1
|
Khalife M, Jia T, Caron P, Shreim A, Genoux A, Cristini A, Pucciarelli A, Leverve M, Lepeltier N, García-Rodríguez N, Dalonneau F, Ramachandran S, Fernandez Martinez L, Marcion G, Lemaitre N, Brambilla E, Garrido C, Hammond E, Huertas P, Gazzeri S, Sordet O, Eymin B. SRSF2 overexpression induces transcription-/replication-dependent DNA double-strand breaks and interferes with DNA repair pathways to promote lung tumor progression. NAR Cancer 2025; 7:zcaf011. [PMID: 40181846 PMCID: PMC11963763 DOI: 10.1093/narcan/zcaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 02/04/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025] Open
Abstract
SRSF2 (serine/arginine-rich splicing factor 2) is a critical regulator of pre-messenger RNA splicing, which also plays noncanonical functions in transcription initiation and elongation. Although elevated levels of SRSF2 are associated with advanced stages of lung adenocarcinoma (LUAD), the mechanisms connecting SRSF2 to lung tumor progression remain unknown. We show that SRSF2 overexpression increases global transcription and replicative stress in LUAD cells, which correlates with the production of DNA damage, notably double-strand breaks (DSBs), likely resulting from conflicts between transcription and replication. Moreover, SRSF2 regulates DNA repair pathways by promoting homologous recombination and inhibiting nonhomologous end joining. Mechanistically, SRSF2 interacts with and enhances MRE11 (meiotic recombination 11) recruitment to chromatin, while downregulating 53BP1 messenger RNA and protein levels. Both events are likely contributing to SRSF2-mediated DNA repair process rerouting. Lastly, we show that SRSF2 and MRE11 expression is commonly elevated in LUAD and predicts poor outcome of patients. Altogether, our results identify a mechanism by which SRSF2 overexpression promotes lung cancer progression through a fine control of both DSB production and repair. Finally, we show that SRSF2 knockdown impairs late repair of ionizing radiation-induced DSBs, suggesting a more global function of SRSF2 in DSB repair by homologous recombination.
Collapse
Affiliation(s)
- Manal Khalife
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Tao Jia
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Pierre Caron
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Amani Shreim
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Aurelie Genoux
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, Toulouse 31037, France
| | - Amelie Pucciarelli
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Marie Leverve
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Nina Lepeltier
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Néstor García-Rodríguez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla/CSIC, Sevilla 41092, Spain
| | - Fabien Dalonneau
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Shaliny Ramachandran
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Lara Fernandez Martinez
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, Toulouse 31037, France
| | - Guillaume Marcion
- INSERM, UMR1231, Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon F21000, France
| | - Nicolas Lemaitre
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Team Tumor Molecular Pathology and Biomarkers, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Elisabeth Brambilla
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Team Tumor Molecular Pathology and Biomarkers, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Carmen Garrido
- INSERM, UMR1231, Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon F21000, France
| | - Ester M Hammond
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Pablo Huertas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla/CSIC, Sevilla 41092, Spain
| | - Sylvie Gazzeri
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, Toulouse 31037, France
| | - Beatrice Eymin
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| |
Collapse
|
2
|
Jordan MR, Mendoza-Munoz PL, Pawelczak KS, Turchi JJ. Targeting DNA damage sensors for cancer therapy. DNA Repair (Amst) 2025; 149:103841. [PMID: 40339280 DOI: 10.1016/j.dnarep.2025.103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/10/2025]
Abstract
DNA damage occurs from both endogenous and exogenous sources and DNA damaging agents are a mainstay in cancer therapeutics. DNA damage sensors (DDS) are proteins that recognize and bind to unique DNA structures that arise from direct DNA damage or replication stress and are the first step in the DNA damage response (DDR). DNA damage sensors are responsible for recruiting transducer proteins that signal downstream DNA repair pathways. As the initiating proteins, DDS are excellent candidates for anti-cancer drug targeting to limit DDR activation. Here, we review four major DDS: PARP1, RPA, Ku, and the MRN complex. We briefly describe the cellular DDS functions before analyzing the structural mechanisms of DNA damage sensing. Lastly, we examine the current state of the field towards inhibiting each DDS for anti-cancer therapeutics and broadly discuss the therapeutic potential for DDS targeting.
Collapse
Affiliation(s)
- Matthew R Jordan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pamela L Mendoza-Munoz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; NERx BioSciences, Indianapolis, IN, United States.
| |
Collapse
|
3
|
Horak J, Vallusova D, Cumova A, Holy P, Vodicka P, Opattova A. Inhibition of homologous recombination repair by Mirin in ovarian cancer ameliorates carboplatin therapy response in vitro. Mutagenesis 2025; 40:87-95. [PMID: 38099488 DOI: 10.1093/mutage/gead036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/13/2023] [Indexed: 03/18/2025] Open
Abstract
Chemoresistance poses one of the most significant challenges of cancer therapy. Carboplatin (CbPt) is one of the most used chemotherapeutics in ovarian cancer (OVC) treatment. MRE11 constitutes a part of homologous recombination (HR), which is responsible for the repair of CbPt-induced DNA damage, particularly DNA crosslinks. The study's main aim was to address the role of HR in CbPt chemoresistance in OVC and to evaluate the possibility of overcoming CbPt chemoresistance by Mirin-mediated MRE11 inhibition in an OVC cell line. Lower expression of MRE11 was associated with better overall survival in a cohort of OVC patients treated with platinum drugs (TCGA dataset, P < 0.05). Using in vitro analyses, we showed that the high expression of HR genes drives the CbPt chemoresistance in our CbPt-resistant cell line model. Moreover, the HR inhibition by Mirin not only increased sensitivity to carboplatin (P < 0.05) but also rescued the sensitivity in the CbPt-resistant model (P < 0.05). Our results suggest that MRE11 inhibition with Mirin may represent a promising way to overcome OVC resistance. More therapy options will ultimately lead to better personalized cancer therapy and improvement of patients' survival.
Collapse
Affiliation(s)
- Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), 142 20 Prague, Czech Republic
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | | | - Andrea Cumova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), 142 20 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Petr Holy
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), 142 20 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), 142 20 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| |
Collapse
|
4
|
Nikulenkov F, Carbain B, Biswas R, Havel S, Prochazkova J, Sisakova A, Zacpalova M, Chavdarova M, Marini V, Vsiansky V, Weisova V, Slavikova K, Biradar D, Khirsariya P, Vitek M, Sedlak D, Bartunek P, Daniel L, Brezovsky J, Damborsky J, Paruch K, Krejci L. Discovery of new inhibitors of nuclease MRE11. Eur J Med Chem 2025; 285:117226. [PMID: 39793442 DOI: 10.1016/j.ejmech.2024.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
MRE11 nuclease is a central player in signaling and processing DNA damage, and in resolving stalled replication forks. Here, we describe the identification and characterization of new MRE11 inhibitors MU147 and MU1409. Both compounds inhibit MRE11 nuclease more specifically and effectively than the relatively weak state-of-the-art inhibitor mirin. They also abrogate double-strand break repair mechanisms that rely on MRE11 nuclease activity, without impairing ATM activation. Inhibition of MRE11 also impairs nascent strand degradation of stalled replication forks and selectively affects BRCA2-deficient cells. Herein, we illustrate that our newly discovered compounds MU147 and MU1409 can be used as chemical probes to further explore the biological role of MRE11 and support the potential clinical relevance of pharmacological inhibition of this nuclease.
