1
|
Westemeier-Rice ES, Winters MT, Rawson TW, Patel KJ, McHugh O, Ward S, McLaughlin S, Stewart A, Misra B, Dziadowicz S, Yi W, Bobbala S, Hu G, Martinez I. Lnc-RAINY regulates genes involved in radiation susceptibility through DNA:DNA:RNA triplex-forming interactions and has tumor therapeutic potential in lung cancers. Noncoding RNA Res 2025; 12:152-166. [PMID: 40235937 PMCID: PMC11999364 DOI: 10.1016/j.ncrna.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 04/17/2025] Open
Abstract
Lung cancer is the leading cause of cancer related deaths worldwide. Unfortunately, radiation resistance remains a major problem facing lung cancer patients. Recently, we identified a group of long non-coding RNAs (lncRNAs) known as linc-SPRY3 RNAs, expressed on the Y-chromosome, which play a role in radiation sensitivity by decreasing tumor burden in vitro and in vivo after radiation. In this study, we found that the linc-SPRY3 RNAs are one large lncRNA that we named Radiation Induced Y-chromosome linked long non-coding RNA (lnc-RAINY). Through ATAC-seq and immunoprecipitation experiments, we show that lnc-RAINY interacts with DNA in a triple helix to induce chromatin remodeling and gene expression. We also identified that lnc-RAINY regulates CDC6 and CDC25A expression affecting senescence induction, cell migration patterns, and cell cycle regulation. Furthermore, the administration of Lnc-RAINY encapsulated in FDA-approved nanoparticles into a lung cancer patient-derived xenograft model dramatically reduces tumor progression demonstrating therapeutic potential.
Collapse
Affiliation(s)
- Emily S. Westemeier-Rice
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
| | - Michael T. Winters
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Travis W. Rawson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Kiran J. Patel
- West Virginia School of Medicine, West Virginia University, West Virginia, United States
| | - Olivia McHugh
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Sierra Ward
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Sarah McLaughlin
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
| | - Amanda Stewart
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
| | - Bishal Misra
- West Virginia University School of Pharmacy, West Virginia University, West Virginia, United States
| | - Sebastian Dziadowicz
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Weijun Yi
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Sharan Bobbala
- West Virginia University School of Pharmacy, West Virginia University, West Virginia, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| | - Ivan Martinez
- West Virginia University Cancer Institute, West Virginia University, West Virginia, United States
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, West Virginia, United States
| |
Collapse
|
2
|
Gandhi G, Kodiappan R, Abdullah S, Teoh HK, Tai L, Cheong SK, Yeo WWY. Revealing the potential role of hsa-miR-663a in modulating the PI3K-Akt signaling pathway via miRNA microarray in spinal muscular atrophy patient fibroblast-derived iPSCs. J Neuropathol Exp Neurol 2024; 83:822-832. [PMID: 38894621 DOI: 10.1093/jnen/nlae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder due to deletion or mutation of survival motor neuron 1 (SMN1) gene. Although survival motor neuron 2 (SMN2) gene is still present in SMA patients, the production of full-length survival motor neuron (SMN) protein is insufficient owing to missing or mutated SMN1. No current disease-modifying therapies can cure SMA. The aim of this study was to explore microRNA (miRNA)-based therapies that may serve as a potential target for therapeutic intervention in delaying SMA progression or as treatment. The study screened for potentially dysregulated miRNAs in SMA fibroblast-derived iPSCs using miRNA microarray. Results from the miRNA microarray were validated using quantitative reverse transcription polymerase chain reaction. Bioinformatics analysis using various databases was performed to predict the potential putative gene targeted by hsa-miR-663a. The findings showed differential expression of hsa-miR-663a in SMA patients in relation to a healthy control. Bioinformatics analysis identified GNG7, IGF2, and TNN genes that were targeted by hsa-miR-663a to be involved in the PI3K-AKT pathway, which may be associated with disease progression in SMA. Thus, this study suggests the potential role of hsa-miR-663a as therapeutic target for the treatment of SMA patients in the near future.
Collapse
Affiliation(s)
- Gayatri Gandhi
- Perdana University Graduate School of Medicine, Perdana University, Kuala Lumpur, Malaysia
| | - Radha Kodiappan
- Department of Research and Training, MAHSA Specialist Hospital, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Genetics & Regenerative Medicine Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Hoon Koon Teoh
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Lihui Tai
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
- Cytopeutics Sdn. Bhd, Selangor, Malaysia
| | - Soon Keng Cheong
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Wendy Wai Yeng Yeo
- Perdana University Graduate School of Medicine, Perdana University, Kuala Lumpur, Malaysia
- School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Guo L, Ding G, Ba Y, Tan B, Tian L, Wang K. Transcription factor STAT4 counteracts radiotherapy resistance in breast carcinoma cells by activating the MALAT1/miR-21-5p/THRB regulatory network. Am J Cancer Res 2024; 14:1501-1522. [PMID: 38726265 PMCID: PMC11076251 DOI: 10.62347/vsju7227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/31/2024] [Indexed: 05/12/2024] Open
Abstract
Considering the limited research and the prevailing evidence of STAT4's tumor-suppressing role in breast carcinoma (BC) or in breast radiotherapy (RT) sensitivity requires more in-depth exploration. Our study delves into how STAT4, a transcription factor, affects BC cell resistance to radiotherapy by regulating the MALAT1/miR-21-5p/THRB axis. Bioinformatics analysis was performed to predict the regulatory mechanisms associated with STAT4 in BC. Subsequently, we identified the expression profiles of STAT4, MALAT1, miR-21-5p, and THRB in various tissues and cell lines, exploring their interactions and impact on RT resistance in BC cells. Moreover, animal models were established with X-ray irradiation for further validation. We discovered that STAT4, which is found to be minimally expressed in breast carcinoma (BC) tissues and cell lines, has been associated with a poorer prognosis. In vitro cellular assays indicated that STAT4 could mitigate radiotherapy resistance in BC cells by transcriptional activation of MALAT1. Additionally, MALAT1 up-regulated THRB expression by adsorbing miR-21-5p. As demonstrated in vitro and in vivo, overexpressing STAT4 inhibited miR-21-5p and enhanced THRB levels through transcriptional activation of MALAT1, which ultimately contributes to the reversal of radiotherapy resistance in BC cells and the suppression of tumor formation in nude mice. Collectively, STAT4 could inhibit miR-21-5p and up-regulate THRB expression through transcriptional activation of MALAT1, thereby mitigating BC cell resistance to radiotherapy and ultimately preventing BC development and progression.
