt/β-catenin pathway. Our results indicated that SFN plays an important role in HCC, possibly providing a prognostic factor and therapeutic target for HCC.
Collapse
Affiliation(s)
- Shan-Ping Ye
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Hong-Xin Yu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Wei-Jie Lu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Jun-Fu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Tai-Yuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Jun Shi
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Xiao-Ye Cheng
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| |
Collapse
|
13
|
Construction of a Novel Diagnostic Model Based on Ferroptosis-Related Genes for Hepatocellular Carcinoma Using Machine and Deep Learning Methods. JOURNAL OF ONCOLOGY 2023; 2023:1624580. [PMID: 36873737 PMCID: PMC9981290 DOI: 10.1155/2023/1624580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/16/2022] [Accepted: 11/24/2022] [Indexed: 02/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most general malignant tumors. Ferroptosis, a type of necrotic cell death that is oxidative and iron-dependent, has a strong correlation with the development of tumors and the progression of cancer. The present study was designed to identify potential diagnostic Ferroptosis-related genes (FRGs) using machine learning. From GEO datasets, two publicly available gene expression profiles (GSE65372 and GSE84402) from HCC and nontumor tissues were retrieved. The GSE65372 database was used to screen for FRGs with differential expression between HCC cases and nontumor specimens. Following this, a pathway enrichment analysis of FRGs was carried out. In order to locate potential biomarkers, an analysis using the support vector machine recursive feature elimination (SVM-RFE) model and the LASSO regression model were carried out. The levels of the novel biomarkers were validated further using data from the GSE84402 dataset and the TCGA datasets. In this study, 40 of 237 FRGs exhibited a dysregulated level between HCC specimens and nontumor specimens from GSE65372, including 27 increased and 13 decreased genes. The results of KEGG assays indicated that the 40 differential expressed FRGs were mainly enriched in the longevity regulating pathway, AMPK signaling pathway, the mTOR signaling pathway, and hepatocellular carcinoma. Subsequently, HSPB1, CDKN2A, LPIN1, MTDH, DCAF7, TRIM26, PIR, BCAT2, EZH2, and ADAMTS13 were identified as potential diagnostic biomarkers. ROC assays confirmed the diagnostic value of the new model. The expression of some FRGs among 11 FRGs was further confirmed by the GSE84402 dataset and TCGA datasets. Overall, our findings provided a novel diagnostic model using FRGs. Prior to its application in a clinical context, there is a need for additional research to evaluate the diagnostic value for HCC.
Collapse
|
14
|
Yao H, Ren D, Wang Y, Wu L, Wu Y, Wang W, Li Q, Liu L. KCTD9 inhibits the Wnt/β-catenin pathway by decreasing the level of β-catenin in colorectal cancer. Cell Death Dis 2022; 13:761. [PMID: 36055981 PMCID: PMC9440223 DOI: 10.1038/s41419-022-05200-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide. However, the molecular mechanisms underlying CRC progression remain to be further defined to improve patient outcomes. In this study, we found that KCTD9, a member of the potassium channel tetramerization domain-containing (KCTD) gene family, was commonly downregulated in CRC tissues and that KCTD9 expression was negatively correlated with the clinical CRC stage. Survival analysis showed that patients whose tumors expressed low KCTD9 levels had poorer outcomes. Functional analyses revealed that KCTD9 overexpression inhibited CRC cell proliferation and metastasis, whereas KCTD9 knockdown promoted CRC cell proliferation and metastasis in both in vitro and in vivo models. Manipulating KCTD9 levels in CRC cells via overexpression or knockdown showed KCTD9 expression positively influenced the degradation of β-catenin levels leading to inhibition of Wnt signaling and reductions in Wnt pathway target gene expression. Mechanistically, we found KCTD9 associated with ZNT9 (Zinc Transporter 9), a coactivator of β-catenin-mediated gene transcription. The overexpression of KCTD9 or knockdown of ZNT9 in CRC cells increased the polyubiquitination and proteasomal degradation of β-catenin. In turn, the KCTD9-ZNT9 interaction disrupted interactions between β-catenin and ZNT9, thereby leading to decreased β-catenin target gene expression and the inhibition of Wnt signaling. In conclusion, our findings propose that KCTD9 functions as a tumor suppressor that inhibits CRC cell proliferation and metastasis by inactivating the Wnt/β-catenin pathway. Moreover, its frequent downregulation in CRC suggests KCTD9 as a potential prognostic and therapeutic target in CRC.
Collapse
Affiliation(s)
- Hanhui Yao
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Delong Ren
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Yichun Wang
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Liang Wu
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Yang Wu
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Wei Wang
- grid.59053.3a0000000121679639Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Qidong Li
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Lianxin Liu
- grid.59053.3a0000000121679639Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| |
Collapse
|
15
|
Zhou H, Du Y, Wei X, Song C, Song J, Xu N, Huang W, Chen L, Yao F, Du D, Qiu C, Zhong L, Liu Y, Gu D, Wang J, Xu Y. DDX56 transcriptionally activates MIST1 to facilitate tumorigenesis of HCC through PTEN-AKT signaling. Theranostics 2022; 12:6069-6087. [PMID: 36168636 PMCID: PMC9475456 DOI: 10.7150/thno.72471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Hepatocellular carcinoma (HCC) is a primary malignancy of the liver that is the leading cause of cancer-related mortality worldwide. However, genetic alterations and mechanisms underlying HCC development remain unclear. Methods: Tissue specimens were used to evaluate the expression of DEAD-Box 56 (DDX56) to determine its prognostic value. Colony formation, CCK8, and EdU-labelling assays were performed to assess the effects of DDX56 on HCC proliferation. The in vivo role of DDX56 was evaluated using mouse orthotopic liver xenograft and subcutaneous xenograft tumor models. Dual-luciferase reporter, chromatin immunoprecipitation, and electrophoretic mobility shift assays were performed to examine the effect of DDX56 on the MIST1 promoter. Results: DDX56 expression in HCC tissues was elevated and this increase was strongly correlated with poor prognoses for HCC patients. Functionally, DDX56 promoted HCC cell proliferation both in vitro and in vivo, while mechanistically interacting with MECOM to promote HCC proliferation by mono-methylating H3K9 (H3K9me1) on the MIST1 promoter, leading to enhanced MIST1 transcription and subsequent regulation of the PTEN/AKT signaling pathway, which promotes HCC proliferation. More importantly, the PTEN agonist, Oroxin B (OB), blocked the DDX56-mediated PTEN-AKT signaling pathway, suggesting that treating HCC patients with OB may be beneficial as a therapeutic intervention. Furthermore, we observed that ZEB1 bound to DDX56 and transcriptionally activated DDX56, leading to HCC tumorigenesis. Conclusions: Our results indicated that the ZEB1-DDX56-MIST1 axis played a vital role in sustaining the malignant progression of HCC and identified DDX56 as a potential therapeutic target in HCC tumorigenesis.