Collapse
Affiliation(s)
- Fedor Nikulenkov
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Benoit Carbain
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Raktim Biswas
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Stepan Havel
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jana Prochazkova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Alexandra Sisakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Magdalena Zacpalova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Melita Chavdarova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Victoria Marini
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Vit Vsiansky
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Veronika Weisova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Kristina Slavikova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Dhanraj Biradar
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Prashant Khirsariya
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Marco Vitek
- Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the ASCR, v.v.i., Prague 4, Czech Republic
| | - Petr Bartunek
- CZ-OPENSCREEN, Institute of Molecular Genetics of the ASCR, v.v.i., Prague 4, Czech Republic
| | - Lukas Daniel
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jan Brezovsky
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Kamil Paruch
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
| | - Lumir Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
| |
Collapse
|
5
|
Igarashi T, Yano K, Endo S, Shiotani B. Tolerance of Oncogene-Induced Replication Stress: A Fuel for Genomic Instability. Cancers (Basel) 2024; 16:3507. [PMID: 39456601 PMCID: PMC11506635 DOI: 10.3390/cancers16203507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Activation of oncogenes disturbs a wide variety of cellular processes and induces physiological dysregulation of DNA replication, widely referred to as replication stress (RS). Oncogene-induced RS can cause replication forks to stall or collapse, thereby leading to DNA damage. While the DNA damage response (DDR) can provoke an anti-tumor barrier to prevent the development of cancer, a small subset of cells triggers replication stress tolerance (RST), allowing precancerous cells to survive, thereby promoting clonal expansion and genomic instability (GIN). Genomic instability (GIN) is a hallmark of cancer, driving genetic alterations ranging from nucleotide changes to aneuploidy. These alterations increase the probability of oncogenic events and create a heterogeneous cell population with an enhanced ability to evolve. This review explores how major oncogenes such as RAS, cyclin E, and MYC induce RS through diverse mechanisms. Additionally, we delve into the strategies employed by normal and cancer cells to tolerate RS and promote GIN. Understanding the intricate relationship between oncogene activation, RS, and GIN is crucial to better understand how cancer cells emerge and to develop potential cancer therapies that target these vulnerabilities.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa 252-0373, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
| | - Syoju Endo
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of NCC Cancer Science, Division of Integrative Molecular Biomedicine, Biomedical Sciences and Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Genome Stress Signaling, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
6
|
Tassone G, Maramai S, Paolino M, Lamponi S, Poggialini F, Dreassi E, Petricci E, Alcaro S, Pozzi C, Romeo I. Exploiting the bile acid binding protein as transporter of a Cholic Acid/Mirin bioconjugate for potential applications in liver cancer therapy. Sci Rep 2024; 14:22514. [PMID: 39341955 PMCID: PMC11439058 DOI: 10.1038/s41598-024-73636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Bioconjugation is one of the most promising strategies to improve drug delivery, especially in cancer therapy. Biomolecules such as bile acids (BAs) have been intensively explored as carriers, due to their peculiar physicochemical properties and biocompatibility. BAs trafficking is regulated by intracellular lipid-binding proteins and their transport in the liver can be studied using chicken liver Bile Acid-Binding Proteins (cL-BABPs) as a reference model. Therefore, we conceived the idea of developing a BA-conjugate with Mirin, an exonuclease inhibitor of Mre11 endowed with different anticancer activities, to direct its transport to the liver. Following computational analysis of various BAs in complex with cL-BABP, we identified cholic acid (CA) as the most promising candidate as carrier, leading to the synthesis of a novel bioconjugate named CA-M11. As predicted by computational data and confirmed by X-ray crystallographic studies, CA-M11 was able to accommodate into the binding pocket of BABP. Hence, it can enter BAs trafficking in the hepatic compartment and here release Mirin. The effect of CA-M11, evaluated in combination with varying concentrations of Doxorubicin on HepG2 cell line, demonstrated a significant increase in cell mortality compared to the use of the cytotoxic drug or Mirin alone, thus highlighting chemo-sensitizing properties. The promising results regarding plasma stability for CA-M11 validate its potential as a valuable agent or adjuvant for hepatic cancer therapy.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Samuele Maramai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Marco Paolino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Federica Poggialini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefano Alcaro
- Department of Health Science, Università "Magna Graecia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100, Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Graecia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Isabella Romeo
- Department of Health Science, Università "Magna Graecia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100, Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Graecia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
7
|
Bedir M, Outwin E, Colnaghi R, Bassett L, Abramowicz I, O'Driscoll M. A novel role for the peptidyl-prolyl cis-trans isomerase Cyclophilin A in DNA-repair following replication fork stalling via the MRE11-RAD50-NBS1 complex. EMBO Rep 2024; 25:3432-3455. [PMID: 38943005 PMCID: PMC11315929 DOI: 10.1038/s44319-024-00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024] Open
Abstract
Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.
Collapse
Affiliation(s)
- Marisa Bedir
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Emily Outwin
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Rita Colnaghi
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Lydia Bassett
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Iga Abramowicz
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK.
| |
Collapse
|
8
|
Petroni M, La Monica V, Fabretti F, Augusto M, Battaglini D, Polonara F, Di Giulio S, Giannini G. The Multiple Faces of the MRN Complex: Roles in Medulloblastoma and Beyond. Cancers (Basel) 2023; 15:3599. [PMID: 37509263 PMCID: PMC10377613 DOI: 10.3390/cancers15143599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Hypomorphic mutations in MRN complex genes are frequently found in cancer, supporting their role as oncosuppressors. However, unlike canonical oncosuppressors, MRN proteins are often overexpressed in tumor tissues, where they actively work to counteract DSBs induced by both oncogene-dependent RS and radio-chemotherapy. Moreover, at the same time, MRN genes are also essential genes, since the constitutive KO of each component leads to embryonic lethality. Therefore, even though it is paradoxical, MRN genes may work as oncosuppressive, oncopromoting, and essential genes. In this review, we discussed how alterations in the MRN complex impact the physiopathology of cancer, in light of our recent discoveries on the gene-dosage-dependent effect of NBS1 in Medulloblastoma. These updates aim to understand whether MRN complex can be realistically used as a prognostic/predictive marker and/or as a therapeutic target for the treatment of cancer patients in the future.
Collapse
Affiliation(s)
- Marialaura Petroni
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Veronica La Monica
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Francesca Fabretti
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Mariaconcetta Augusto
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Damiana Battaglini
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Francesca Polonara
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Stefano Di Giulio
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| |
Collapse
|
9
|
Schuhwerk H, Kleemann J, Gupta P, van Roey R, Armstark I, Kreileder M, Feldker N, Ramesh V, Hajjaj Y, Fuchs K, Mahapatro M, Hribersek M, Volante M, Groenewoud A, Engel FB, Ceppi P, Eckstein M, Hartmann A, Müller F, Kroll T, Stemmler MP, Brabletz S, Brabletz T. The EMT transcription factor ZEB1 governs a fitness-promoting but vulnerable DNA replication stress response. Cell Rep 2022; 41:111819. [PMID: 36516781 DOI: 10.1016/j.celrep.2022.111819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The DNA damage response (DDR) and epithelial-to-mesenchymal transition (EMT) are two crucial cellular programs in cancer biology. While the DDR orchestrates cell-cycle progression, DNA repair, and cell death, EMT promotes invasiveness, cellular plasticity, and intratumor heterogeneity. Therapeutic targeting of EMT transcription factors, such as ZEB1, remains challenging, but tumor-promoting DDR alterations elicit specific vulnerabilities. Using multi-omics, inhibitors, and high-content microscopy, we discover a chemoresistant ZEB1-high-expressing sub-population (ZEB1hi) with co-rewired cell-cycle progression and proficient DDR across tumor entities. ZEB1 stimulates accelerated S-phase entry via CDK6, inflicting endogenous DNA replication stress. However, DDR buildups involving constitutive MRE11-dependent fork resection allow homeostatic cycling and enrichment of ZEB1hi cells during transforming growth factor β (TGF-β)-induced EMT and chemotherapy. Thus, ZEB1 promotes G1/S transition to launch a progressive DDR benefitting stress tolerance, which concurrently manifests a targetable vulnerability in chemoresistant ZEB1hi cells. Our study thus highlights the translationally relevant intercept of the DDR and EMT.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Julia Kleemann
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Pooja Gupta
- Core Unit for Bioinformatics, Data Integration and Analysis, Center for Medical Information and Communication Technology, University Hospital Erlangen, Erlangen Germany
| | - Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martina Kreileder
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nora Feldker
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Vignesh Ramesh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Yussuf Hajjaj
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Fuchs
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mojca Hribersek
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marco Volante
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - Arwin Groenewoud
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Paolo Ceppi
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen- Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen- Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Müller
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital Erlangen, Erlangen Germany
| | - Torsten Kroll
- Leibniz Institute on Aging - Fritz-Lipmann Institute (FLI), Jena, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
10
|
McCarthy-Leo C, Darwiche F, Tainsky MA. DNA Repair Mechanisms, Protein Interactions and Therapeutic Targeting of the MRN Complex. Cancers (Basel) 2022; 14:5278. [PMID: 36358700 PMCID: PMC9656488 DOI: 10.3390/cancers14215278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Repair of a DNA double-strand break relies upon a pathway of proteins to identify damage, regulate cell cycle checkpoints, and repair the damage. This process is initiated by a sensor protein complex, the MRN complex, comprised of three proteins-MRE11, RAD50, and NBS1. After a double-stranded break, the MRN complex recruits and activates ATM, in-turn activating other proteins such as BRCA1/2, ATR, CHEK1/2, PALB2 and RAD51. These proteins have been the focus of many studies for their individual roles in hereditary cancer syndromes and are included on several genetic testing panels. These panels have enabled us to acquire large amounts of genetic data, much of which remains a challenge to interpret due to the presence of variants of uncertain significance (VUS). While the primary aim of clinical testing is to accurately and confidently classify variants in order to inform medical management, the presence of VUSs has led to ambiguity in genetic counseling. Pathogenic variants within MRN complex genes have been implicated in breast, ovarian, prostate, colon cancers and gliomas; however, the hundreds of VUSs within MRE11, RAD50, and NBS1 precludes the application of these data in genetic guidance of carriers. In this review, we discuss the MRN complex's role in DNA double-strand break repair, its interactions with other cancer predisposing genes, the variants that can be found within the three MRN complex genes, and the MRN complex's potential as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Claire McCarthy-Leo
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fatima Darwiche
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael A. Tainsky
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute at Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Nunes C, Depestel L, Mus L, Keller KM, Delhaye L, Louwagie A, Rishfi M, Whale A, Kara N, Andrews SR, Dela Cruz F, You D, Siddiquee A, Cologna CT, De Craemer S, Dolman E, Bartenhagen C, De Vloed F, Sanders E, Eggermont A, Bekaert SL, Van Loocke W, Bek JW, Dewyn G, Loontiens S, Van Isterdael G, Decaesteker B, Tilleman L, Van Nieuwerburgh F, Vermeirssen V, Van Neste C, Ghesquiere B, Goossens S, Eyckerman S, De Preter K, Fischer M, Houseley J, Molenaar J, De Wilde B, Roberts SS, Durinck K, Speleman F. RRM2 enhances MYCN-driven neuroblastoma formation and acts as a synergistic target with CHK1 inhibition. SCIENCE ADVANCES 2022; 8:eabn1382. [PMID: 35857500 PMCID: PMC9278860 DOI: 10.1126/sciadv.abn1382] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/26/2022] [Indexed: 05/06/2023]
Abstract
High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN. Forced RRM2 induction alleviates excessive replicative stress induced by CHK1 inhibition, while high RRM2 expression in human neuroblastomas correlates with high CHK1 activity. MYCN-driven zebrafish tumors with RRM2 co-overexpression exhibit differentially expressed DNA repair genes in keeping with enhanced ATR-CHK1 signaling activity. In vitro, RRM2 inhibition enhances intrinsic replication stress checkpoint addiction. Last, combinatorial RRM2-CHK1 inhibition acts synergistic in high-risk neuroblastoma cell lines and patient-derived xenograft models, illustrating the therapeutic potential.