Collapse
Affiliation(s)
| | | | - Yuntao Ba
- Department of Radiation, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, China
| | - Bo Tan
- Department of Radiation, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, China
| | - Lingling Tian
- Department of Radiation, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, China
| | - Kunlun Wang
- Department of Radiation, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, China
| |
Collapse
|
4
|
Khalafizadeh A, Hashemizadegan SD, Shokri F, Bakhshinejad B, Jabbari K, Motavaf M, Babashah S. Competitive endogenous RNA networks: Decoding the role of long non-coding RNAs and circular RNAs in colorectal cancer chemoresistance. J Cell Mol Med 2024; 28:e18197. [PMID: 38506091 PMCID: PMC10951891 DOI: 10.1111/jcmm.18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Colorectal cancer (CRC) is recognized as one of the most common gastrointestinal malignancies across the globe. Despite significant progress in designing novel treatments for CRC, there is a pressing need for more effective therapeutic approaches. Unfortunately, many patients undergoing chemotherapy develop drug resistance, posing a significant challenge for cancer treatment. Non-coding RNAs (ncRNAs) have been found to play crucial roles in CRC development and its response to chemotherapy. However, there are still gaps in our understanding of interactions among various ncRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs). These ncRNAs can act as either oncogenes or tumour suppressors, affecting numerous biological functions in different cancers including CRC. A class of ncRNA molecules known as competitive endogenous RNAs (ceRNAs) has emerged as a key player in various cellular processes. These molecules form networks through lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA interactions. In CRC, dysregulation of ceRNA networks has been observed across various cellular processes, including proliferation, apoptosis and angiogenesis. These dysregulations are believed to play a significant role in the progression of CRC and, in certain instances, may contribute to the development of chemoresistance. Enriching our knowledge of these dysregulations holds promise for advancing the field of diagnostic and therapeutic modalities for CRC. In this review, we discuss lncRNA- and circRNA-associated ceRNA networks implicated in the emergence and advancement of drug resistance in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Fatemeh Shokri
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| |
Collapse
|
5
|
Kamikokura M, Tange S, Nakase H, Tokino T, Idogawa M. Long Noncoding RNA RP11-278A23.1, a Potential Modulator of p53 Tumor Suppression, Contributes to Colorectal Cancer Progression. Cancers (Basel) 2024; 16:882. [PMID: 38473243 DOI: 10.3390/cancers16050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Recently, many studies revealed that long noncoding RNAs (lncRNAs) play important roles in cancers. To identify lncRNAs contributing to colorectal cancers, we screened lncRNAs through expression and survival analyses in datasets from The Cancer Genome Atlas (TCGA). The screen revealed that RP11-278A23.1 expression is significantly increased in colorectal cancer tissues compared with normal tissues and that high RP11-278A23.1 expression correlates with poor prognosis. The knockdown of RP11-278A23.1 inhibited the growth of and promoted apoptosis in colorectal cancer cells. Next, to comprehensively examine differentially expressed genes after RP11-278A23.1 knockdown, RNA sequencing was performed in HCT116 cells. The expression of p21, a p53 target gene, was significantly upregulated, and the expression of several p53 target proapoptotic genes was also altered. RP11-278A23.1 knockdown increased p53 expression at the translational level but not at the transcriptional level. Interestingly, RP11-278A23.1 knockdown also altered the expression of these proapoptotic genes in DLD1 cells with mutated p53 and in p53-knockout HCT116 cells. These results suggest that RP11-278A23.1 modifies the expression of these apoptosis-related genes in p53-dependent and p53-independent manners. In summary, lncRNA RP11-278A23.1 contributes to colorectal cancer progression by promoting cell growth and inhibiting apoptosis, suggesting that this lncRNA may be a useful therapeutic target.
Collapse
Affiliation(s)
- Masayo Kamikokura
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Shoichiro Tange
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
6
|
Gao C, Jia K, Fang J, Zhu X, Hu J, Zhang Y, Jiang J, Yu X, Wang D, Gu H, Chen Z. CD95 promotes stemness of colorectal cancer cells by lncRNA MALAT1. Life Sci 2024; 338:122394. [PMID: 38159593 DOI: 10.1016/j.lfs.2023.122394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Colorectal cancer (CRC) is the second most fatal cancer. Many studies have shown that cancer stemness contributes to resistance to conventional chemotherapy and poor prognosis. However, the mechanisms involved in maintaining cancer stemness in CRC are still obscure and few clinical drugs were used to target cancer stemness. Previous studies had reported CD95 increases the stemness of cancer cells with long-term stimulation of exogenous agonist CD95 ligand (CD95L). However, the expression of CD95L is relative low in certain human tumor tissues. In this study, we found that CD95 was highly expressed in CRC cells, and in vitro it promoted the tumorsphere formation, chemotherapy resistance and in vivo tumor growth without stimulation of exogenous CD95L. Mechanistically, the bulk and single-cell RNA-sequencing results suggested that CD95 promotes stemness of CRC cells through upregulation of long non-coding RNAs metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1). MALAT1 knockdown inhibited CD95-induced tumorsphere formation and chemotherapy resistance. In summary, our findings reveal that CD95 has the capability to modulate cancer stemness via the action of the lncRNA MALAT1. Targeting CD95 may be a promising strategy to inhibit cancer stemness in CRC.