Collapse
Affiliation(s)
- Hongzhong Zhou
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yiqun Du
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiafei Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Chunli Song
- Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jianning Song
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Guangzhou Medical University, Guangzhou, China
| | - Nanson Xu
- Sun Yat -sen University Cancer Center, State key laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
| | - Weihong Huang
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences
| | - Lichan Chen
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Guangzhou Medical University, Guangzhou, China
| | - Fuwen Yao
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Duanming Du
- Department of Interventional Therapy, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Chuanghua Qiu
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Lihong Zhong
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Yuchen Liu
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Jin Wang
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Yong Xu
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
Shan H, Liu T, Gan H, He S, Deng J, Hu X, Li L, Cai L, He J, Long H, Cai J, Li H, Zhang Q, Wang L, Chen F, Chen Y, Zhang H, Li J, Yang L, Liu Y, Yang J, Kuang DM, Pang P, He H. RNA helicase DDX24 stabilizes LAMB1 to promote hepatocellular carcinoma progression. Cancer Res 2022; 82:3074-3087. [PMID: 35763670 DOI: 10.1158/0008-5472.can-21-3748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies. Elucidating the underlying mechanisms of this disease could provide new therapeutic strategies for treating HCC. Here, we identified a novel role of DEAD-box helicase 24 (DDX24), a member of the DEAD-box protein family, in promoting HCC progression. DDX24 levels were significantly elevated in HCC tissues and were associated with poor prognosis of HCC. Overexpression of DDX24 promoted HCC migration and proliferation in vitro and in vivo, whereas suppression of DDX24 inhibited both functions. Mechanistically, DDX24 bound the mRNA618-624nt of laminin subunit beta 1 (LAMB1) and increased its stability in a manner dependent upon the interaction between nucleolin (NCL) and the C-terminal region of DDX24. Moreover, RFX8 was identified as a DDX24 promoter-binding protein that transcriptionally upregulated DDX24 expression. Collectively, these findings demonstrate that the RFX8/DDX24/LAMB1 axis promotes HCC progression, providing potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Hong Shan
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Tianze Liu
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hairun Gan
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Simeng He
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jia Deng
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xinyan Hu
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Luting Li
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Li Cai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, China
| | - JianZhong He
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Haoyu Long
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jianxun Cai
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hanjie Li
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qianqian Zhang
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lijie Wang
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Fangbin Chen
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yuming Chen
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Haopei Zhang
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jian Li
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lukun Yang
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ye Liu
- Sun Yat-sen University 5th Hospital, Zhuhai, Guangdong province, China
| | | | - Dong-Ming Kuang
- Sun Yat-sen University, Guangzhou, Outside the United States or C, China
| | - Pengfei Pang
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huanhuan He
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
17
|
Yu B, Zhou S, Long D, Ning Y, Yao H, Zhou E, Wang Y. DDX55 promotes HCC progression via interacting with BRD4 and participating in exosome-mediated cell-cell communication. Cancer Sci 2022; 113:3002-3017. [PMID: 35514200 PMCID: PMC9459289 DOI: 10.1111/cas.15393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/27/2022] Open
Abstract
The involvement of DEAD‐box helicase 55 (DDX55) in oncogenesis has been suggested, but its biological role in hepatocellular carcinoma (HCC) remains unknown. The present study verified the upregulation of DDX55 in HCC tissues compared with non‐tumor controls. DDX55 displayed the highest prognostic values among the DEAD‐box protein family for recurrence‐free survival and overall survival of HCC patients. In addition, the effects of DDX55 in the promotion of HCC cell proliferation, migration, and invasion were determined ex vivo and in vivo. Mechanistically, we revealed that DDX55 could interact with BRD4 to form a transcriptional regulatory complex that positively regulated PIK3CA transcription. Following that, β‐catenin signaling was activated in a PI3K/Akt/GSK‐3β dependent manner, thus inducing cell cycle progression and epithelial–mesenchymal transition. Intriguingly, both DDX55 mRNA and protein were identified in the exosomes derived from HCC cells. Exosomal DDX55 was implicated in intercellular communication between HCC cells with high or low DDX55 levels and between HCC cells and endothelial cells, thereby promoting the malignant phenotype of HCC cells and angiogenesis. In conclusion, DDX55 may be a valuable prognostic biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Bin Yu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Dakun Long
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Yuxiang Ning
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Hanlin Yao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| |
Collapse
|
18
|
Wang J, Wang Y, Wang J, Zhang S, Yu Z, Zheng K, Fu Z, Wang C, Huang W, Chen J. DEAD-box helicase 56 functions as an oncogene promote cell proliferation and invasion in gastric cancer via the FOXO1/p21 Cip1/c-Myc signaling pathway. Bioengineered 2022; 13:13970-13985. [PMID: 35723050 PMCID: PMC9275944 DOI: 10.1080/21655979.2022.2084235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022] Open
Abstract
DEAD-box helicase (DDX) family exerts a critical effect on cancer initiation and progression through alternative splicing, transcription and ribosome biogenesis. Increasing evidence has demonstrated that DEAD-box helicase 56 (DDX56) is over-expressed in several cancers, which plays an oncogenic role. Till the present, the impact of DDX56 on gastric cancer (GC) remains unclear. We conducted high-throughput sequencing (RNA-seq) to demonstrate aberrant DDX56 levels within 10 GC and matched non-carcinoma tissue samples. DDX56 levels were detected through qRT-PCR, western blotting (WB) and immunochemical staining in GC patients. We conducted gain- and loss-of-function studies to examine DDX56's biological role in GC development. In vitro, we carried out 5‑Ethynyl‑2‑deoxyuridine (EdU), scratch, Transwell, and flow cytometry (FCM) assays for detecting GC cell growth, invasion, migration and apoptosis. Additionally, gene set enrichment analysis (GSEA), WB assay, and Encyclopedia of RNA Interactomes (ENCORI) were carried out for analyzing DDX56-regulated downstream genes and signaling pathways. In vivo, tumor xenograft experiment was performed for investigating how DDX56 affected GC development within BALB/c nude mice. Functionally, DDX56 knockdown arrested cell cycle at G1 phase, invasion and migration of AGS and MKN28 cells, and enhanced their apoptosis. Ectopic DDX56 expression enhanced the cell growth, migration and invasion, and inhibited apoptosis. Knockdown of DDX56 suppressed GC growth in the tumor models of BALB/c nude mice. Mechanistically, DDX56 post-transcriptionally suppressed FOXO1/p21 Cip1 protein expression, which could activate its downstream cyclin E1/CDK2/c-Myc signaling pathways. This sheds lights on the GC pathogenic mechanism and offers a potential anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Jiancheng Wang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ye Wang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junfu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Siwen Zhang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhu Yu
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kaitian Zheng
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhao Fu
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Congjun Wang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weijia Huang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junqiang Chen
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
19
|
Tabassum S, Ghosh MK. DEAD-box RNA helicases with special reference to p68: Unwinding their biology, versatility, and therapeutic opportunity in cancer. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Zhao YJ, Wu LY, Pang JS, Liao W, Chen YJ, He Y, Yang H. Integrated multi-omics analysis of the clinical relevance and potential regulatory mechanisms of splicing factors in hepatocellular carcinoma. Bioengineered 2021; 12:3978-3992. [PMID: 34288818 PMCID: PMC8806902 DOI: 10.1080/21655979.2021.1948949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Splicing factors (SFs) have been increasingly documented to perturb the genome of cancers. However, little is known about the alterations of SFs in hepatocellular carcinoma (HCC). This study comprehensively delineated the genomic and epigenomic characteristics of 404 SFs in HCC based on the multi-omics data from the Cancer Genome Atlas database. The analysis revealed several clinically relevant SFs that could be effective biomarkers for monitoring the onset and prognosis of HCC (such as, HSPB1, DDX39A, and NELFE, which were the three most significant clinically relevant SFs). Functional enrichment analysis of these indicators showed the enrichment of pathways related to splicing and mRNA processes. Furthermore, the study found that SF copy number variation is common in HCC and could be a typical characteristic of hepato-carcinogenesis; the complex expression regulation of SFs was significantly affected by copy number variant and methylation. Several SFs with significant mutation patterns were identified (such as, RNF213, SF3B1, SPEN, NOVA1, and EEF1A1), and the potential regulatory network of SFs was constructed to identify their potential mechanisms for regulating clinically relevant alternative splicing events. Therefore, this study established a foundation to uncover the broad molecular spectrum of SFs for future functional and therapeutic studies of HCC.