Collapse
Affiliation(s)
- Carolina Nunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lisa Depestel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Liselot Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Louis Delhaye
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Amber Louwagie
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Muhammad Rishfi
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Alex Whale
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Neesha Kara
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Armaan Siddiquee
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Camila Takeno Cologna
- Metabolomics Expertise Center, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sam De Craemer
- Metabolomics Expertise Center, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Emmy Dolman
- Princess Maxima Center, Utrecht, Netherlands
| | - Christoph Bartenhagen
- Center for Molecular Medicine Cologne, Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Cologne, Germany
| | - Fanny De Vloed
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ellen Sanders
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Aline Eggermont
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Givani Dewyn
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Siebe Loontiens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Bieke Decaesteker
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Laurentijn Tilleman
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Van Neste
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bart Ghesquiere
- Metabolomics Expertise Center, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Matthias Fischer
- Center for Molecular Medicine Cologne, Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Cologne, Germany
| | - Jon Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Stephen S. Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaat Durinck
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
12
|
Berger ND, Brownlee PM, Chen MJ, Morrison H, Osz K, Ploquin NP, Chan JA, Goodarzi AA. High replication stress and limited Rad51-mediated DNA repair capacity, but not oxidative stress, underlie oligodendrocyte precursor cell radiosensitivity. NAR Cancer 2022; 4:zcac012. [PMID: 35425901 PMCID: PMC9004414 DOI: 10.1093/narcan/zcac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cranial irradiation is part of the standard of care for treating pediatric brain tumors. However, ionizing radiation can trigger serious long-term neurologic sequelae, including oligodendrocyte and brain white matter loss enabling neurocognitive decline in children surviving brain cancer. Oxidative stress-mediated oligodendrocyte precursor cell (OPC) radiosensitivity has been proposed as a possible explanation for this. Here, however, we demonstrate that antioxidants fail to improve OPC viability after irradiation, despite suppressing oxidative stress, suggesting an alternative etiology for OPC radiosensitivity. Using systematic approaches, we find that OPCs have higher irradiation-induced and endogenous γH2AX foci compared to neural stem cells, neurons, astrocytes and mature oligodendrocytes, and these correlate with replication-associated DNA double strand breakage. Furthermore, OPCs are reliant upon ATR kinase and Mre11 nuclease-dependent processes for viability, are more sensitive to drugs increasing replication fork collapse, and display synthetic lethality with PARP inhibitors after irradiation. This suggests an insufficiency for homology-mediated DNA repair in OPCs-a model that is supported by evidence of normal RPA but reduced RAD51 filament formation at resected lesions in irradiated OPCs. We therefore propose a DNA repair-centric mechanism of OPC radiosensitivity, involving chronically-elevated replication stress combined with 'bottlenecks' in RAD51-dependent DNA repair that together reduce radiation resilience.
Collapse
Affiliation(s)
- N Daniel Berger
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Peter M Brownlee
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Myra J Chen
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hali Morrison
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Katalin Osz
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicolas P Ploquin
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Chan
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aaron A Goodarzi
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Schnöller LE, Albrecht V, Brix N, Nieto AE, Fleischmann DF, Niyazi M, Hess J, Belka C, Unger K, Lauber K, Orth M. Integrative analysis of therapy resistance and transcriptomic profiling data in glioblastoma cells identifies sensitization vulnerabilities for combined modality radiochemotherapy. Radiat Oncol 2022; 17:79. [PMID: 35440003 PMCID: PMC9020080 DOI: 10.1186/s13014-022-02052-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Background Inherent resistance to radio/chemotherapy is one of the major reasons for early recurrence, treatment failure, and dismal prognosis of glioblastoma. Thus, the identification of resistance driving regulators as prognostic and/or predictive markers as well as potential vulnerabilities for combined modality treatment approaches is of pivotal importance. Methods We performed an integrative analysis of treatment resistance and DNA damage response regulator expression in a panel of human glioblastoma cell lines. mRNA expression levels of 38 DNA damage response regulators were analyzed by qRT-PCR. Inherent resistance to radiotherapy (single-shot and fractionated mode) and/or temozolomide treatment was assessed by clonogenic survival assays. Resistance scores were extracted by dimensionality reduction and subjected to correlation analyses with the mRNA expression data. Top-hit candidates with positive correlation coefficients were validated by pharmacological inhibition in clonogenic survival assays and DNA repair analyses via residual γH2AX/53BP1-foci staining. Results Inherent resistance to single-shot and similarly also to fractionated radiotherapy showed strong positive correlations with mRNA expression levels of known vulnerabilities of GBM, including PARP1, NBN, and BLM, as well as ATR and LIG4—two so far underestimated targets. Inhibition of ATR by AZD-6738 resulted in robust and dose-dependent radiosensitization of glioblastoma cells, whereas LIG4 inhibition by L189 had no noticeable impact. Resistance against temozolomide showed strong positive correlation with mRNA expression levels of MGMT as to be expected. Interestingly, it also correlated with mRNA expression levels of ATM, suggesting a potential role of ATM in the context of temozolomide resistance in glioblastoma cells. ATM inhibition exhibited slight sensitization effects towards temozolomide treatment in MGMT low expressing glioblastoma cells, thus encouraging further characterization. Conclusions Here, we describe a systematic approach integrating clonogenic survival data with mRNA expression data of DNA damage response regulators in human glioblastoma cell lines to identify markers of inherent therapy resistance and potential vulnerabilities for targeted sensitization. Our results provide proof-of-concept for the feasibility of this approach, including its limitations. We consider this strategy to be adaptable to other cancer entities as well as other molecular data qualities, and its upscaling potential in terms of model systems and observational data levels deserves further investigation.