Collapse
Affiliation(s)
- Chenyi Gao
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kunpeng Jia
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Fang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Xuan Zhu
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Zhang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiuyan Yu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Danting Wang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haochen Gu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Zeng F, Li D, Kang X, Wu Q, Song M, Ou Z, Yang Z, Yang J, Luo L. MALAT1 promotes FOXA1 degradation by competitively binding to miR-216a-5p and enhancing neuroendocrine differentiation in prostate cancer. Transl Oncol 2024; 39:101807. [PMID: 38235618 PMCID: PMC10628887 DOI: 10.1016/j.tranon.2023.101807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVES Prostate cancer (PC) is a leading cause of cancer-related death in males worldwide. Neuroendocrine differentiation (NED) is a feature of PC that often goes undetected and is associated with poor patient outcomes. Long non-coding RNAs (lncRNAs), microRNAs (miRNAs/miRs), and messenger RNAs (mRNAs) play important roles in the development and progression of PC. METHODS In this study, we used transcriptome sequencing and bioinformatics analysis to identify key regulators of NED in PC. Specifically, we examined the expression of PC-related lncRNAs, miRNAs, and mRNAs in PC cells and correlated these findings with NED phenotypes. RESULTS Our data revealed that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and zinc finger protein 91 (ZFP91) were upregulated in PC, while miR-216a-5p was down-regulated. Ectopic expression of MALAT1 induced NED and promoted malignant phenotypes of PC cells. Furthermore, we found that MALAT1 competitively bound to miR-216a-5p, upregulated ZFP91, and promoted the degradation of forkhead box A1 (FOXA1), a key gene involved in NED of PC. CONCLUSION Taken together, these results suggest that MALAT1 plays an oncogenic role in NED and metastasis of PC via the miR-216a-5p/ZFP91/FOXA1 pathway. Our study highlights the potential of targeting this pathway as a novel therapeutic strategy for PC.
Collapse
Affiliation(s)
- Fanchang Zeng
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Daoyuan Li
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Xinli Kang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Qinghui Wu
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Mi Song
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Zhewen Ou
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Zuobing Yang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Jing Yang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China
| | - Liumei Luo
- Department of Scientific Research, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua Road, Xiuying District, Haikou, Hainan 570311, China.
| |
Collapse
|
8
|
Yuan H, Ren Q, Du Y, Ma Y, Gu L, Zhou J, Tian W, Deng D. LncRNA miR663AHG represses the development of colon cancer in a miR663a-dependent manner. Cell Death Discov 2023; 9:220. [PMID: 37400477 DOI: 10.1038/s41420-023-01510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
The MIR663AHG gene encodes both miR663AHG and miR663a. While miR663a contributes to the defense of host cells against inflammation and inhibits colon cancer development, the biological function of lncRNA miR663AHG has not been previously reported. In this study, the subcellular localization of lncRNA miR663AHG was determined by RNA-FISH. miR663AHG and miR663a were measured by qRT-PCR. The effects of miR663AHG on the growth and metastasis of colon cancer cells were investigated in vitro and in vivo. CRISPR/Cas9, RNA pulldown, and other biological assays were used to explore the underlying mechanism of miR663AHG. We found that miR663AHG was mainly distributed in the nucleus of Caco2 and HCT116 cells and the cytoplasm of SW480 cells. The expression level of miR663AHG was positively correlated with the level of miR663a (r = 0.179, P = 0.015) and significantly downregulated in colon cancer tissues relative to paired normal tissues from 119 patients (P < 0.008). Colon cancers with low miR663AHG expression were associated with advanced pTNM stage (P = 0.021), lymph metastasis (P = 0.041), and shorter overall survival (hazard ratio = 2.026; P = 0.021). Experimentally, miR663AHG inhibited colon cancer cell proliferation, migration, and invasion. The growth of xenografts from RKO cells overexpressing miR663AHG was slower than that of xenografts from vector control cells in BALB/c nude mice (P = 0.007). Interestingly, either RNA-interfering or resveratrol-inducing expression changes of miR663AHG or miR663a can trigger negative feedback regulation of transcription of the MIR663AHG gene. Mechanistically, miR663AHG could bind to miR663a and its precursor pre-miR663a, and prevent the degradation of miR663a target mRNAs. Disruption of the negative feedback by knockout of the MIR663AHG promoter, exon-1, and pri-miR663A-coding sequence entirely blocked these effects of miR663AHG, which was restored in cells transfected with miR663a expression vector in rescue experiment. In conclusion, miR663AHG functions as a tumor suppressor that inhibits the development of colon cancer through its cis-binding to miR663a/pre-miR663a. The cross talk between miR663AHG and miR663a expression may play dominant roles in maintaining the functions of miR663AHG in colon cancer development.