Collapse
Affiliation(s)
- Yu-jia Zhao
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Lin-Yong Wu
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jin-shu Pang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Wei Liao
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yu-ji Chen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
21
|
Du L, Wang L, Yang H, Duan J, Lai J, Wu W, Fan S, Zhi X. Sex Comb on Midleg Like-2 Accelerates Hepatocellular Carcinoma Cell Proliferation and Metastasis by Activating Wnt/β-Catenin/EMT Signaling. Yonsei Med J 2021; 62:1073-1082. [PMID: 34816637 PMCID: PMC8612862 DOI: 10.3349/ymj.2021.62.12.1073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the influences of sex comb on midleg like-2 (SCML2) on hepatocellular carcinoma (HCC) and potentially related mechanisms. MATERIALS AND METHODS SCML2 expression in tumor tissues and cells was analyzed using the TCGA database and/or qRT-PCR. The proliferation of HCC cells was detected by CCK-8, colony formation, and EdU assays. The migration and invasion of HCC cells were detected by transwell and wound healing assays. Apoptosis of HCC cells was determined by flow cytometry. Additionally, qRT-PCR and Western blot were used to detect the expression of SCML2 and Wnt/β-catenin/epithelial-mesenchymal transition (EMT) signaling. A xenograft model in mice was established to verify the in vitro findings. RESULTS We found that SCML2 was highly expressed in HCC tissues and cells and that high expression of SCML2 was correlated with poor prognosis in HCC patients. SCML2 overexpression promoted proliferation, invasion, and migration and repressed apoptosis of HCC cells. The reverse results were obtained in SCML2-silenced cells. Further, we found that SCML2 activated the Wnt/β-catenin/EMT pathway. SCML2 silencing reduced the protein levels of Wnt3a, β-catenin, N-cadherin, Vimentin, and Snail and enhanced E-cadherin protein expression both in vivo and in vitro. CONCLUSION SCML2 silencing inhibits the proliferation, migration, and invasion of HCC cells by regulating the Wnt/β-catenin/EMT pathway.
Collapse
Affiliation(s)
- Lei Du
- No.8 District of Liver Diseases, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Lina Wang
- Clinical Laboratory, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Hong Yang
- Department of Physical Therapy, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Jianping Duan
- Department of Infectious Disease, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Jianming Lai
- Medical College, Qingdao University, Qingdao, Shandong, China
| | - Wei Wu
- No.8 District of Liver Diseases, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Shaohua Fan
- Blood Purification Centre, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China.
| | - Xiaoli Zhi
- Department of Infectious Disease, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China.
| |
Collapse
|
22
|
Abstract
Liver metastasis, originating either from a primary liver or other cancer types, represent a large cancer-related burden. Therefore, studies that add to better understanding of its molecular basis are needed. Herein, the role of the Wnt signaling pathway in liver metastasis is outlined. Its role in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT), motility, migration, metastasis formation, and other steps of the metastatic cascade are presented. Additionally, the roles of the Wnt signaling pathway in the liver metastasis formation of colorectal, breast, gastric, lung, melanoma, pancreatic, and prostate cancer are explored. The special emphasis is given to the role of the Wnt signaling pathway in the communication between the many of the components of the primary and secondary cancer microenvironment that contribute to the metastatic outgrowth in the liver. The data presented herein are a review of the most recent publications and advances in the field that add to the idea that the Wnt pathway is among the drivers of liver metastasis and that its targeting could potentially relieve liver metastasis–related complications.
Collapse
|
23
|
Cargill M, Venkataraman R, Lee S. DEAD-Box RNA Helicases and Genome Stability. Genes (Basel) 2021; 12:1471. [PMID: 34680866 PMCID: PMC8535883 DOI: 10.3390/genes12101471] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
DEAD-box RNA helicases are important regulators of RNA metabolism and have been implicated in the development of cancer. Interestingly, these helicases constitute a major recurring family of RNA-binding proteins important for protecting the genome. Current studies have provided insight into the connection between genomic stability and several DEAD-box RNA helicase family proteins including DDX1, DDX3X, DDX5, DDX19, DDX21, DDX39B, and DDX41. For each helicase, we have reviewed evidence supporting their role in protecting the genome and their suggested mechanisms. Such helicases regulate the expression of factors promoting genomic stability, prevent DNA damage, and can participate directly in the response and repair of DNA damage. Finally, we summarized the pathological and therapeutic relationship between DEAD-box RNA helicases and cancer with respect to their novel role in genome stability.
Collapse
Affiliation(s)
- Michael Cargill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Rasika Venkataraman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Stanley Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Bao Y, Jiang A, Dong K, Gan X, Gong W, Wu Z, Liu B, Bao Y, Wang J, Wang L. DDX39 as a predictor of clinical prognosis and immune checkpoint therapy efficacy in patients with clear cell renal cell carcinoma. Int J Biol Sci 2021; 17:3158-3172. [PMID: 34421357 PMCID: PMC8375229 DOI: 10.7150/ijbs.62553] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/06/2021] [Indexed: 01/12/2023] Open
Abstract
DEAD-box protein 39 (DDX39) has been demonstrated to be a tumorigenic gene in multiple tumor types, but its role in the progression and immune microenvironment of clear cell renal cell cancer (ccRCC) remains unclear. The aim of the present study was to investigate the role of DDX39 in the ccRCC tumor progression, immune microenvironment and efficacy of immune checkpoint therapy. The DDX39 expression level was first detected in tumors in the public data and then verified in ccRCC samples from Changzheng Hospital. The prognostic value of DDX39 expression was assessed in the Cancer Genome Atlas (TCGA) and ccRCC patients from Changhai Hospital. The role of DDX39 in promoting ccRCC was analyzed by bioinformatic analysis and in vitro experiments. The association between DDX39 expression and immune cell infiltration and immune inhibitory markers was analyzed, and its value in predicting the immune checkpoint therapy efficacy in ccRCC were evaluated in the public database. DDX39 expression was elevated in Oncomine, GEO and TCGA ccRCC databases, as well as in Changzheng ccRCC samples. In TCGA ccRCC patients, increased DDX39 expression predicted worse overall survival (OS) (p<0.0001) and progression-free interval (PFI) (p<0.0001), and was shown as an independent predictive factor for OS (p=0.002). These findings were consistent with those from Changhai ccRCC patients. In addition, GO and GSEA analysis identified DDX39 as a pro-ccRCC gene. In vitro experiments confirmed the role of DDX39 in promoting ccRCC cell. Finally, DDX39 was found to be positively correlated with a variety of immune inhibitory markers, and could predict the adverse efficacy of immune checkpoint therapy in TIDE analysis. In conclusion, Increased DDX39 in ccRCC patients predicted worse clinical prognosis, promoted ccRCC cell proliferation, migration and invasion, and also predicted adverse efficacy of immune checkpoint therapy.
Collapse
Affiliation(s)
- Yewei Bao
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Kai Dong
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xinxin Gan
- Department of Urology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wenliang Gong
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhenjie Wu
- Department of Urology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Bing Liu
- Department of Urology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yi Bao
- Department of Urology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jie Wang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.,Department of Urology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
25
|
Fang D, Wang MR, Guan JL, Han YY, Sheng JQ, Tian DA, Li PY. Bromodomain-containing protein 9 promotes hepatocellular carcinoma progression via activating the Wnt/β-catenin signaling pathway. Exp Cell Res 2021; 406:112727. [PMID: 34370992 DOI: 10.1016/j.yexcr.2021.112727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Epigenetic dysregulation participates in the initiation and progression of hepatocellular carcinoma (HCC). Bromodomain-containing protein 9 (BRD9) can identify acetylated lysine residues, contributing to several cancers. The function and molecular mechanism of BRD9 in HCC remain poorly understood. METHODS BRD9 levels in tissues and cells of HCC and normal liver were evaluated using bioinformatic analysis, real-time PCR, and western blot. BRD9's association with clinical outcomes was investigated via survival analyses. Biological behaviors and pathways related to BRD9 were predicted using gene set enrichment analysis. BRD9's role in proliferation was verified via cell counting kit 8, colony formation, and 5-Ethynyl-2'-deoxyuridine assays. Its role in the cell cycle and apoptosis was assessed using flow cytometry. The role of BRD9 in vivo was investigated using xenograft tumor models. A rescue assay was performed to investigate the molecular mechanism of BRD9. RESULTS BRD9 was markedly upregulated in HCC and higher BRD9 expression was associated with higher grade, advanced stage, greater tumor size, and poorer prognosis. BRD9 overexpression enhanced cell proliferation, cell cycle progress, but impeded cell apoptosis. BRD9 downregulation had the opposite effects. In vivo, BRD9 promoted xenograft tumor growth. Mechanistically, BRD9 activated Wnt/β-catenin signaling, obstruction of which abrogated BRD9-mediated tumorigenesis. CONCLUSION Increased BRD9 in HCC correlated with poor prognosis, which functioned via activating Wnt/β-catenin signaling. Thus, BRD9 might be a promising biomarker and therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Dan Fang
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mu-Ru Wang
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia-Lun Guan
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ying-Ying Han
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia-Qi Sheng
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China.