Collapse
Affiliation(s)
- Leon Emanuel Schnöller
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Valerie Albrecht
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Nikko Brix
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Alexander Edward Nieto
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Daniel Felix Fleischmann
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
14
|
Kelm JM, Samarbakhsh A, Pillai A, VanderVere-Carozza PS, Aruri H, Pandey DS, Pawelczak KS, Turchi JJ, Gavande NS. Recent Advances in the Development of Non-PIKKs Targeting Small Molecule Inhibitors of DNA Double-Strand Break Repair. Front Oncol 2022; 12:850883. [PMID: 35463312 PMCID: PMC9020266 DOI: 10.3389/fonc.2022.850883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
The vast majority of cancer patients receive DNA-damaging drugs or ionizing radiation (IR) during their course of treatment, yet the efficacy of these therapies is tempered by DNA repair and DNA damage response (DDR) pathways. Aberrations in DNA repair and the DDR are observed in many cancer subtypes and can promote de novo carcinogenesis, genomic instability, and ensuing resistance to current cancer therapy. Additionally, stalled or collapsed DNA replication forks present a unique challenge to the double-strand DNA break (DSB) repair system. Of the various inducible DNA lesions, DSBs are the most lethal and thus desirable in the setting of cancer treatment. In mammalian cells, DSBs are typically repaired by the error prone non-homologous end joining pathway (NHEJ) or the high-fidelity homology directed repair (HDR) pathway. Targeting DSB repair pathways using small molecular inhibitors offers a promising mechanism to synergize DNA-damaging drugs and IR while selective inhibition of the NHEJ pathway can induce synthetic lethality in HDR-deficient cancer subtypes. Selective inhibitors of the NHEJ pathway and alternative DSB-repair pathways may also see future use in precision genome editing to direct repair of resulting DSBs created by the HDR pathway. In this review, we highlight the recent advances in the development of inhibitors of the non-phosphatidylinositol 3-kinase-related kinases (non-PIKKs) members of the NHEJ, HDR and minor backup SSA and alt-NHEJ DSB-repair pathways. The inhibitors described within this review target the non-PIKKs mediators of DSB repair including Ku70/80, Artemis, DNA Ligase IV, XRCC4, MRN complex, RPA, RAD51, RAD52, ERCC1-XPF, helicases, and DNA polymerase θ. While the DDR PIKKs remain intensely pursued as therapeutic targets, small molecule inhibition of non-PIKKs represents an emerging opportunity in drug discovery that offers considerable potential to impact cancer treatment.
Collapse
Affiliation(s)
- Jeremy M. Kelm
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Athira Pillai
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | | | - Hariprasad Aruri
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Deepti S. Pandey
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | | | - John J. Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,NERx Biosciences, Indianapolis, IN, United States,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Navnath S. Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States,*Correspondence: Navnath S. Gavande, ; orcid.org/0000-0002-2413-0235
| |
Collapse
|
15
|
Aguilar-Morante D, Gómez-Cabello D, Quek H, Liu T, Hamerlik P, Lim YC. Therapeutic Opportunities of Disrupting Genome Integrity in Adult Diffuse Glioma. Biomedicines 2022; 10:biomedicines10020332. [PMID: 35203541 PMCID: PMC8869545 DOI: 10.3390/biomedicines10020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
Adult diffuse glioma, particularly glioblastoma (GBM), is a devastating tumor of the central nervous system. The existential threat of this disease requires on-going treatment to counteract tumor progression. The present outcome is discouraging as most patients will succumb to this disease. The low cure rate is consistent with the failure of first-line therapy, radiation and temozolomide (TMZ). Even with their therapeutic mechanism of action to incur lethal DNA lesions, tumor growth remains undeterred. Delivering additional treatments only delays the inescapable development of therapeutic tolerance and disease recurrence. The urgency of establishing lifelong tumor control needs to be re-examined with a greater focus on eliminating resistance. Early genomic and transcriptome studies suggest each tumor subtype possesses a unique molecular network to safeguard genome integrity. Subsequent seminal work on post-therapy tumor progression sheds light on the involvement of DNA repair as the causative contributor for hypermutation and therapeutic failure. In this review, we will provide an overview of known molecular factors that influence the engagement of different DNA repair pathways, including targetable vulnerabilities, which can be exploited for clinical benefit with the use of specific inhibitors.
Collapse
Affiliation(s)
- Diana Aguilar-Morante
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (D.A.-M.); (D.G.-C.)
| | - Daniel Gómez-Cabello
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (D.A.-M.); (D.G.-C.)
| | - Hazel Quek
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Tianqing Liu
- NICM Health Research Institute, Westmead, NSW 2145, Australia;
| | | | - Yi Chieh Lim
- Danish Cancer Society, 2100 København, Denmark;
- Correspondence: ; Tel.: +45-35-257-413
| |
Collapse
|
16
|
Hama T, Nagesh PK, Chowdhury P, Moore BM, Yallapu MM, Regner KR, Park F. DNA damage is overcome by TRIP13 overexpression during cisplatin nephrotoxicity. JCI Insight 2021; 6:139092. [PMID: 34806647 PMCID: PMC8663775 DOI: 10.1172/jci.insight.139092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent to treat a wide array of cancers that is frequently associated with toxic injury to the kidney due to oxidative DNA damage and perturbations in cell cycle progression leading to cell death. In this study, we investigated whether thyroid receptor interacting protein 13 (TRIP13) plays a central role in the protection of the tubular epithelia following cisplatin treatment by circumventing DNA damage. Following cisplatin treatment, double-stranded DNA repair pathways were inhibited using selective blockers to proteins involved in either homologous recombination or non-homologous end joining. This led to increased blood markers of acute kidney injury (AKI) (creatinine and neutrophil gelatinase–associated lipocalin), tubular damage, activation of DNA damage marker (γ-H2AX), elevated appearance of G2/M blockade (phosphorylated histone H3 Ser10 and cyclin B1), and apoptosis (cleaved caspase-3). Conditional proximal tubule–expressing Trip13 mice were observed to be virtually protected from the cisplatin nephrotoxicity by restoring most of the pathological phenotypes back toward normal conditions. Our findings suggest that TRIP13 could circumvent DNA damage in the proximal tubules during cisplatin injury and that TRIP13 may constitute a new therapeutic target in protecting the kidney from nephrotoxicants and reduce outcomes leading to AKI.
Collapse
Affiliation(s)
- Taketsugu Hama
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Prashanth Kb Nagesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Bob M Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
17
|
Wang Z, Chen J, Gao C, Xiao Q, Wang X, Tang S, Li Q, Zhong B, Song Z, Shu H, Li L, Wu M. Epigenetic Dysregulation Induces Translocation of Histone H3 into Cytoplasm. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100779. [PMID: 34363353 PMCID: PMC8498869 DOI: 10.1002/advs.202100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/10/2021] [Indexed: 06/13/2023]
Abstract
In eukaryote cells, core components of chromatin, such as histones and DNA, are packaged in nucleus. Leakage of nuclear materials into cytosol will induce pathological effects. However, the underlying mechanisms remain elusive. Here, cytoplasmic localization of nuclear materials induced by chromatin dysregulation (CLIC) in mammalian cells is reported. H3K9me3 inhibition by small chemicals, HP1α knockdown, or knockout of H3K9 methylase SETDB1, induces formation of cytoplasmic puncta containing histones H3.1, H4 and cytosolic DNA, which in turn activates inflammatory genes and autophagic degradation. Autophagy deficiency rescues H3 degradation, and enhances the activation of inflammatory genes. MRE11, a subunit of MRN complex, enters cytoplasm after heterochromatin dysregulation. Deficiency of MRE11 or NBS1, but not RAD50, inhibits CLIC puncta in cytosol. MRE11 depletion represses tumor growth enhanced by HP1α deficiency, suggesting a connection between CLIC and tumorigenesis. This study reveals a novel pathway that heterochromatin dysregulation induces translocation of nuclear materials into cytoplasm, which is important for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Ji Chen
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Chuan Gao
- College of Life SciencesWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Qiong Xiao
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Xi‐Wei Wang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Shan‐Bo Tang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Qing‐Lan Li
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Bo Zhong
- College of Life SciencesWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Zhi‐Yin Song
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Hong‐Bing Shu
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Lian‐Yun Li
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Min Wu
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| |
Collapse
|
18
|
Di Giulio S, Colicchia V, Pastorino F, Pedretti F, Fabretti F, Nicolis di Robilant V, Ramponi V, Scafetta G, Moretti M, Licursi V, Belardinilli F, Peruzzi G, Infante P, Goffredo BM, Coppa A, Canettieri G, Bartolazzi A, Ponzoni M, Giannini G, Petroni M. A combination of PARP and CHK1 inhibitors efficiently antagonizes MYCN-driven tumors. Oncogene 2021; 40:6143-6152. [PMID: 34508175 PMCID: PMC8553625 DOI: 10.1038/s41388-021-02003-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022]
Abstract
MYCN drives aggressive behavior and refractoriness to chemotherapy, in several tumors. Since MYCN inactivation in clinical settings is not achievable, alternative vulnerabilities of MYCN-driven tumors need to be explored to identify more effective and less toxic therapies. We previously demonstrated that PARP inhibitors enhance MYCN-induced replication stress and promote mitotic catastrophe, counteracted by CHK1. Here, we showed that PARP and CHK1 inhibitors synergized to induce death in neuroblastoma cells and in primary cultures of SHH-dependent medulloblastoma, their combination being more effective in MYCN amplified and MYCN overexpressing cells compared to MYCN non-amplified cells. Although the MYCN amplified IMR-32 cell line carrying the p.Val2716Ala ATM mutation showed the highest sensitivity to the drug combination, this was not related to ATM status, as indicated by CRISPR/Cas9-based correction of the mutation. Suboptimal doses of the CHK1 inhibitor MK-8776 plus the PARP inhibitor olaparib led to a MYCN-dependent accumulation of DNA damage and cell death in vitro and significantly reduced the growth of four in vivo models of MYCN-driven tumors, without major toxicities. Our data highlight the combination of PARP and CHK1 inhibitors as a new potential chemo-free strategy to treat MYCN-driven tumors, which might be promptly translated into clinical trials.