Collapse
Affiliation(s)
- Hongfan Yuan
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- The Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic and Technology of China, Chengdu, 610042, China
| | - Qianwen Ren
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yantao Du
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Yuwan Ma
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wei Tian
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
9
|
Dong BS, Liu FQ, Yang WN, Li XD, Shi MJ, Li MR, Yan XL, Zhang H. Huangqi Decoction, a compound Chinese herbal medicine, inhibits the proliferation and activation of hepatic stellate cells by regulating the long noncoding RNA-C18orf26-1/microRNA-663a/transforming growth factor-β axis. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:47-61. [PMID: 36456413 DOI: 10.1016/j.joim.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Huangqi Decoction (HQD), a classical traditional Chinese medicine formula, has been used as a valid treatment for alleviating liver fibrosis; however, the underlying molecular mechanism is still unknown. Although our previous studies showed that microRNA-663a (miR-663a) suppresses the proliferation and activation of hepatic stellate cells (HSCs) and the transforming growth factor-β/small mothers against decapentaplegic (TGF-β/Smad) pathway, whether long noncoding RNAs (lncRNAs) are involved in HSC activation via the miR-663a/TGF-β/Smad signaling pathway has not yet reported. The present study aimed to investigate the roles of lncRNA lnc-C18orf26-1 in the activation of HSCs and the mechanism by which HQD inhibits hepatic fibrosis. METHODS The expression levels of lnc-C18orf26-1, miR-663a and related genes were measured by quantitative reverse transcription-polymerase chain reaction. HSCs were transfected with the miR-663a mimic or inhibitor and lnc-C18orf26-1 small interfering RNAs. The water-soluble tetrazolium salt-1 assay was used to assess the proliferation rate of HSCs. Changes in lncRNA expression were evaluated in miR-663a-overexpressing HSCs by using microarray to identify miR-663a-regulated lncRNAs. RNA hybrid was used to predict the potential miR-663a binding sites on lncRNAs. Luciferase reporter assays further confirmed the interaction between miR-663a and the lncRNA. The expression levels of collagen α-2(I) chain (COL1A2), α-smooth muscle actin (α-SMA) and TGF-β/Smad signaling pathway-related proteins were determined using Western blotting. RESULTS Lnc-C18orf26-1 was upregulated in TGF-β1-activated HSCs and competitively bound to miR-663a. Knockdown of lnc-C18orf26-1 inhibited HSC proliferation and activation, downregulated TGF-β1-stimulated α-SMA and COL1A2 expression, and inhibited the TGF-β1/Smad signaling pathway. HQD suppressed the proliferation and activation of HSCs. HQD increased miR-663a expression and decreased lnc-C18orf26-1 expression in HSCs. Further studies showed that HQD inhibited the expression of COL1A2, α-SMA, TGF-β1, TGF-β type I receptor (TGF-βRI) and phosphorylated Smad2 (p-Smad2) in HSCs, and these effects were reversed by miR-663a inhibitor treatment. CONCLUSION Our study identified lnc-C18orf26-1 and miR-663a as promising therapeutic targets for hepatic fibrosis. HQD inhibits HSC proliferation and activation at least partially by regulating the lnc-C18orf26-1/miR-663a/TGF-β1/TGF-βRI/p-Smad2 axis.
Collapse
Affiliation(s)
- Ben-Sheng Dong
- Traditional Chinese Medicine Epigenomics Research Center, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fu-Qun Liu
- Department of Rheumatology and Immunology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211299, Jiangsu Province, China; Department of Rheumatology and Immunology, Yangzhou University Medical College, Yangzhou 225000, Jiangsu Province, China
| | - Wen-Na Yang
- Department of Rheumatology and Immunology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211299, Jiangsu Province, China; Department of Rheumatology and Immunology, Yangzhou University Medical College, Yangzhou 225000, Jiangsu Province, China
| | - Xiao-Dong Li
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Miao-Juan Shi
- Traditional Chinese Medicine Epigenomics Research Center, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mao-Rong Li
- Traditional Chinese Medicine Epigenomics Research Center, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiu-Li Yan
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Hui Zhang
- Traditional Chinese Medicine Epigenomics Research Center, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
10
|
Ghiboub M, Koster J, Craggs PD, Li Yim AYF, Shillings A, Hutchinson S, Bingham RP, Gatfield K, Hageman IL, Yao G, O’Keefe HP, Coffin A, Patel A, Sloan LA, Mitchell DJ, Hayhow TG, Lunven L, Watson RJ, Blunt CE, Harrison LA, Bruton G, Kumar U, Hamer N, Spaull JR, Zwijnenburg DA, Welting O, Hakvoort TBM, te Velde AA, van Limbergen J, Henneman P, Prinjha RK, de Winther MPJ, Harker NR, Tough DF, de Jonge WJ. Modulation of macrophage inflammatory function through selective inhibition of the epigenetic reader protein SP140. BMC Biol 2022; 20:182. [PMID: 35986286 PMCID: PMC9392322 DOI: 10.1186/s12915-022-01380-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background SP140 is a bromodomain-containing protein expressed predominantly in immune cells. Genetic polymorphisms and epigenetic modifications in the SP140 locus have been linked to Crohn’s disease (CD), suggesting a role in inflammation. Results We report the development of the first small molecule SP140 inhibitor (GSK761) and utilize this to elucidate SP140 function in macrophages. We show that SP140 is highly expressed in CD mucosal macrophages and in in vitro-generated inflammatory macrophages. SP140 inhibition through GSK761 reduced monocyte-to-inflammatory macrophage differentiation and lipopolysaccharide (LPS)-induced inflammatory activation, while inducing the generation of CD206+ regulatory macrophages that were shown to associate with a therapeutic response to anti-TNF in CD patients. SP140 preferentially occupies transcriptional start sites in inflammatory macrophages, with enrichment at gene loci encoding pro-inflammatory cytokines/chemokines and inflammatory pathways. GSK761 specifically reduces SP140 chromatin binding and thereby expression of SP140-regulated genes. GSK761 inhibits the expression of cytokines, including TNF, by CD14+ macrophages isolated from CD intestinal mucosa. Conclusions This study identifies SP140 as a druggable epigenetic therapeutic target for CD. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01380-6.