| | - De-An Tian
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Pei-Yuan Li
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gastroenterology, Wenchang People's Hospital, Hainan, China.
| |
Collapse
|
26
|
The Mammalian Ecdysoneless Protein Interacts with RNA Helicase DDX39A To Regulate Nuclear mRNA Export. Mol Cell Biol 2021; 41:e0010321. [PMID: 33941617 PMCID: PMC8224239 DOI: 10.1128/mcb.00103-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mammalian orthologue of ecdysoneless (ECD) protein is required for embryogenesis, cell cycle progression, and mitigation of endoplasmic reticulum stress. Here, we identified key components of the mRNA export complexes as binding partners of ECD and characterized the functional interaction of ECD with key mRNA export-related DEAD BOX protein helicase DDX39A. We find that ECD is involved in RNA export through its interaction with DDX39A. ECD knockdown (KD) blocks mRNA export from the nucleus to the cytoplasm, which is rescued by expression of full-length ECD but not an ECD mutant that is defective in interaction with DDX39A. We have previously shown that ECD protein is overexpressed in ErbB2+ breast cancers (BC). In this study, we extended the analyses to two publicly available BC mRNA The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data sets. In both data sets, ECD mRNA overexpression correlated with short patient survival, specifically ErbB2+ BC. In the METABRIC data set, ECD overexpression also correlated with poor patient survival in triple-negative breast cancer (TNBC). Furthermore, ECD KD in ErbB2+ BC cells led to a decrease in ErbB2 mRNA level due to a block in its nuclear export and was associated with impairment of oncogenic traits. These findings provide novel mechanistic insight into the physiological and pathological functions of ECD.
Collapse
|
27
|
Tu W, Gong J, Song J, Tian D, Wang Z. miR-20a/TCF4 axis-mediated inhibition of hepatocytes proliferation impairs liver regeneration in mice PHx model by regulating CDC2 and CDC6. J Cell Mol Med 2021; 25:5220-5237. [PMID: 33951279 PMCID: PMC8178283 DOI: 10.1111/jcmm.16530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/25/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs have emerged as essential regulators in the biological process of liver regeneration by modulating the post‐transcriptional expression of the target genes. In the present study, we found miR‐20a expression is decreased remarkably in three rodent liver regeneration models using miRNA PCR array and Venn diagram analysis. Inhibition of miR‐20a expression enhanced hepatocytes proliferation in vivo and in vitro. In contrast, overexpression of miR‐20a reduces hepatocytes proliferation and subsequently impaired liver regeneration in the mouse PHx model. Moreover, we have identified TCF4 as a target gene of miR‐20a using the PCR Array and luciferase assay. Next, mice with TCF4 deficiency were used to establish the PHx model and subjected to the examination of liver regeneration capacity. We found TCF4‐deficient mice exhibited impaired liver regeneration compared with control. Given that TCF4 acts as a transcription factor, we sort to elucidate the downstream genes involved in liver regeneration. Promoter analysis and Chip assay confirmed that TCF4 enhances CDC2 and CDC6 expression through binding to the promoter region and leads to the proliferation and cell cycle progression in hepatocytes. In conclusion, this study provides evidence that the miR20a‐TCF4‐CDC2/6 axis plays an essential role during liver regeneration.
Collapse
Affiliation(s)
- Wei Tu
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Gong
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Wei Q, Geng J, Chen Y, Lin H, Wang J, Fang Z, Wang F, Zhang Z. Structure and function of DEAH-box helicase 32 and its role in cancer. Oncol Lett 2021; 21:382. [PMID: 33777205 PMCID: PMC7988694 DOI: 10.3892/ol.2021.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/23/2020] [Indexed: 11/06/2022] Open
Abstract
DEAH-box helicase 32 (DHX32) is an RNA helicase with unique structural characteristics that is involved in numerous biological processes associated with RNA, including ribosome biosynthesis, transcription, mRNA splicing and translation. Increasing evidence suggests that abnormal DHX32 expression contributes to cancer initiation and development, due to dysregulated cell proliferation, differentiation, apoptosis and other processes. In the current review, the discovery, structure and function of DHX32, as well as the association between abnormal DHX32 expression and tumors are discussed. DHX32 expression is downregulated in acute lymphoblastic leukemia, but upregulated in solid tumors, including colorectal and breast cancer. Furthermore, DHX32 expression levels are associated with the pathological and clinical features of the cancer. Therefore, DHX32 may serve as a novel liquid biopsy marker for auxiliary diagnosis and prognosis screening, as well as a possible target for cancer therapy. The molecular mechanism underlying the contribution of DHX32 towards the initiation and development of cancer requires further investigation for the development of anticancer treatments based on manipulating DHX32 expression and function.
Collapse
Affiliation(s)
- Qingchun Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Jinting Geng
- Xiamen Key Laboratory of Biomarker Translational Medicine, Center of Medical Laboratory of Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Yongquan Chen
- Xiamen Key Laboratory of Biomarker Translational Medicine, Center of Medical Laboratory of Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Huayue Lin
- Center of Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, Fujian 361104, P.R. China
| | - Jiajia Wang
- Center of Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, Fujian 361104, P.R. China
| | - Zanxi Fang
- Center of Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, Fujian 361104, P.R. China
| | - Fen Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Zhongying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
- Xiamen Key Laboratory of Biomarker Translational Medicine, Center of Medical Laboratory of Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| |
Collapse
|
29
|
Jiang Y, Wang B, Li Y, Shen J, Wei Y, Li H, Chen S, Yang H, Zeng F, Liu C, Wang F, He H, Chen Y, Liu J. DDX19A Promotes Metastasis of Cervical Squamous Cell Carcinoma by Inducing NOX1-Mediated ROS Production. Front Oncol 2021; 11:629974. [PMID: 33968728 PMCID: PMC8100682 DOI: 10.3389/fonc.2021.629974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/12/2021] [Indexed: 01/05/2023] Open
Abstract
The major obstacle to treat cervical squamous cell carcinoma (CSCC) is the high prevalence of metastasis, which severely affects 5-year survival rate and quality of life for cancer patients. The DEAD-box helicase family has been reported to be a critical mediator in the development and metastasis of various cancers. DEAD-box helicase 19A (DDX19A) is a member of the DEAD-box helicase family; however, its functional role in CSCC is unclear. In this study, bioinformatics analysis of clinical samples from public databases demonstrated that the expression of DDX19A was elevated in CSCC tissues and that high expression of DDX19A was positively correlated with metastasis and poor clinical outcome. Functionally, we found that DDX19A promoted CSCC cell migration and invasion in vitro and lung metastasis in vivo. Mechanistically, overexpression of DDX19A increased NADPH oxidase 1 (NOX1) expression, enhanced reactive oxygen species (ROS) production, and induced the migration and invasion of CSCC cells. Rescue experiments revealed that DDX19A-induced CSCC functional alterations were dependent on NOX1 and that DDX19A-promoted CSCC metastasis was abrogated upon the inhibition of ROS. Our results demonstrated that DDX19A could promote CSCC metastasis by inducing NOX1-mediated ROS production and that blockage of the NOX1/ROS axis might serve as a potential therapeutic target for patients with DDX19A-overexpressed CSCC.