Collapse
Affiliation(s)
- Stefano Di Giulio
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy
| | - Valeria Colicchia
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy.,Department of Biology, University Tor Vergata, 00173, Rome, Italy
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Flaminia Pedretti
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy.,Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Francesca Fabretti
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy
| | | | - Valentina Ramponi
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy.,Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Giorgia Scafetta
- Pathology Research Laboratory, Sant'Andrea University Hospital, 00189, Rome, Italy
| | - Marta Moretti
- Department of Experimental Medicine, University La Sapienza, 00161, Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnologies "Charles Darwin", University La Sapienza, 00185, Rome, Italy
| | | | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Paola Infante
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | | | - Anna Coppa
- Department of Experimental Medicine, University La Sapienza, 00161, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, 00161, Rome, Italy
| | - Armando Bartolazzi
- Pathology Research Laboratory, Sant'Andrea University Hospital, 00189, Rome, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy. .,Istituto Pasteur-Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| | - Marialaura Petroni
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy
| |
Collapse
|
19
|
Lu R, Zhang H, Jiang YN, Wang ZQ, Sun L, Zhou ZW. Post-Translational Modification of MRE11: Its Implication in DDR and Diseases. Genes (Basel) 2021; 12:1158. [PMID: 34440334 PMCID: PMC8392716 DOI: 10.3390/genes12081158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/15/2022] Open
Abstract
Maintaining genomic stability is vital for cells as well as individual organisms. The meiotic recombination-related gene MRE11 (meiotic recombination 11) is essential for preserving genomic stability through its important roles in the resection of broken DNA ends, DNA damage response (DDR), DNA double-strand breaks (DSBs) repair, and telomere maintenance. The post-translational modifications (PTMs), such as phosphorylation, ubiquitination, and methylation, regulate directly the function of MRE11 and endow MRE11 with capabilities to respond to cellular processes in promptly, precisely, and with more diversified manners. Here in this paper, we focus primarily on the PTMs of MRE11 and their roles in DNA response and repair, maintenance of genomic stability, as well as their association with diseases such as cancer.
Collapse
Affiliation(s)
- Ruiqing Lu
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; (R.L.); (Y.-N.J.)
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming 650118, China;
| | - Yi-Nan Jiang
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; (R.L.); (Y.-N.J.)
| | - Zhao-Qi Wang
- Leibniz Institute on Aging–Fritz Lipmann Institute (FLI), 07745 Jena, Germany;
- Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, 07745 Jena, Germany
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhong-Wei Zhou
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; (R.L.); (Y.-N.J.)
| |
Collapse
|
20
|
Ray U, Raghavan SC. Understanding the DNA double-strand break repair and its therapeutic implications. DNA Repair (Amst) 2021; 106:103177. [PMID: 34325086 DOI: 10.1016/j.dnarep.2021.103177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) and its regulation are tightly integrated inside cells. Homologous recombination, nonhomologous end joining and microhomology mediated end joining are three major DSB repair pathways in mammalian cells. Targeting proteins associated with these repair pathways using small molecule inhibitors can prove effective in tumors, especially those with deregulated repair. Sensitization of cancer to current age therapy including radio and chemotherapy, using small molecule inhibitors is promising and warrant further development. Although several are under clinical trial, till date no repair inhibitor is approved for commercial use in cancer patients, with the exception of PARP inhibitors targeting single-strand break repair. Based on molecular profiling of repair proteins, better prognostic and therapeutic output can be achieved in patients. In the present review, we highlight the different mechanisms of DSB repair, chromatin dynamics to provide repair accessibility and modulation of inhibitors in association with molecular profiling and current gold standard treatment modalities for cancer.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
21
|
Bui TM, Butin-Israeli V, Wiesolek HL, Zhou M, Rehring JF, Wiesmüller L, Wu JD, Yang GY, Hanauer SB, Sebag JA, Sumagin R. Neutrophils Alter DNA Repair Landscape to Impact Survival and Shape Distinct Therapeutic Phenotypes of Colorectal Cancer. Gastroenterology 2021; 161:225-238.e15. [PMID: 33753103 DOI: 10.1053/j.gastro.2021.03.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Tumor-infiltrating neutrophils (polymorphonuclear neutrophils [PMNs]) are a prominent feature of colorectal cancer (CRC), where they can promote cytotoxicity or exacerbate disease outcomes. We recently showed that in acute colon injury, PMNs can increase DNA double-strand break (DSB) burden and promote genomic instability via microRNA-dependent inhibition of homologous recombination (HR) repair. In this study, we aimed to establish whether in inflamed colon, neutrophils shape the DSB-repair responses to impact CRC progression and sensitivity/resistance to DNA-repair targeted therapy. METHODS Human sporadic CRC biopsies, The Cancer Genome Atlas gene expression analyses, tumor xenografts, and murine CRC models, as well as small-molecule inhibition of key DSB-repair factors were leveraged to investigate changes in the DSB-repair landscape and identify unique CRC responses with/without tumor infiltration by PMNs. RESULTS We reveal that neutrophils exert a functional dualism in cancer cells, driving temporal modulation of the DNA damage landscape and resolution of DSBs. PMNs were found to promote HR deficiency in low-grade CRC by miR-155-dependent downregulation of RAD51, thus attenuating tumor growth. However, neutrophil-mediated genotoxicity due to accumulation of DSBs led to the induction of non-homologous end-joining (NHEJ), allowing for survival and growth of advanced CRC. Our findings identified a PMN-induced HR-deficient CRC phenotype, featuring low RAD51 and low Ku70 levels, rendering it susceptible to synthetic lethality induced by clinically approved PARP1 inhibitor Olaparib. We further identified a distinct PMN-induced HR-deficient CRC phenotype, featuring high Ku70 and heightened NHEJ, which can be therapeutically targeted by specific inhibition of NHEJ. CONCLUSIONS Our work delineates 2 mechanism-based translatable therapeutic interventions in sporadic CRC.
Collapse
Affiliation(s)
- Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Veronika Butin-Israeli
- Department of Urology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hannah L Wiesolek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Meredith Zhou
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jake F Rehring
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Germany
| | - Jennifer D Wu
- Department of Urology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stephen B Hanauer
- Department of Medicine, Gastroenterology and Hepatology Northwestern Memorial Hospital, Chicago, Illinois
| | - Julien A Sebag
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
22
|
Tomasini PP, Guecheva TN, Leguisamo NM, Péricart S, Brunac AC, Hoffmann JS, Saffi J. Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer. Cancers (Basel) 2021; 13:3130. [PMID: 34201502 PMCID: PMC8268241 DOI: 10.3390/cancers13133130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the ample improvements of CRC molecular landscape, the therapeutic options still rely on conventional chemotherapy-based regimens for early disease, and few targeted agents are recommended for clinical use in the metastatic setting. Moreover, the impact of cytotoxic, targeted agents, and immunotherapy combinations in the metastatic scenario is not fully satisfactory, especially the outcomes for patients who develop resistance to these treatments need to be improved. Here, we examine the opportunity to consider therapeutic agents targeting DNA repair and DNA replication stress response as strategies to exploit genetic or functional defects in the DNA damage response (DDR) pathways through synthetic lethal mechanisms, still not explored in CRC. These include the multiple actors involved in the repair of DNA double-strand breaks (DSBs) through homologous recombination (HR), classical non-homologous end joining (NHEJ), and microhomology-mediated end-joining (MMEJ), inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP), as well as inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM). We also review the biomarkers that guide the use of these agents, and current clinical trials with targeted DDR therapies.