Collapse
|
11
|
MALAT1 in colorectal cancer: Its implication as a diagnostic, prognostic, and predictive biomarker. Gene 2022; 843:146791. [PMID: 35961438 DOI: 10.1016/j.gene.2022.146791] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), originally described as a prognostic biomarker remarkably linked with metastasis potential in lung cancer, has been identified as contributing to many diseases, including colorectal cancer (CRC). This long non-coding RNA (lncRNA) has come to the forefront of lncRNA research for its implications in cancer-related processes, such as cell proliferation and migration. In general, lncRNAs are recognized as enhancers, scaffolds, or decoys for a variety of oncogenes and tumor suppressors, although our understanding of lncRNA functions and mechanisms of action is still limited. Nowadays, cancer research is attracted to lncRNAs' ability to improve the early diagnosis of cancer, determine patients' prognosis, or predict therapy outcomes. In this review, we aimed to evaluate recent publications trying to uncover the cellular mechanisms of MALAT1-mediated regulation, and its potential exploitation in the management of CRC. The conclusions of this review provide robust support for the essential role of MALAT1 in CRC development and future personalized therapy.
Collapse
|
12
|
TTC22 promotes m6A-mediated WTAP expression and colon cancer metastasis in an RPL4 binding-dependent pattern. Oncogene 2022; 41:3925-3938. [PMID: 35798874 DOI: 10.1038/s41388-022-02402-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/08/2023]
Abstract
WTAP, an essential component of the RNA N-6-methyladenosine (m6A) modification complex, guides METLL3-METLL14 heteroduplexes to target RNAs in the nuclear speckles of mammalian cells. Here, we show that TTC22 is widely coexpressed with WTAP and FTO in many human tissues by mining Genotype-Tissue Expression (GTEx) datasets. Our results indicate that the direct interaction of TTC22 with 60S ribosomal protein L4 (RPL4) promotes the binding of WTAP mRNA to RPL4, enhances the stability and translation efficiency of WTAP mRNA, and consequently increases the level of WTAP protein. Also, WTAP mRNA itself is an m6A target and YTHDF1 is characterized as an essential m6A binding protein interacting with m6A-modified WTAP mRNA. TTC22 triggers a positive feedback loop between WTAP expression and WTAP mRNA m6A modification, leading to an increased m6A level in total RNA. The knockdown of RPL4, WTAP, or YTHDF1 expression diminishes the TTC22-induced increase in the m6A level of total RNA. Thus, TTC22 caused dramatic expression changes in genes related to metabolic pathways, ribosomal biogenesis, the RNA spliceosome, and microorganism infections. Importantly, TTC22 upregulates the expression of SNAI1 by increasing m6A level and thus promotes lung metastases of colon cancer cells in mice. In conclusion, our study showed that TTC22 upregulates WTAP and SNAI1 expression, which contributes to TTC22-induced colon cancer metastasis.
Collapse
|
13
|
Akhbari MH, Zafari Z, Sheykhhasan M. Competing Endogenous RNAs (ceRNAs) in Colorectal Cancer: A Review. Expert Rev Mol Med 2022; 24:e27. [PMID: 35748050 DOI: 10.1017/erm.2022.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is a common type of cancer and the second leading cause of cancer-related deaths worldwide. Competing endogenous RNAs (ceRNAs) that contain microRNA response elements (MREs) are involved in CRC progression. They can compete with microRNAs (miRNAs) via their MREs, which can combine non-coding and coding RNAs via complex ceRNA networks. This molecular interaction has the potential to affect a wide variety of biological processes, and many cancers can occur as a result of an imbalanced ceRNA network. Recent research indicates that numerous dysregulated RNAs in CRC may function as ceRNAs, regulating multiple biological functions of the tumour, including proliferation, apoptosis, metastasis, invasion and migration. In this review, we discuss the role of protein-coding and non-coding RNAs, such as long non-coding RNAs, circular RNAs and pseudogenes, in the occurrence of ceRNA networks in CRC, and their function in cancer-related pathways, such as Wnt/β-catenin, mitogen-activated protein kinase and transforming growth factor-β signalling pathways. Additionally, we discuss validated ceRNAs associated with CRC biological functions and their potential role as novel prognostic and diagnostic biomarkers. Examining the role of ceRNAs in CRC sheds new light on cancer treatment and pathogenesis.
Collapse
Affiliation(s)
| | - Zahra Zafari
- Department of Biology, Shahed University, Tehran, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| |
Collapse
|
14
|
Sánchez-Marín D, Trujano-Camacho S, Pérez-Plasencia C, De León DC, Campos-Parra AD. LncRNAs driving feedback loops to boost drug resistance: sinuous pathways in cancer. Cancer Lett 2022; 543:215763. [PMID: 35680071 DOI: 10.1016/j.canlet.2022.215763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Feedback loops mediate signaling pathways to maintain cellular homeostasis. There are two types, positive and negative feedback loops. Both are subject to alterations, and consequently can become pathogenic in the development of diseases such as cancer. Long noncoding RNAs (lncRNAs) are regulators of signaling pathways through feedback loops hidden as the dark regulatory elements yet to be described with great impact on cancer tumorigenesis, development, and drug resistance. Several feedback loops have been studied in cancer, however, how they are regulated by lncRNAs is hardly evident, setting a trending topic in oncological research. In this review, we recapitulate and discuss the feedback loops that are regulated by lncRNAs to promote drug resistance. Furthermore, we propose additional strategies that allow us to identify, analyze and comprehend feedback loops regulated by lncRNAs to induce drug resistance or even to gain insight into novel feedback loops that are stimulated under the pressure of treatment and consequently increase its efficacy. This knowledge will be useful to optimize the therapeutic use of oncological drugs.
Collapse
Affiliation(s)
- David Sánchez-Marín
- Laboratorio de Genómica. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México.
| | - Samuel Trujano-Camacho
- Laboratorio de Genómica. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México.