Collapse
Affiliation(s)
- Yanhui Jiang
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Baibin Wang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yongliang Li
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jiahui Shen
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yutao Wei
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hanjie Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shangqiu Chen
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hua Yang
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Famin Zeng
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Changqing Liu
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Feng Wang
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huanhuan He
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yong Chen
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jihong Liu
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
30
|
Wu Q, Xu C, Zeng X, Zhang Z, Yang B, Rao Z. Tumor suppressor role of sFRP‑4 in hepatocellular carcinoma via the Wnt/β‑catenin signaling pathway. Mol Med Rep 2021; 23:336. [PMID: 33760186 PMCID: PMC7974405 DOI: 10.3892/mmr.2021.11975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor located in the liver. Secreted frizzled-related protein 4 (sFRP-4) is associated with cancer occurrence, but the relationship between sFRP-4 and HCC is not completely understood. The present study aimed to investigate the role and mechanism underlying sFRP-4 in HCC. sFRP-4 mRNA expression levels were determined via reverse transcription-quantitative PCR and immunohistochemistry. The Cell Counting Kit-8 assay was performed to evaluate HCCLM3 and Huh7 cell viability. Moreover, HCCLM3 and Huh7 cell proliferation were assessed using the BrdU ELISA assay kit, and cell apoptosis was measured via flow cytometry. Western blotting was conducted to measure β-catenin and GSK-3β protein expression levels. The results demonstrated that sFRP-4 expression was significantly downregulated in HCC tissues and cells compared with adjacent healthy tissues and MIHA cells, respectively. Moreover, the results indicated that compared with the control group, sFRP-4 overexpression inhibited HCC cell viability and proliferation, and accelerated HCC cell apoptosis. Furthermore, the results suggested that sFRP-4 inhibited the Wnt/β-catenin signaling pathway by upregulating GSK-3β expression and downregulating β-catenin expression, thus restraining the malignant behavior of HCC cells. In conclusion, the present study indicated that sFRP-4 served a tumor suppressor role in HCC cells by restraining the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Quanxin Wu
- Cadre Ward Two, General Hospital of The Central Theater Command of The People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Cheng Xu
- Department of Oncology, General Hospital of The Central Theater Command of The People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Xianghua Zeng
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, P.R. China
| | - Zhimin Zhang
- Department of Oncology, General Hospital of The Central Theater Command of The People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Bo Yang
- Department of Oncology, General Hospital of The Central Theater Command of The People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Zhiguo Rao
- Department of Oncology, General Hospital of The Central Theater Command of The People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
31
|
The construction and validation of an RNA binding protein-related prognostic model for bladder cancer. BMC Cancer 2021; 21:244. [PMID: 33685397 PMCID: PMC7938493 DOI: 10.1186/s12885-021-07930-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
Background RNA-binding proteins (RBPs) play crucial and multifaceted roles in post-transcriptional regulation. While RBPs dysregulation is involved in tumorigenesis and progression, little is known about the role of RBPs in bladder cancer (BLCA) prognosis. This study aimed to establish a prognostic model based on the prognosis-related RBPs to predict the survival of BLCA patients. Methods We downloaded BLCA RNA sequence data from The Cancer Genome Atlas (TCGA) database and identified RBPs differentially expressed between tumour and normal tissues. Then, functional enrichment analysis of these differentially expressed RBPs was conducted. Independent prognosis-associated RBPs were identified by univariable and multivariable Cox regression analyses to construct a risk score model. Subsequently, Kaplan–Meier and receiver operating characteristic curves were plotted to assess the performance of this prognostic model. Finally, a nomogram was established followed by the validation of its prognostic value and expression of the hub RBPs. Results The 385 differentially expressed RBPs were identified included 218 and 167 upregulated and downregulated RBPs, respectively. The eight independent prognosis-associated RBPs (EFTUD2, GEMIN7, OAS1, APOBEC3H, TRIM71, DARS2, YTHDC1, and RBMS3) were then used to construct a prognostic prediction model. An in-depth analysis showed lower overall survival (OS) in patients in the high-risk subgroup compared to that in patients in the low-risk subgroup according to the prognostic model. The area under the curve of the time-dependent receiver operator characteristic (ROC) curve were 0.795 and 0.669 for the TCGA training and test datasets, respectively, showing a moderate predictive discrimination of the prognostic model. A nomogram was established, which showed a favourable predictive value for the prognosis of BLCA. Conclusions We developed and validated the performance of a prognostic model for BLCA that might facilitate the development of new biomarkers for the prognostic assessment of BLCA patients.
Collapse
|
32
|
Zha Z, Li D, Zhang P, Wang P, Fang X, Liu X, Weng C, Li B, Wu Y, Mao H, Wang L, Xu L, Dong J, Guan M, Lu L, Liu G. Neuron specific enolase promotes tumor metastasis by activating the Wnt/β-catenin pathway in small cell lung cancer. Transl Oncol 2021; 14:101039. [PMID: 33618068 PMCID: PMC7905480 DOI: 10.1016/j.tranon.2021.101039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023] Open
Abstract
Neuron-specific enolase (NSE) has been used as a specific biomarker for small cell lung cancer (SCLC) patients. Nevertheless, the biological function and mechanism of NSE in SCLC are still unclear. In this study, we clarified the role of NSE in the progression of SCLC and found that NSE expression was positively correlated with distant metastasis. Functional analysis showed that overexpression of NSE promoted migration and invasion of SCLC cells. Mechanism analysis showed that NSE overexpression induced epithelial-mesenchymal transition (EMT) of SCLC cells. Moreover, overexpression of NSE increased the protein expression of β-catenin and its downstream target genes, and silencing β-catenin eliminated NSE-mediated cell migration, invasion and EMT process. Furthermore, NSE interacted with β-catenin and inhibited the degradation of β-catenin. Besides, the animal experiments also indicated that NSE could promote the EMT process and distant metastasis of SCLC cells in vivo. In summary, our results revealed that NSE could promote the EMT process of SCLC cells by activating the Wnt/β-catenin signaling pathway, thereby promoting cell migration, invasion and distant metastasis, which might serve as a potential target for the therapy of SCLC patients.
Collapse
Affiliation(s)
- Zhiqiang Zha
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Dailing Li
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Peiling Zhang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Peipei Wang
- Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Xisheng Fang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Chengyin Weng
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Baoxiu Li
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Yong Wu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Haibo Mao
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Lina Wang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Lin Xu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Jiaming Dong
- Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Mingmei Guan
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Lin Lu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China.
| | - Guolong Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China; Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China.
| |
Collapse
|
33
|
Zhao M, Ying L, Wang R, Yao J, Zhu L, Zheng M, Chen Z, Yang Z. DHX15 Inhibits Autophagy and the Proliferation of Hepatoma Cells. Front Med (Lausanne) 2021; 7:591736. [PMID: 33644083 PMCID: PMC7904900 DOI: 10.3389/fmed.2020.591736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a highly conserved process by which superfluous or harmful components in eukaryotic cells are degraded by autophagosomes. This cytoprotective mechanism is strongly related to various human diseases, such as cancer, autoimmune diseases, and diabetes. DEAH-box helicase 15 (DHX15), a member of the DEAH box family, is mainly involved in RNA splicing and ribosome maturation. Recently, DHX15 was identified as a tumor-related factor. Although both autophagy and DHX15 are involved in cellular metabolism and cancer progression, their exact relationship and mechanism remain elusive. In this study, we discovered a non-classic function of DHX15 and identified DHX15 as a suppressive protein in autophagy for the first time. We further found that mTORC1 is involved in DHX15-mediated regulation of autophagy and that DHX15 inhibits proliferation of hepatocellular carcinoma (HCC) cells by suppressing autophagy. In conclusion, our study demonstrates a non-classical function of DHX15 as a negative regulator of autophagy related to the mTORC1 pathway and reveals that DHX15-related autophagy dysfunction promotes HCC cell proliferation, indicating that DHX15 may be a target for liver cancer treatment.