Collapse
Affiliation(s)
- Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| | - Temenouga Nikolova Guecheva
- Cardiology Institute of Rio Grande do Sul, University Foundation of Cardiology (IC-FUC), Porto Alegre 90620-000, Brazil;
| | - Natalia Motta Leguisamo
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
| | - Sarah Péricart
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Anne-Cécile Brunac
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jean Sébastien Hoffmann
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| |
Collapse
|
23
|
MRE11 as a molecular signature and therapeutic target for cancer treatment with radiotherapy. Cancer Lett 2021; 514:1-11. [PMID: 34022282 DOI: 10.1016/j.canlet.2021.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023]
Abstract
MRE11, the core of the MRE11/RAD50/NBS1 complex, is one of key DNA damage response proteins. Increasing evidence suggests that its expression in cancer cells is critical to developing radioresistance; as such, MRE11 is an emerging marker for targeted radiosensitization strategies. Elevated MRE11 in tumor tissues has been associated with poor survival in patients undergoing radiotherapy, although in some cancer types, the opposite has been noted. The recent discovery of ionizing radiation-induced truncation of MRE11, which decreases its efficacy, may explain some of these paradoxical findings. The progress of research on the biological modulation of MRE11 expression is also discussed, with the potential application of small molecule or large molecule inhibitors of MRE11 for enhancing radiosensitivity. Current research has further highlighted both nuclease and non-nuclease activities of MRE11 in cancer cells treated with ionizing radiation, and differentiation between these is essential to verify the targeting effects of radiosensitizing agents. These updates clarify our understanding of how MRE11 expression may be utilized in future stratification of cancer patients for radiotherapy, and how it may be leveraged in shaping novel radiosensitization strategies.
Collapse
|
24
|
Ando K, Nakagawara A. Acceleration or Brakes: Which Is Rational for Cell Cycle-Targeting Neuroblastoma Therapy? Biomolecules 2021; 11:biom11050750. [PMID: 34069817 PMCID: PMC8157238 DOI: 10.3390/biom11050750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 11/27/2022] Open
Abstract
Unrestrained proliferation is a common feature of malignant neoplasms. Targeting the cell cycle is a therapeutic strategy to prevent unlimited cell division. Recently developed rationales for these selective inhibitors can be subdivided into two categories with antithetical functionality. One applies a “brake” to the cell cycle to halt cell proliferation, such as with inhibitors of cell cycle kinases. The other “accelerates” the cell cycle to initiate replication/mitotic catastrophe, such as with inhibitors of cell cycle checkpoint kinases. The fate of cell cycle progression or arrest is tightly regulated by the presence of tolerable or excessive DNA damage, respectively. This suggests that there is compatibility between inhibitors of DNA repair kinases, such as PARP inhibitors, and inhibitors of cell cycle checkpoint kinases. In the present review, we explore alterations to the cell cycle that are concomitant with altered DNA damage repair machinery in unfavorable neuroblastomas, with respect to their unique genomic and molecular features. We highlight the vulnerabilities of these alterations that are attributable to the features of each. Based on the assessment, we offer possible therapeutic approaches for personalized medicine, which are seemingly antithetical, but both are promising strategies for targeting the altered cell cycle in unfavorable neuroblastomas.
Collapse
Affiliation(s)
- Kiyohiro Ando
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama 362-0806, Japan
- Correspondence: (K.A.); (A.N.); Tel.: +81-48-722-1111 (K.A.); +81-942-50-8829 (A.N.)
| | - Akira Nakagawara
- Saga International Carbon Particle Beam Radiation Cancer Therapy Center, Saga HIMAT Foundation, 3049 Harakoga-Machi, Saga 841-0071, Japan
- Correspondence: (K.A.); (A.N.); Tel.: +81-48-722-1111 (K.A.); +81-942-50-8829 (A.N.)
| |
Collapse
|
25
|
Targeting DNA Repair and Chromatin Crosstalk in Cancer Therapy. Cancers (Basel) 2021; 13:cancers13030381. [PMID: 33498525 PMCID: PMC7864178 DOI: 10.3390/cancers13030381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Targeting aberrant DNA repair in cancers in addition to transcription and replication is an area of interest for cancer researchers. Inhibition of DNA repair selectively in cancer cells leads to cytotoxic or cytostatic effects and overcomes survival advantages imparted by chromosomal translocations or mutations. In this review, we highlight the relevance of DNA repair-linked events in developmental diseases and cancers and also discuss mechanisms to overcome these events that participate in different cellular processes. Abstract Aberrant DNA repair pathways that underlie developmental diseases and cancers are potential targets for therapeutic intervention. Targeting DNA repair signal effectors, modulators and checkpoint proteins, and utilizing the synthetic lethality phenomena has led to seminal discoveries. Efforts to efficiently translate the basic findings to the clinic are currently underway. Chromatin modulation is an integral part of DNA repair cascades and an emerging field of investigation. Here, we discuss some of the key advancements made in DNA repair-based therapeutics and what is known regarding crosstalk between chromatin and repair pathways during various cellular processes, with an emphasis on cancer.
Collapse
|
26
|
Beyond Kinases: Targeting Replication Stress Proteins in Cancer Therapy. Trends Cancer 2020; 7:430-446. [PMID: 33203609 DOI: 10.1016/j.trecan.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
DNA replication stress describes a state of impaired replication fork progress that triggers a cellular stress response to maintain genome stability and complete DNA synthesis. Replication stress is a common state that must be tolerated in many cancers. One promising therapeutic approach is targeting replication stress response factors such as the ataxia telangiectasia and rad 3-related kinase (ATR) or checkpoint kinase 1 (CHK1) kinases that some cancers depend upon to survive endogenous replication stress. However, research revealing the complexity of the replication stress response suggests new genetic interactions and candidate therapeutic targets. Many of these candidates regulate DNA transactions around reversed replication forks, including helicases, nucleases and alternative polymerases that promote fork stability and restart. Here we review emerging strategies to exploit replication stress for cancer therapy.
Collapse
|
27
|
Wang G, Guo S, Zhang W, Li Z, Xu J, Li D, Wang Y, Zhan Q. A Comprehensive Analysis of Alterations in DNA Damage Repair Pathways Reveals a Potential Way to Enhance the Radio-Sensitivity of Esophageal Squamous Cell Cancer. Front Oncol 2020; 10:575711. [PMID: 33178606 PMCID: PMC7596747 DOI: 10.3389/fonc.2020.575711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell cancer (ESCC) is a common malignancy with a poor 5-year overall survival in China. Altered DNA damage repair (DDR) pathways are associated with a predisposition to cancer and contribute to therapeutic response and resistance in cancers. However, alterations of DDR pathway genes in ESCC are still largely unknown. In this study, we employed genome sequencing data of 192 samples, comparative genomic hybridization data of 123 cases, and gene expression microarray data of 119 patients to firstly perform a comprehensive analysis of the gene alterations of 7 DDR pathways in ESCC. Gene mutations and copy number variations (CNVs) were observed in all 7 DDR pathways, and especially, CNVs were the dominant alteration types. Compared with other pathways, two DNA double-strand break (DSB) repair pathways homologous recombination (HR) and non-homologous end joining (NHEJ), carried significant gene mutations and CNVs especially gene amplifications. Most genes including RAD54B, NBS1, RAD51B, and PRKDC were significantly amplified and over-expressed in ESCC. Amplification and high expression of DSB repair pathway genes were associated with poorer overall survival. Gene set variation analysis further showed that DSB repair pathways were up-regulated in ESCC. Besides, we firstly demonstrated that combination of mirin and NU7441, two inhibitors for HR and NHEJ respectively, with ionizing radiation treatment significantly enhanced DSBs, reduced clonogenic cell survival, inhibited cell proliferation, and promoted cell apoptosis in ESCC cells with DSB pathway gene amplification. These findings suggest that DSB repair pathways were significantly altered in ESCC and inhibiting DSB repair pathways might enhance the radio-sensitivity of ESCC with DSB repair up-regulation.
Collapse
Affiliation(s)
- Guangchao Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shichao Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhangfu Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiancheng Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
28
|
Gabellier L, Bret C, Bossis G, Cartron G, Moreaux J. DNA Repair Expression Profiling to Identify High-Risk Cytogenetically Normal Acute Myeloid Leukemia and Define New Therapeutic Targets. Cancers (Basel) 2020; 12:cancers12102874. [PMID: 33036275 PMCID: PMC7599826 DOI: 10.3390/cancers12102874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
Cytogenetically normal acute myeloid leukemias (CN-AML) represent about 50% of total adult AML. Despite the well-known prognosis role of gene mutations such as NPM1 mutations of FLT3 internal tandem duplication (FLT3-ITD), clinical outcomes remain heterogeneous in this subset of AML. Given the role of genomic instability in leukemogenesis, expression analysis of DNA repair genes might be relevant to sharpen prognosis evaluation in CN-AML. A publicly available gene expression profile dataset from two independent cohorts of patients with CN-AML were analyzed (GSE12417). We investigated the prognostic value of 175 genes involved in DNA repair. Among these genes, 23 were associated with a prognostic value. The prognostic information provided by these genes was summed in a DNA repair score, allowing to define a group of patients (n = 87; 53.7%) with poor median overall survival (OS) of 233 days (95% CI: 184-260). These results were confirmed in two validation cohorts. In multivariate Cox analysis, the DNA repair score, NPM1, and FLT3-ITD mutational status remained independent prognosis factors in CN-AML. Combining these parameters allowed the identification of three risk groups with different clinical outcomes in both training and validation cohorts. Combined with NPM1 and FLT3 mutational status, our GE-based DNA repair score might be used as a biomarker to predict outcomes for patients with CN-AML. DNA repair score has the potential to identify CN-AML patients whose tumor cells are dependent on specific DNA repair pathways to design new therapeutic avenues.