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México; Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, 54090, Estado de México, México.
| | - David Cantú De León
- Unidad de Investigación Biomédica del Cáncer. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México.
| | - Alma D Campos-Parra
- Laboratorio de Genómica. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México.
| |
Collapse
|
15
|
Huang J, Jiang S, Liang L, He H, Liu Y, Cong L, Jiang Y. Analysis of PANoptosis-Related LncRNA-miRNA-mRNA Network Reveals LncRNA SNHG7 Involved in Chemo-Resistance in Colon Adenocarcinoma. Front Oncol 2022; 12:888105. [PMID: 35646635 PMCID: PMC9133343 DOI: 10.3389/fonc.2022.888105] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
Colon adenocarcinoma (COAD) is one of the most common malignancies, and its metastatic lesions are the leading cause of death in COAD patients. PANoptosis is a recently identified pathway for programmed cell death implicated in developing COAD. Long non-coding RNAs (lncRNAs) are key regulators of cancer occurrence and progress. Although their function has captured much attention in COAD, the relationship between COAD metastasis-associated lncRNA expression and PANoptosis remains elusive. Therefore, this study aimed to explore the potential regulatory roles of metastasis- and PANoptosis-associated lncRNAs in COAD. Nine lncRNAs associated with metastasis and PANoptosis in COAD were identified from The Cancer Genome Atlas (TCGA) and GEO databases. Their functions were analyzed by multiple bioinformatics methods, and the lncRNA-miRNA-mRNA network was constructed. Multivariate Cox analysis identified one lncRNA (SNHG7) significantly related to COAD prognosis. Subsequent analyses showed its expression correlated with tumor stage and lymph node metastasis. Moreover, drug sensitivity analysis and in vitro experiments suggest that lncRNA SNHG7 contributes to drug resistance in COAD. In summary, lncRNA SNHG7 is a potential target for diagnosing and treating COAD and plays a crucial role in regulating apoptosis, metastasis, and drug resistance in COAD.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Lu Liang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Yueying Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China.,School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
16
|
Li H, Zhang Y, Liu Y, Qu Z, Liu Y, Qi J. Long Noncoding RNA MALAT1 and Colorectal Cancer: A Propensity Score Analysis of Two Prospective Cohorts. Front Oncol 2022; 12:824767. [PMID: 35558512 PMCID: PMC9088002 DOI: 10.3389/fonc.2022.824767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous researches have shown that the aberrant expression of Metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) in tumour tissues may serve as a biomarker for colorectal cancer (CRC) prognosis. However, these previous studies have small sample sizes and lacked validation from independent external populations. We therefore aimed to clarify the prognostic value of MALAT1 expression status in CRC patients using a large cohort and validate the findings with another large external cohort. Methods The prognostic association between MALAT1 expression status and CRC outcomes was evaluated initially in a prospective cohort in China (n=164) and then validated in an external TCGA population (n=596). In the initial cohort, MALAT1 expression levels were quantified by quantitative reverse transcriptase polymerase chain reaction. Propensity score (PS) adjustment method was used to control potential confounding biases. The prognostic significance was reported as PS-adjusted hazard ratio (HR) and corresponding 95% confidence interval (CI). Results There was no statistically significant association between MALAT1 expression status and CRC patient overall survival (OS) or disease free survival (DFS) in both initial cohort and external validation cohort populations. When combining these populations together, the results did not change materially. The summarized HRPS-adjusted were 1.010 (95% CI, 0.752-1.355, P=0.950) and 1.170 (95% CI, 0.910-1.502, P=0.220) for OS and DFS, respectively. Conclusions MALAT1 expression status is not associated with prognostic outcomes of CRC patients. However, additional larger population studies are needed to further validate these findings.
Collapse
Affiliation(s)
- Heng Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxue Zhang
- Department of Hygiene Microbiology, Public Health School of Harbin Medical University, Harbin, China
| | - Yanlong Liu
- Department of Colorectal Surgery, The Third Affiliated Cancer Hospital of Harbin Medical University, Harbin, China
| | - Zhangyi Qu
- Department of Hygiene Microbiology, Public Health School of Harbin Medical University, Harbin, China
| | - Yupeng Liu
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Lu S, Ding X, Wang Y, Hu X, Sun T, Wei M, Wang X, Wu H. The Relationship Between the Network of Non-coding RNAs-Molecular Targets and N6-Methyladenosine Modification in Colorectal Cancer. Front Cell Dev Biol 2021; 9:772542. [PMID: 34938735 PMCID: PMC8685436 DOI: 10.3389/fcell.2021.772542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Recent accumulating researches implicate that non-coding RNAs (ncRNAs) including microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNAs) play crucial roles in colorectal cancer (CRC) initiation and development. Notably, N6-methyladenosine (m6A) methylation, the critical posttranscriptional modulators, exerts various functions in ncRNA metabolism such as stability and degradation. However, the interaction regulation network among ncRNAs and the interplay with m6A-related regulators has not been well documented, particularly in CRC. Here, we summarize the interaction networks and sub-networks of ncRNAs in CRC based on a data-driven approach from the publications (IF > 6) in the last quinquennium (2016–2021). Further, we extend the regulatory pattern between the core m6A regulators and m6A-related ncRNAs in the context of CRC metastasis and progression. Thus, our review will highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for improving the diagnostic precision and treatment of CRC.