Collapse
Affiliation(s)
- Miaomiao Zhao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lixiong Ying
- Pathology Department, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Rusha Wang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jiping Yao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Liming Zhu
- Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhi Chen
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhenggang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
34
|
He C, Li A, Lai Q, Ding J, Yan Q, Liu S, Li Q. The DDX39B/FUT3/TGFβR-I axis promotes tumor metastasis and EMT in colorectal cancer. Cell Death Dis 2021; 12:74. [PMID: 33436563 PMCID: PMC7803960 DOI: 10.1038/s41419-020-03360-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
DDX39B is a member of the DEAD box (DDX) RNA helicase family required for nearly all cellular RNA metabolic processes. The exact role and potential molecular mechanism of DDX39B in the progression of human colorectal cancer (CRC) remain to be investigated. In the present study, we demonstrate that DDX39B expression is higher in CRC tissues than in adjacent normal tissues. Gain- and loss-of-function assays revealed that DDX39B facilitates CRC metastasis in vivo and in vitro. Mechanistically, RNA-sequencing (RNA-seq) and RNA-binding protein immunoprecipitation-sequencing (RIP-seq) showed that DDX39B binds directly to the FUT3 pre-mRNA and upregulates FUT3 expression. Splicing experiments in vitro using a Minigene assay confirmed that DDX39B promotes FUT3 pre-mRNA splicing. A nuclear and cytoplasmic RNA separation assay indicates that DDX39B enhances the mRNA export of FUT3. Upregulation of FUT3 accelerates the fucosylation of TGFβR-I, which activates the TGFβ signaling pathway and eventually drives the epithelial–mesenchymal transition (EMT) program and contributes to CRC progression. These findings not only provide new insight into the role of DDX39B in mRNA splicing and export as well as in tumorigenesis, but also shed light on the effects of aberrant fucosylation on CRC progression.
Collapse
Affiliation(s)
- Chengcheng He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jian Ding
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qun Yan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
35
|
Jiang X, Chu Z, Cao Y, Tang Y, Shi Y, Shi X. PDLIM2 prevents the malignant phenotype of hepatocellular carcinoma cells by negatively regulating β-catenin. Cancer Gene Ther 2021; 28:1113-1124. [PMID: 33398035 DOI: 10.1038/s41417-020-00257-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and leading causes of cancer-related deaths globally. Despite significant advances in therapy, the molecular mechanisms underlying HCC development and progression remain unclear. Here, we aimed to explore the potential role of PDLIM2 in the development and epithelial-mesenchymal transition (EMT) of HCC via a possible modulation of β-catenin. We first confirmed that PDLIM2 was downregulated in HCC tissues and cells and found lower PDLIM2 expression was associated with worse prognosis in HCC patients. Loss- and gain- of function experiments were performed to evaluate the roles of PDLIM2 and β-catenin in HCC cell proliferation, migration, invasion, EMT, and colony formation. EMT was determined based on the levels of E-cadherin, zonula occludens-1, N-cadherin, and vimentin expression. In vivo, the roles of PDLIM2 and β-catenin in HCC were investigated by using a nude mouse xenograft model. It should be noted that PDLIM2 led to the inhibition of β-catenin activity and its downstream gene expression. Importantly, ectopic PDLIM2 expression inhibited the proliferation, migration, invasion, and EMT of HCC cells by reducing β-catenin expression both in vitro and in vivo, thereby suppressing the occurrence and progression of HCC. Taken together, our results demonstrated that overexpressed PDLIM2 exerts a tumor-suppressive role in HCC by regulating β-catenin. This study suggests that the PDLIM2 may be a promising target for the treatment of HCC.
Collapse
Affiliation(s)
- Xiaoming Jiang
- Clinical Laboratory, the First Hospital of Jilin University, Changchun, 130000, China.,Department of Emergency, the First Hospital of Jilin University, Changchun, 130000, China
| | - Zhe Chu
- Clinical Laboratory, the First Hospital of Jilin University, Changchun, 130000, China.,Department of Emergency, the First Hospital of Jilin University, Changchun, 130000, China
| | - Yang Cao
- Clinical Laboratory, the First Hospital of Jilin University, Changchun, 130000, China
| | - Ying Tang
- Department of Respiration, the First Hospital of Jilin University, Changchun, 130000, China
| | - Ying Shi
- Department of Hepatology, Medical School of Jilin University, Changchun, 130000, China.
| | - Xu Shi
- Clinical Laboratory, the First Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
36
|
Zhou TH, Su JZ, Qin R, Chen X, Ju GD, Miao S. Prognostic and Predictive Value of a 15 Transcription Factors (TFs) Panel for Hepatocellular Carcinoma. Cancer Manag Res 2020; 12:12349-12361. [PMID: 33293862 PMCID: PMC7719121 DOI: 10.2147/cmar.s279194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 01/26/2023] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is one of the most devastating diseases worldwide. Limited performance of clinicopathologic parameters as prognostic factors underscores more accurate and effective biomarkers for high-confidence prognosis that guide decision-making for optimal treatment of HCC. The aim of the present study was to establish a novel panel to improve prognosis prediction of HCC patients, with a particular interest in transcription factors (TFs). Materials and Methods A TF-related prognosis model of liver cancer with data from ICGC-LIRP-JI cohort successively were processed by univariate and multivariate Cox regression analysis. Then, for evaluating the prognostic prediction value of the model, receiver operating characteristic (ROC) curve and survival analysis were performed both with internal data from the International Cancer Genome Consortium (ICGC) and external data from The Cancer Genome Atlas (TCGA). Furthermore, we verified the expression of three genes in HCC cell lines by Western blot and qPCR and protein expression level by IHC in liver cancer patients’ sample. Finally, we constructed a TF clinical characteristics nomogram to furtherly predict liver cancer patient survival probability with TCGA cohort. Results By Cox regression analysis, a panel of 15 TFs (ZNF331, MYCN, AHRR, LEF1, ZNF780A, POU1F1, DLX5, ZNF775, PLSCR1, FOXK1, TAL2, ZNF558, SOX9, TCFL5, GSC) was identified to present with powerful predictive performance for overall survival of HCC patients based on internal ICGC cohort and external TCGA cohort. A nomogram that integrates these factors was established, allowing efficient prediction of survival probabilities and displaying higher clinical utility. Conclusion The 15-TF panel is an independent prognostic factor for HCC, and 15 TF-based nomogram might provide implication an effective approach for HCC patient management and treatment.