Collapse
Affiliation(s)
- Ludovic Gabellier
- Département d’Hématologie Clinique, CHU Montpellier, University of Montpellier, 34395 Montpellier, France; (L.G.); (G.C.)
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, 34090 Montpellier, France;
| | - Caroline Bret
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- CHU Montpellier, Department of Biological Hematology, 34395 Montpellier, France
- Institute of Human Genetics, IGH, CNRS, University of Montpellier, 34395 Montpellier, France
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, 34090 Montpellier, France;
- Equipe Labellisée Ligue Contre le Cancer, 75013 Paris, France
| | - Guillaume Cartron
- Département d’Hématologie Clinique, CHU Montpellier, University of Montpellier, 34395 Montpellier, France; (L.G.); (G.C.)
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, 34090 Montpellier, France;
| | - Jérôme Moreaux
- UFR de Médecine, University of Montpellier, 34003 Montpellier, France;
- CHU Montpellier, Department of Biological Hematology, 34395 Montpellier, France
- Institute of Human Genetics, IGH, CNRS, University of Montpellier, 34395 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence:
| |
Collapse
|
29
|
CEP131 Abrogates CHK1 Inhibitor-Induced Replication Defects and Is Associated with Unfavorable Outcome in Neuroblastoma. JOURNAL OF ONCOLOGY 2020; 2020:2752417. [PMID: 33014050 PMCID: PMC7512061 DOI: 10.1155/2020/2752417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
Checkpoint kinase 1 (CHK1) plays a key role in genome surveillance and integrity throughout the cell cycle. Selective inhibitors of CHK1 (CHK1i) are undergoing clinical evaluation for various human malignancies, including neuroblastoma. Recently, we reported that CHK1i, PF-477736, induced a p53-mediated DNA damage response. As a result, the cancer cells were able to repair DNA damage and became less sensitive to CHK1i. In this study, we discovered that PF-477736 increased expression of MDM2 oncogene along with CHK1i-induced replication defects in neuroblastoma NB-39-nu cells. A mass spectrometry analysis of protein binding to MDM2 in the presence of CHK1i identified the centrosome-associated family protein 131 (CEP131), which was correlated with unfavorable prognosis of neuroblastoma patients. We revealed that MDM2 was associated with CEP131 protein degradation, whereas overexpression of CEP131 accelerated neuroblastoma cell growth and exhibited resistance to CHK1i-induced replication defects. Thus, these findings may provide a future therapeutic strategy against centrosome-associated oncogenes involving CEP131 as a target in neuroblastoma.
Collapse
|
30
|
Lodovichi S, Cervelli T, Pellicioli A, Galli A. Inhibition of DNA Repair in Cancer Therapy: Toward a Multi-Target Approach. Int J Mol Sci 2020; 21:E6684. [PMID: 32932697 PMCID: PMC7554826 DOI: 10.3390/ijms21186684] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Alterations in DNA repair pathways are one of the main drivers of cancer insurgence. Nevertheless, cancer cells are more susceptible to DNA damage than normal cells and they rely on specific functional repair pathways to survive. Thanks to advances in genome sequencing, we now have a better idea of which genes are mutated in specific cancers and this prompted the development of inhibitors targeting DNA repair players involved in pathways essential for cancer cells survival. Currently, the pivotal concept is that combining the inhibition of mechanisms on which cancer cells viability depends is the most promising way to treat tumorigenesis. Numerous inhibitors have been developed and for many of them, efficacy has been demonstrated either alone or in combination with chemo or radiotherapy. In this review, we will analyze the principal pathways involved in cell cycle checkpoint and DNA repair focusing on how their alterations could predispose to cancer, then we will explore the inhibitors developed or in development specifically targeting different proteins involved in each pathway, underscoring the rationale behind their usage and how their combination and/or exploitation as adjuvants to classic therapies could help in patients clinical outcome.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| | - Achille Pellicioli
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| |
Collapse
|
31
|
Zhao Y, Chen S. Targeting DNA Double-Strand Break (DSB) Repair to Counteract Tumor Radio-resistance. Curr Drug Targets 2020; 20:891-902. [PMID: 30806313 DOI: 10.2174/1389450120666190222181857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/23/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
During the last decade, advances of radiotherapy (RT) have been made in the clinical practice of cancer treatment. RT exerts its anticancer effect mainly via leading to the DNA Double-Strand Break (DSB), which is one of the most toxic DNA damages. Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) are two major DSB repair pathways in human cells. It is known that dysregulations of DSB repair elicit a predisposition to cancer and probably result in resistance to cancer therapies including RT. Therefore, targeting the DSB repair presents an attractive strategy to counteract radio-resistance. In this review, we describe the latest knowledge of the two DSB repair pathways, focusing on several key proteins contributing to the repair, such as DNA-PKcs, RAD51, MRN and PARP1. Most importantly, we discuss the possibility of overcoming radiation resistance by targeting these proteins for therapeutic inhibition. Recent tests of DSB repair inhibitors in the laboratory and their translations into clinical studies are also addressed.
Collapse
Affiliation(s)
- Yucui Zhao
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
32
|
Elkafas H, Ali M, Elmorsy E, Kamel R, Thompson WE, Badary O, Al-Hendy A, Yang Q. Vitamin D3 Ameliorates DNA Damage Caused by Developmental Exposure to Endocrine Disruptors in the Uterine Myometrial Stem Cells of Eker Rats. Cells 2020; 9:E1459. [PMID: 32545544 PMCID: PMC7349254 DOI: 10.3390/cells9061459] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Early-life exposure of the myometrium to endocrine-disrupting chemicals (EDCs) has been shown to increase the risk of uterine fibroid (UF) prevalence in adulthood. Vitamin D3 (VitD3) is a unique, natural compound that may reduce the risk of developing UFs. However, little is known about the role and molecular mechanism of VitD3 on exposed myometrial stem cells (MMSCs). We investigated the role of, and molecular mechanism behind, VitD3 action on DNA damage response (DDR) defects in rat MMSCs due to developmental exposure to diethylstilbestrol (DES), with the additional goal of understanding how VitD3 decreases the incidence of UFs later in life. Female newborn Eker rats were exposed to DES or a vehicle early in life; they were then sacrificed at 5 months of age (pro-fibroid stage) and subjected to myometrial Stro1+/CD44+ stem cell isolation. Several techniques were performed to determine the effect of VitD3 treatment on the DNA repair pathway in DES-exposed MMSCs (DES-MMSCs). Results showed that there was a significantly reduced expression of RAD50 and MRE11, key DNA repair proteins in DES-exposed myometrial tissues, compared to vehicle (VEH)-exposed tissues (p < 0.01). VitD3 treatment significantly decreased the DNA damage levels in DES-MMSCs. Concomitantly, the levels of key DNA damage repair members, including the MRN complex, increased in DES-MMSCs following treatment with VitD3 (p < 0.01). VitD3 acts on DNA repair via the MRN complex/ATM axis, restores the DNA repair signaling network, and enhances DDR. This study demonstrates, for the first time, that VitD3 treatment attenuated the DNA damage load in MMSCs exposed to DES and classic DNA damage inducers. Moreover, VitD3 targets primed MMSCs, suggesting a novel therapeutic approach for the prevention of UF development.
Collapse
Affiliation(s)
- Hoda Elkafas
- Department of Pharmacology and Toxicology, National Organization for Drug Control and Research (NODCAR), Cairo 35521, Egypt;
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (M.A.); (A.A.-H.)
| | - Mohamed Ali
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (M.A.); (A.A.-H.)