Collapse
Affiliation(s)
- Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xiangyu Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yuanhe Wang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. Ltd., Liaoning, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
18
|
Uthman YA, Ibrahim KG, Abubakar B, Bello MB, Malami I, Imam MU, Qusty N, Cruz-Martins N, Batiha GES, Abubakar MB. MALAT1: A Promising Therapeutic Target for the Treatment of Metastatic Colorectal Cancer. Biochem Pharmacol 2021; 190:114657. [PMID: 34144008 DOI: 10.1016/j.bcp.2021.114657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/24/2022]
Abstract
Cancer metastasis research has emerged in recent years as one of the most important topics of debate in the discovery and development of novel anticancer therapies. Colorectal cancer (CRC), the third most common cancer worldwide, has a high mortality rate due to recurrence and distant metastasis to the liver. Several non-coding RNAs (ncRNAs) have been linked to metastatic CRC (mCRC), including the long non-coding RNA (lncRNA) Metastasis-Associated Lung-Adenocarcinoma Transcript 1 (MALAT1). MALAT1 is an RNA that has been linked to tumor cell proliferation, progression, epithelial-mesenchymal transition (EMT), cell migration and invasion, metastasis, and survival in mammalian species. Previously, there was no convincing evidence linking MALAT1 to mCRC. Studies have shown that MALAT1 functions as a competitive endogenous RNA (ceRNA) with microRNAs (miRNAs) and interacts directly with oncogenes and proteins. This RNA also activates several signaling pathways, including Wnt/β-catenin, PI3K/Akt/mTOR, and EMT. Meanwhile, standard chemotherapy and immunotherapy are the current treatment options for mCRC patients. However, evidence-based studies have recently demonstrated that inhibiting the MALAT1 RNA transcript can be considered as a treatment option for mCRC, highlighting the need to investigate its roles as a therapeutic target in mCRC. Thus, in this review, we looked at studies that linked MALAT1 to multiple signaling pathways implicated in mCRC, as well as its potential as a therapeutic target for the treatment of mCRC.
Collapse
Affiliation(s)
- Yaaqub Abiodun Uthman
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Naeem Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Portugal.
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria.
| |
Collapse
|
19
|
Liang R, Tang Y. LINC00467 knockdown repressed cell proliferation but stimulated cell apoptosis in glioblastoma via miR-339-3p/IP6K2 axis. Cancer Biomark 2021; 28:169-180. [PMID: 32176627 DOI: 10.3233/cbm-190939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Glioma is considered to be one of the most common and lethal malignant brain tumors, accounting for 40% to 50% of brain tumors. Long non-coding RNAs (lncRNAs) have been widely proved to play an irreplaceable role in the tumorigenesis and progression. Nevertheless, the role of LINC00467 in glioblastoma remained unclear. AIM The current study was aimed to explore the functional mechanism of LINC00467 in glioblastoma. METHODS The expression of LINC00467/miR-339-3p/IP6K2 glioblastoma tissues and cells was evaluated by RT-qPCR. The protein expression of genes (cleaved PARP, PARP, cleaved caspase 3, caspase 3, Bax, Bcl-2 and IP6K2) was measured by western blot assay. Then role of LINC00467 was demonstrated by EdU, colony formation, flow cytometry and TUNEL assays. The relationship between miR-339-3p and LINC00467/IP6K2 was validated by RNA pull down and luciferase reporter assays. RESULTS The expression of LINC00467 was upregulated in glioblastoma tissues and cells. LINC00467 knockdown suppressed cell proliferation but activated cell apoptosis. Further, LINC00467 high expression was associated with shorter overall survival rate in glioblastoma patients. Further, LINC00467 could bind with miR-339-3p, and IP6K2 was targeted by miR-339-3p. IP6K2 expression was regulated by LINC00467/miR-339-3p in a ceRNA pattern. Moreover, LINC00467 could regulate the development of glioblastoma via miR-339-3p/IP6K2 axis. CONCLUSIONS LINC00467 knockdown repressed cell proliferation but stimulated cell apoptosis in glioblastoma via miR-339-3p/IP6K2 axis, which may enlighten to find a novel therapeutic tactic for glioblastoma patients.
Collapse
|
20
|
Poltronieri P, Xu B, Giovinazzo G. Resveratrol and other Stilbenes: Effects on Dysregulated Gene Expression in Cancers and Novel Delivery Systems. Anticancer Agents Med Chem 2021; 21:567-574. [PMID: 32628597 DOI: 10.2174/1871520620666200705220722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 11/22/2022]
Abstract
Trans-resveratrol (RESV), pterostilbene, trans-piceid and trans-viniferins are bioactive stilbenes present in grapes and other plants. Several groups applied biotechnology to introduce their synthesis in plant crops. Biochemical interaction with enzymes, regulation of non-coding RNAs, and activation of signaling pathways and transcription factors are among the main effects described in literature. However, solubility in ethanol, short half-life, metabolism by gut bacteria, make the concentration responsible for the effects observed in cultured cells difficult to achieve. Derivatives obtained by synthesis, trans-resveratrol analogs and methoxylated stilbenes show to be more stable and allow the synthesis of bioactive compounds with higher bioavailability. However, changes in chemical structure may require testing for toxicity. Thus, the delivery of RESV and its natural analogs incorporated into liposomes or nanoparticles, is the best choice to ensure stability during administration and appropriate absorption. The application of RESV and its derivatives with anti-inflammatory and anticancer activity is presented with description of novel clinical trials.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Department of Agrofood and Biological Sciences, National Research Council, CNR-ISPA, Lecce, Italy
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Giovanna Giovinazzo
- Department of Agrofood and Biological Sciences, National Research Council, CNR-ISPA, Lecce, Italy
| |
Collapse
|
21
|
Chu C, Xu G, Li X, Duan Z, Tao L, Cai H, Yang M, Zhang X, Chen B, Zheng Y, Shi H, Li X. Sustained expression of MCP-1 induced low wall shear stress loading in conjunction with turbulent flow on endothelial cells of intracranial aneurysm. J Cell Mol Med 2020; 25:110-119. [PMID: 33332775 PMCID: PMC7810920 DOI: 10.1111/jcmm.15868] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Shear stress was reported to regulate the expression of AC007362, but its underlying mechanisms remain to be explored. In this study, to isolate endothelial cells of blood vessels, unruptured and ruptured intracranial aneurysm (IA) tissues were collected from IA patients. Subsequently, quantitative real‐time PCR (qRT‐PCR), Western blot and luciferase assay were performed to investigate the relationships between AC007362, miRNAs‐493 and monocyte chemoattractant protein‐1 (MCP‐1) in human umbilical vein endothelial cells (HUVECs) exposed to shear stress. Reduced representation bisulphite sequencing (RRBS) was performed to assess the level of DNA methylation in AC007362 promoter. Accordingly, AC007362 and MCP‐1 were significantly up‐regulated while miR‐493 was significantly down‐regulated in HUVECs exposed to shear stress. AC007362 could suppress the miR‐493 expression and elevate the MCP‐1 expression, and miR‐493 was shown to respectively target AC007362 and MCP‐1. Moreover, shear stress in HUVECs led to the down‐regulated DNA methyltransferase 1 (DNMT1), as well as the decreased DNA methylation level of AC007362 promoter. Similar results were also observed in ruptured IA tissues when compared with unruptured IA tissues. In conclusion, this study presented a deep insight into the operation of the regulatory network of AC007362, miR‐493 and MCP‐1 upon shear stress. Under shear stress, the expression of AC007362 was enhanced by the inhibited promoter DNA methylation, while the expression of MCP‐1 was enhanced by sponging the expression of miR‐493.