Collapse
Affiliation(s)
- Tian-Hao Zhou
- Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Jing-Zhi Su
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Rui Qin
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining 272000, People's Republic of China
| | - Xi Chen
- Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan 250000, People's Republic of China
| | - Gao-Da Ju
- Department of Oncology, Beijing Cancer Hospital, Peking University, Beijing 102206, People's Republic of China
| | - Sen Miao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining 272000, People's Republic of China
| |
Collapse
|
37
|
Sangaletti S, Iannelli F, Zanardi F, Cancila V, Portararo P, Botti L, Vacca D, Chiodoni C, Di Napoli A, Valenti C, Rizzello C, Vegliante MC, Pisati F, Gulino A, Ponzoni M, Colombo MP, Tripodo C. Intra-tumour heterogeneity of diffuse large B-cell lymphoma involves the induction of diversified stroma-tumour interfaces. EBioMedicine 2020; 61:103055. [PMID: 33096480 PMCID: PMC7581880 DOI: 10.1016/j.ebiom.2020.103055] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Intra-tumour heterogeneity in lymphoid malignancies encompasses selection of genetic events and epigenetic regulation of transcriptional programs. Clonal-related neoplastic cell populations are unsteadily subjected to immune editing and metabolic adaptations within different tissue microenvironments. How tissue-specific mesenchymal cells impact on the diversification of aggressive lymphoma clones is still unknown. Methods Combining in situ quantitative immunophenotypical analyses and RNA sequencing we investigated the intra-tumour heterogeneity and the specific mesenchymal modifications that are associated with A20 diffuse large B-cell lymphoma (DLBCL) cells seeding of different tissue microenvironments. Furthermore, we characterized features of lymphoma-associated stromatogenesis in human DLBCL samples using Digital Spatial Profiling, and established their relationship with prognostically relevant variables, such as MYC. Findings We found that the tissue microenvironment casts a relevant influence over A20 transcriptional landscape also impacting on Myc and DNA damage response programs. Extending the investigation to mice deficient for the matricellular protein SPARC, a stromal prognostic factor in human DLBCL, we demonstrated a different immune imprint on A20 cells according to stromal Sparc proficiency. Through Digital Spatial Profiling of 87 immune and stromal genes on human nodal DLBCL regions characterized by different mesenchymal composition, we demonstrate intra-lesional heterogeneity arising from diversified mesenchymal contextures and impacting on the stromal and immune milieu. Interpretation Our study provides experimental evidence that stromal microenvironment generates topological determinants of intra-tumour heterogeneity in DLBCL involving key transcriptional pathways such as Myc expression, damage response programs and immune checkpoints. Funding This study has been supported by the Italian Foundation for Cancer Research (AIRC) (grants 15999 and 22145 to C. Tripodo) and by the University of Palermo.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- Cell Line, Tumor
- Computational Biology/methods
- Disease Models, Animal
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Genetic Heterogeneity
- Humans
- Immunophenotyping
- In Situ Hybridization
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Models, Biological
- Phenotype
- Prognosis
- Sequence Analysis, RNA
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Transcriptome
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Fabio Iannelli
- Bioinformatics Core Unit, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Federica Zanardi
- Bioinformatics Core Unit, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Paola Portararo
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Davide Vacca
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Arianna Di Napoli
- Pathology Unit, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Cesare Valenti
- Department of Mathematics and Informatics, University of Palermo, Palermo, Italy
| | - Celeste Rizzello
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Federica Pisati
- Tumor and Microenvironment Histopathology Unit, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Maurilio Ponzoni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University Milan, Milan, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy; Tumor and Microenvironment Histopathology Unit, IFOM, FIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
38
|
Xing C, Tian H, Zhang Y, Guo K, Tang Y, Wang Q, Lv L, Wang L. DDX39 Overexpression Predicts a Poor Prognosis and Promotes Aggressiveness of Melanoma by Cooperating With SNAIL. Front Oncol 2020; 10:1261. [PMID: 32903487 PMCID: PMC7435017 DOI: 10.3389/fonc.2020.01261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the prognostic value and molecular mechanism of DDX39 and its effector SNAIL in melanoma. First, overexpression of DDX39 in melanoma, which was identified by database analysis, was further validated in patient tissues. Cell growth, cell cycle, cell migration, and cell invasion assays were then performed to evaluate the effects of downregulated DDX39 on the melanoma cell proliferation and aggressiveness. The same approaches were also used to reveal the cooperation of the transcription factor SNAIL with DDX39 to promote the aggressiveness of melanoma cells. We found that the expression of DDX39 was significantly upregulated in melanoma tissue compared to pigmented nevus tissue, and it was positively correlated with the clinical stage defined by the American Joint Committee on Cancer (AJCC) and the prognosis. Downregulation of DDX39 in melanoma cells was found to significantly inhibit cell proliferation, increase G2/M cell cycle arrest, enhance caspase-mediated cell apoptosis, and suppress cell invasion and migration. In addition, we demonstrated that the overexpression of SNAIL could restore the cell growth and aggressiveness impaired by DDX39 RNA interference. Immunohistochemical staining also showed a positive correlation between DDX39 overexpression and SNAIL overexpression in melanoma tissues, suggesting that SNAIL is one of the effectors activated by DDX39. In summary, the overexpression of DDX39 and SNAIL was positively related to the poor prognosis of melanoma patients and the increased aggressiveness of melanoma cells. Our study provides valuable evidence regarding the prognostic value of DDX39 and SNAIL as well as their potential as novel therapeutic targets for treating melanoma patients.
Collapse
Affiliation(s)
- Chengjuan Xing
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Tian
- Department of Emergency Medicine, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Yini Zhang
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kun Guo
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Tang
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qimin Wang
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Li Lv
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lifen Wang
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
39
|
Liu X, Yang L, Jiang D, Lu W, Zhang Y. Circ-DENND4C up-regulates TCF4 expression to modulate hepatocellular carcinoma cell proliferation and apoptosis via activating Wnt/β-catenin signal pathway. Cancer Cell Int 2020; 20:295. [PMID: 32669971 PMCID: PMC7346483 DOI: 10.1186/s12935-020-01346-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignant tumor in China. Advanced treatment like transcatheter hepatic arterial chemoembolization (TACE) has prolonged the lives of many HCC patients. However, the prognosis of most HCC patients remains unsatisfactory. Recently, circular RNAs (circRNAs) have been gradually unveiled to exert considerable functions in cancer. Promising circRNAs in HCC remains to be further elucidated. Methods Gene expression was assessed by qRT-PCR and western blot. The function of circ-DENND4C in HCC was estimated by both in vitro and in vivo experiments. The location of circ-DENND4C in HCC cells was determined by subcellular fractionation and FISH assays. The association among molecules were analyzed through RNA pull down, RIP and luciferase reporter assays. Results circ-DENND4C (DENN domain containing 4C), an oncogene identified in breast cancer, was overexpressed in HCC cells. Also, circ-DENND4C exerted pro-tumor functions in HCC through activating Wnt/β-catenin pathway. Importantly, circ-DENND4C could augment transcription factor 4 (TCF4) expression to activate Wnt/β-catenin signaling via sequestering miR-195-5p. Moreover, following rescue assays disclosed that circ-DENND4C mediated malignant phenotypes in HCC cells via up-regulating TCF4 through sponging miR-195-5p. Conclusion circ-DENND4C boosted TCF4 expression to modulate malignant behaviors of HCC cells via activating Wnt/β-catenin pathway, which might offer a promising target for HCC treatment.
Collapse
Affiliation(s)
- Xialei Liu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai City, Guangdong Province, 519000, China
| | - Lewei Yang
- Department of Radiotherapy for Abdominal Neoplasms, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai City, Guangdong Province, 519000, China
| | - Dong Jiang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai City, Guangdong Province, 519000, China
| | - Wuzhu Lu
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai City, Guangdong Province, 519000, China
| | - Yongyu Zhang
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihuadong Road, Xiangzhou District, Zhuhai City, Guangdong Province, 519000, China.
| |
Collapse
|
40
|
Wang X, Li P, Wang C, Zhang D, Zeng L, Liu X, Lin J. DEAD-box RNA Helicase 39 Promotes Invasiveness and Chemoresistance of ER-positive Breast Cancer. J Cancer 2020; 11:1846-1858. [PMID: 32194796 PMCID: PMC7052869 DOI: 10.7150/jca.37247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose: DDX39 is a DEAD-box RNA helicase that unwinds double-stranded RNA in an ATP-dependent manner. This study evaluated the prognostic and predictive significance of DDX39 in breast cancer (BC). Methods: The cellular proliferation, invasion, and drug cytotoxicity by DDX39 siRNA were evaluated in MCF7 (ER-positive) and MDA-MB-231 (ER-negative) cell lines. A total of 27 datasets (total 8110 accessible cases) with following-up information were collected from Asia, Europe, and North America to explore associations between DDX39 gene expression and clinical parameters of BC patients. Results: Down-regulation of DDX39 by siRNA significantly reduce the cell growth and invasion ability in MCF7 cells, but only slightly in MDA-MB-231 cells. The DDX39 mRNA level was elevated in breast adenocarcinoma compared with normal breast tissue (p<0.01). Higher DDX39 level was significantly correlated with larger tumor size (p<0.01) and poorer tumor differentiation (p<0.01). The prognostic significance of DDX39 for BC was assessed by pooled-analysis and meta-analysis. Kaplan-Meier analysis demonstrated that increased DDX39 mRNA expression was associated with poor outcomes significantly in a dose-dependent manner in ER-positive BC. The prognostic performance of DDX39 mRNA was comparable to 21-gene, 70-gene, and wound-response gene signatures, and it was superior to the TNM stage. Lower DDX39 expression was associated with reduced relative risk death on ER-positive BC with chemotherapy or radiotherapy. Inhibition of DDX39 by siRNA could significantly enhance the sensitivity of MCF-7 to doxorubicin. Conclusion: DDX39 may be a potential novel prognostic and predictive biomarker for BC patients with ER-positive status.