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11591, Egypt
| | - Engy Elmorsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (E.E.); (R.K.)
| | - Rehab Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (E.E.); (R.K.)
| | - Winston E. Thompson
- Department of Physiology, Reproductive Science Research Program, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Osama Badary
- Department of Clinical Pharmacy, Faculty of Pharmacy, British University in Egypt, Cairo 11837, Egypt;
| | - Ayman Al-Hendy
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (M.A.); (A.A.-H.)
| | - Qiwei Yang
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (M.A.); (A.A.-H.)
| |
Collapse
|
33
|
Yamashita K, Kiyonari S, Tsubota S, Kishida S, Sakai R, Kadomatsu K. Thymidylate synthase inhibitor raltitrexed can induce high levels of DNA damage in MYCN-amplified neuroblastoma cells. Cancer Sci 2020; 111:2431-2439. [PMID: 32415892 PMCID: PMC7385364 DOI: 10.1111/cas.14485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
MYCN gene amplification is consistently associated with poor prognosis in patients with neuroblastoma, a pediatric tumor arising from the sympathetic nervous system. Conventional anticancer drugs, such as alkylating agents and platinum compounds, have been used for the treatment of high-risk patients with MYCN-amplified neuroblastoma, whereas molecule-targeting drugs have not yet been approved. Therefore, the development of a safe and effective therapeutic approach is highly desired. Although thymidylate synthase inhibitors are widely used for colorectal and gastric cancers, their usefulness in neuroblastoma has not been well studied. Here, we investigated the efficacies of approved antifolates, methotrexate, pemetrexed, and raltitrexed (RTX), on MYCN-amplified and nonamplified neuroblastoma cell lines. Cell growth-inhibitory assay revealed that RTX showed a superior inhibitory activity against MYCN-amplified cell lines. We found no significant differences in the protein expression levels of the antifolate transporter or thymidylate synthase, a primary target of RTX, among the cell lines. Because thymidine supplementation could rescue the RTX-induced cell growth suppression, the effect of RTX was mainly due to the reduction in dTTP synthesis. Interestingly, RTX treatments induced single-stranded DNA damage response in MYCN-amplified cells to a greater extent than in the nonamplified cells. We propose that the high DNA replication stress and elevated levels of DNA damage, which are a result of deregulated expression of MYCN target genes, could be the cause of increased sensitivity to RTX.
Collapse
Affiliation(s)
- Ken Yamashita
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Kiyonari
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Kishida
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuichi Sakai
- Division of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
34
|
ATR Inhibition Potentiates PARP Inhibitor Cytotoxicity in High Risk Neuroblastoma Cell Lines by Multiple Mechanisms. Cancers (Basel) 2020; 12:cancers12051095. [PMID: 32354033 PMCID: PMC7281288 DOI: 10.3390/cancers12051095] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background: High risk neuroblastoma (HR-NB) is one the most difficult childhood cancers to cure. These tumours frequently present with DNA damage response (DDR) defects including loss or mutation of key DDR genes, oncogene-induced replication stress (RS) and cell cycle checkpoint dysfunction. Aim: To identify biomarkers of sensitivity to inhibition of Ataxia telangiectasia and Rad3 related (ATR), a DNA damage sensor, and poly (ADP-ribose) polymerase (PARP), which is required for single strand break repair. We also hypothesise that combining ATR and PARP inhibition is synergistic. Methods: Single agent sensitivity to VE-821 (ATR inhibitor) and olaparib (PARP inhibitor), and the combination, was determined using cell proliferation and clonogenic assays, in HR-NB cell lines. Basal expression of DDR proteins, including ataxia telangiectasia mutated (ATM) and ATR, was assessed using Western blotting. CHK1S345 and H2AXS129 phosphorylation was assessed using Western blotting to determine ATR activity and RS, respectively. RS and homologous recombination repair (HRR) activity was also measured by γH2AX and Rad51 foci formation using immunofluorescence. Results: MYCN amplification and/or low ATM protein expression were associated with sensitivity to VE-821 (p < 0.05). VE-821 was synergistic with olaparib (CI value 0.04-0.89) independent of MYCN or ATM status. Olaparib increased H2AXS129 phosphorylation which was further increased by VE-821. Olaparib-induced Rad51 foci formation was reduced by VE-821 suggesting inhibition of HRR. Conclusion: RS associated with MYCN amplification, ATR loss or PARP inhibition increases sensitivity to the ATR inhibitor VE-821. These findings suggest a potential therapeutic strategy for the treatment of HR-NB.
Collapse
|
35
|
Southgate HED, Chen L, Curtin NJ, Tweddle DA. Targeting the DNA Damage Response for the Treatment of High Risk Neuroblastoma. Front Oncol 2020; 10:371. [PMID: 32309213 PMCID: PMC7145987 DOI: 10.3389/fonc.2020.00371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Despite intensive multimodal therapy, the survival rate for high risk neuroblastoma (HR-NB) remains <50%. Most cases initially respond to treatment but almost half will subsequently relapse with aggressive treatment resistant disease. Novel treatments exploiting the molecular pathology of NB and/or overcoming resistance to current genotoxic therapies are needed before survival rates can significantly improve. DNA damage response (DDR) defects are frequently observed in HR-NB including allelic deletion and loss of function mutations in key DDR genes, oncogene induced replication stress and cell cycle checkpoint dysfunction. Exploiting defects in the DDR has been a successful treatment strategy in some adult cancers. Here we review the genetic features of HR-NB which lead to DDR defects and the emerging molecular targeting agents to exploit them.
Collapse
Affiliation(s)
- Harriet E D Southgate
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lindi Chen
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicola J Curtin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Deborah A Tweddle
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
36
|
Honda T, Inui M. PDZRN3 protects against apoptosis in myoblasts by maintaining cyclin A2 expression. Sci Rep 2020; 10:1140. [PMID: 31980707 PMCID: PMC6981127 DOI: 10.1038/s41598-020-58116-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/07/2020] [Indexed: 11/28/2022] Open
Abstract
PDZRN3 is a PDZ domain-containing RING-finger family protein that functions in various developmental processes. We previously showed that expression of PDZRN3 is induced together with that of MyoD during the early phase of skeletal muscle regeneration in vivo. We here show that PDZRN3 suppresses apoptosis and promotes proliferation in myoblasts in a manner dependent on cyclin A2. Depletion of PDZRN3 in mouse C2C12 myoblasts by RNA interference reduced the proportion of Ki-67-positive cells and the level of Akt phosphorylation, implicating PDZRN3 in regulation of both cell proliferation and apoptosis. Exposure of C2C12 cells as well as of C3H10T1/2 mesenchymal stem cells and NIH-3T3 fibroblasts to various inducers of apoptosis including serum deprivation resulted in a greater increase in the amount of cleaved caspase-3 in PDZRN3-depleted cells than in control cells. The abundance of cyclin A2 was reduced in PDZRN3-depleted C2C12 myoblasts, as was that of Mre11, which contributes to the repair of DNA damage. Overexpression of cyclin A2 restored the expression of Mre11 and Ki-67 as well as attenuated caspase-3 cleavage in PDZRN3-depleted cells deprived of serum. These results indicate that PDZRN3 suppresses apoptosis and promotes proliferation in myoblasts and other cell types by maintaining cyclin A2 expression.
Collapse
Affiliation(s)
- Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
- YIC Rehabilitation College, 4-11-1 Nishiube-Minami, Ube, Yamaguchi, 759-0208, Japan.
| |
Collapse
|
37
|
SMO-M2 mutation does not support cell-autonomous Hedgehog activity in cerebellar granule cell precursors. Sci Rep 2019; 9:19623. [PMID: 31873117 PMCID: PMC6928071 DOI: 10.1038/s41598-019-56057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
Growth and patterning of the cerebellum is compromised if granule cell precursors do not properly expand and migrate. During embryonic and postnatal cerebellar development, the Hedgehog pathway tightly regulates granule cell progenitors to coordinate appropriate foliation and lobule formation. Indeed, granule cells impairment or defects in the Hedgehog signaling are associated with developmental, neurodegenerative and neoplastic disorders. So far, scant and inefficient cellular models have been available to study granule cell progenitors, in vitro. Here, we validated a new culture method to grow postnatal granule cell progenitors as hedgehog-dependent neurospheres with prolonged self-renewal and ability to differentiate into granule cells, under appropriate conditions. Taking advantage of this cellular model, we provide evidence that Ptch1-KO, but not the SMO-M2 mutation, supports constitutive and cell-autonomous activity of the hedgehog pathway.
Collapse
|
38
|
Bian L, Meng Y, Zhang M, Li D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer 2019; 18:169. [PMID: 31767017 PMCID: PMC6878665 DOI: 10.1186/s12943-019-1100-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/08/2019] [Indexed: 01/26/2023] Open
Abstract
Genome instability is a hallmark of cancer cells and can be accelerated by defects in cellular responses to DNA damage. This feature of malignant cells opens new avenues for tumor targeted therapy. MRE11-RAD50-NBS1 complex plays a crucial role in sensing and repair of DNA damage. Through interacting with other important players of DNA damage response, MRE11-RAD50-NBS1 complex is engaged in various DNA damage repair pathways. Mutations in any member of this complex may lead to hypersensitivity to genotoxic agents and predisposition to malignancy. It is assumed that the defects in the complex may contribute to tumorigenesis and that treatments targeting the defect may be beneficial to cancer patients. Here, we summarized the recent research findings of the role of MRE11-RAD50-NBS1 complex in tumorigenesis, cancer treatment and discussed the potential approaches of targeting this complex to treat cancer.
Collapse
Affiliation(s)
- Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiling Meng
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|