Collapse
Affiliation(s)
- Xiudi Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China 325027
| | - Peipei Li
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China 310015
| | - Chenying Wang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China 310015
| | - Dagui Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China 325027
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China 310015
| | - Xiyong Liu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China 310015.,Department of Tumor Biomarker Development, Sino-American Cancer Foundation, Covina, CA, USA 91722
| | - Jiajin Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China 325027
| |
Collapse
|
41
|
Liu Y, Li H, Liu F, Gao LB, Han R, Chen C, Ding X, Li S, Lu K, Yang L, Tian HM, Chen BB, Li X, Xu DH, Deng XL, Shi SL. Heterogeneous nuclear ribonucleoprotein A2/B1 is a negative regulator of human breast cancer metastasis by maintaining the balance of multiple genes and pathways. EBioMedicine 2020; 51:102583. [PMID: 31901866 PMCID: PMC6948170 DOI: 10.1016/j.ebiom.2019.11.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background Heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 is an important RNA-binding protein that affects the RNA processing, splicing, transport and stability of many genes. hnRNPA2/B1 is expressed during proliferation and metastasis of various cancer types and promotes such processes. However, the precise role and mechanism of hnRNPA2/B1 in breast cancer remain unclear. Methods The association of hnRNPA2/B1 with breast cancer metastasis was assessed using tissue chips, mouse models and publicly available data. The role and mechanism of hnRNPA2/B1 in breast cancer metastasis were studied in cell lines and mouse models. Findings In contrast to other cancer research findings, hnRNPA2/B1 expression was negatively correlated with breast cancer metastasis. hnRNPA2/B1 inhibited MDA-MB-231 triple-negative breast cancer (TNBC) cell metastasis in vitro and in vivo. hnRNPA2/B1 knockout activated ERK-MAPK/Twist and GR-beta/TCF4 pathways but inhibited STAT3 and WNT/TCF4 signalling pathways. Profilin 2 (PFN2) promoted breast cancer cell migration and invasion, whereas hnRNPA2/B1 bound directly to the UAGGG locus in the 3′-untranslated region of PFN2 mRNA and reduced the stability of PFN2 mRNA. Interpretation Our data supported the role of hnRNPA2/B1 in tumour metastasis risk and survival prediction in patients with breast cancer. The inhibitory role of hnRNPA2/B1 in metastasis was a balance of downstream multiple genes and signalling pathways. PFN2 downregulation by hnRNPA2/B1 might partly explain the inhibitory mechanism of hnRNPA2/B1 in breast cancer metastasis. Therefore, hnRNPA2/B1 might be used as a new prognostic biomarker and valuable molecular target for breast cancer treatments.
Collapse
Affiliation(s)
- Yu Liu
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China; School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Huan Li
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Fan Liu
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Li-Bin Gao
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Rong Han
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Chen Chen
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Xue Ding
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Shuang Li
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Kun Lu
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Ling Yang
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Hui-Min Tian
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Bin-Bin Chen
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Xiao Li
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Dong-Hui Xu
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Xiao-Ling Deng
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China
| | - Song-Lin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Room 303, No.4221-122, Xiang'annan Road, Xiang'an District, Xiamen 361102, PR China.
| |
Collapse
|
42
|
Rectal cancer sub-clones respond differentially to neoadjuvant therapy. Neoplasia 2019; 21:1051-1062. [PMID: 31521947 PMCID: PMC6745489 DOI: 10.1016/j.neo.2019.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/29/2022] Open
Abstract
Treatment of locally advanced rectal cancer includes chemotherapy, radiation, and surgery but patient responses to neoadjuvant treatment are variable. We have shown that rectal tumors are comprised of multiple genetically distinct sub-clones. Unique sub-clones within tumors may harbor mutations which contribute to inter-patient variation in response to neoadjuvant chemoradiotherapy (nCRT). Analysis of the influence of nCRT on the extent and nature of intra-tumoral genetic heterogeneity in rectal cancer may provide insights into mechanisms of resistance. Locally advanced rectal cancer patients underwent pre-treatment biopsies. At the time of surgery, tissue from the treated tumor was obtained and analyzed. Pre- and post-treatment specimens were subjected to whole exome and confirmatory deep sequencing for somatic mutations. Copy number variation was assessed using OncoScan SNP arrays. Genomic data were analyzed using PyClone to identify sub-clonal tumor population following nCRT. Alterations that persisted or were enriched in the post-treatment tumor specimen following nCRT were defined for each patient. Thirty-two samples were obtained from ten patients. PyClone identified 2 to 10 genetic sub-clones per tumor. Substantial changes in the proportions of individual sub-clones in pre- versus post-treatment tumor material were found in all patients. Resistant sub-clones recurrently contained mutations in TP53, APC, ABCA13, MUC16, and THSD4. Recurrent copy number variation was observed across multiple chromosome regions after nCRT. Pathway analysis including variant alleles and copy number changes associated with resistant sub-clones revealed significantly altered pathways, especially those linked to the APC and TP53 genes, which were the two most frequently mutated genes. Intra-tumoral heterogeneity is evident in pre-treatment rectal cancer. Following treatment, sub-clonal populations are selectively modified and enrichment of a subset of pre-treatment sub-clones is seen. Further studies are needed to define recurrent alterations at diagnosis that may contribute to resistance to nCRT.
Collapse
|
43
|
Zong Z, Song Y, Xue Y, Ruan X, Liu X, Yang C, Zheng J, Cao S, Li Z, Liu Y. Knockdown of LncRNA SCAMP1 suppressed malignant biological behaviours of glioma cells via modulating miR-499a-5p/LMX1A/NLRC5 pathway. J Cell Mol Med 2019; 23:5048-5062. [PMID: 31207033 PMCID: PMC6653555 DOI: 10.1111/jcmm.14362] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/24/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of long non‐coding RNAs (lncRNAs) confirm that it plays a crucial role in tumourigenesis and malignant progression of glioma. The present study demonstrated that LncRNA secretory carrier membrane protein 1 (SCAMP1) was up‐regulated and functioned as an oncogene in glioma cells. In addition, miR‐499a‐5p was down‐regulated meanwhile exerted tumour‐suppressive function in glioma cells. Subsequently, inhibition of SCAMP1 significantly restrained the cell proliferation, migration and invasion, as well as promoted apoptosis by acting as a molecular sponge of miR‐499a‐5p. Transcription factor LIM homeobox transcription factor 1, alpha (LMX1A) was overexpressed in glioma tissues and cells. Moreover, miR‐499a‐5p targeted LMX1A 3′‐UTR in a sequence‐specific manner. Hence, down‐regulation of SCAMP1 remarkably reduced the expression level of LMX1A, indicating that LMX1A participated in miR‐499a‐5p‐induced tumour‐suppressive effects on glioma cells. Furthermore, knockdown of LMX1A decreased NLR family, CARD domain containing 5 (NLRC5) mRNA and protein expression levels through directly binding to the NLRC5 promoter region. Down‐regulation of NLRC5 obviously inhibited malignant biological behaviours of glioma cells through attenuating the activity of Wnt/β‐catenin signalling pathway. In conclusion, our study clarifies that SCAMP1/miR‐499a‐5p/LMX1A/NLRC5 axis plays a critical role in modulating malignant progression of glioma cells, which provide a novel therapeutic strategy for glioma treatment.
Collapse
Affiliation(s)
- Zheqi Zong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yichen Song
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Shuo Cao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
44
|
Najafi M, Goradel NH, Farhood B, Salehi E, Solhjoo S, Toolee H, Kharazinejad E, Mortezaee K. Tumor microenvironment: Interactions and therapy. J Cell Physiol 2018; 234:5700-5721. [PMID: 30378106 DOI: 10.1002/jcp.27425] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
Tumor microenvironment (TME) is a host for a complex network of heterogeneous stromal cells with overlapping or opposing functions depending on the dominant signals within this milieu. Reciprocal paracrine interactions between cancer cells with cells within the tumor stroma often reshape the TME in favor of the promotion of tumor. These complex interactions require more sophisticated approaches for cancer therapy, and, therefore, advancing knowledge about dominant drivers of cancer within the TME is critical for designing therapeutic schemes. This review will provide knowledge about TME architecture, multiple signaling, and cross communications between cells within this milieu, and its targeting for immunotherapy of cancer.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Radiology and Medical Physics, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Eniseh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Solhjoo
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heidar Toolee
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|