Collapse
Affiliation(s)
- Cheng Chu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Gang Xu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaocong Li
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zuowei Duan
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lihong Tao
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hongxia Cai
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ming Yang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xinjiang Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Bin Chen
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yanyu Zheng
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hongcan Shi
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Chen S, Shen X. Long noncoding RNAs: functions and mechanisms in colon cancer. Mol Cancer 2020; 19:167. [PMID: 33246471 PMCID: PMC7697375 DOI: 10.1186/s12943-020-01287-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022] Open
Abstract
Evidence indicates that long non-coding RNAs (lncRNAs) play a crucial role in the carcinogenesis and progression of a wide variety of human malignancies including colon cancer. In this review, we describe the functions and mechanisms of lncRNAs involved in colon oncogenesis, such as HOTAIR, PVT1, H19, MALAT1, SNHG1, SNHG7, SNHG15, TUG1, XIST, ROR and ZEB1-AS1. We summarize the roles of lncRNAs in regulating cell proliferation, cell apoptotic death, the cell cycle, cell migrative and invasive ability, epithelial-mesenchymal transition (EMT), cancer stem cells and drug resistance in colon cancer. In addition, we briefly highlight the functions of circRNAs in colon tumorigenesis and progression, including circPPP1R12A, circPIP5K1A, circCTIC1, circ_0001313, circRNA_104916 and circRNA-ACAP2. This review provides the rationale for anticancer therapy via modulation of lncRNAs and circular RNAs (circRNAs) in colon carcinoma.
Collapse
Affiliation(s)
- Sian Chen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, No 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, No 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
23
|
Yang Q, Chu W, Yang W, Cheng Y, Chu C, Pan X, Ye J, Cao J, Gan S, Cui X. Identification of RNA Transcript Makers Associated With Prognosis of Kidney Renal Clear Cell Carcinoma by a Competing Endogenous RNA Network Analysis. Front Genet 2020; 11:540094. [PMID: 33193613 PMCID: PMC7593646 DOI: 10.3389/fgene.2020.540094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Objective This study aims to identify several RNA transcripts associated with the prognosis of kidney renal clear cell carcinoma (KIRC). Methods The differentially expressed mRNAs, lncRNAs, and miRNAs (DEmRNAs, DElncRNAs, and DEmiRNAs) between KIRC cases and controls were screened based on an RNA-seq dataset from The Cancer Genome Atlas (TCGA) database. Subsequently, miRcode, miRDB, and TargetScan database were used to predict interactions between lncRNAs, miRNAs and target mRNAs. Then, a ceRNA network was built using miRNAs-mRNAs and lncRNAs-miRNAs pairs. Functional analysis of mRNAs in ceRNA was performed. Finally, the survival analysis of RNA transcripts in ceRNA network and correlation analysis for key RNA regulators were carried out. Results There were 1527 DElncRNAs, 54 DEmiRNAs, and 2321 DEmRNAs. A ceRNA network was constructed among 81 lncRNAs, 9 miRNAs, and 197 mRNAs. Functional analysis showed that numerous mRNAs were significantly associated with regulation of cellular glucuronidation. In addition, 35 lncRNAs, 84 mRNAs and two miRNAs were significantly corelated to the survival of patients with KIRC (P < 0.05). Among them, miRNA-21 and miRNA-155 were negatively related to three lncRNAs (LINC00472, SLC25A5.AS1, and TCL6). Seven mRNA targets of miRNA-21 (FASLG, FGF1, TGFBI, ALX1, SLC30A10, ADCY2, and ABAT) and 12 mRNAs targets of miRNA-155 (STXBP5L, SCG2, SPI1, C12orf40, TYRP1, CTHRC1, TDO2, PTPRQ, TRPM8, ERMP1, CD36, and ST9SIA4) also acted as prognostic biomarkers for KIRC patients. Conclusion We screened numerous novel prognosis-related RNA markers for KIRC patients by a ceRNA network analysis, providing deeper understandings of prognostic values of RNA transcripts for KIRC.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Urology, Gongli Hospital, Shanghai, China.,Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Weiwei Chu
- Laboratory of Nano Biomedicine and International Joint Cancer Institute, Second Military Medical University, Shanghai, China
| | - Wei Yang
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Yanqiong Cheng
- Department of Pharmaceutical College, Naval Military Medical University, Shanghai, China
| | - Chuanmin Chu
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Xiuwu Pan
- Department of Urology, Gongli Hospital, Shanghai, China
| | - Jianqing Ye
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Jianwei Cao
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Sishun Gan
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Xingang Cui
- Department of Urology, Gongli Hospital, Shanghai, China.,Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| |
Collapse
|
24
|
Targeting MALAT1 induces DNA damage and sensitize non-small cell lung cancer cells to cisplatin by repressing BRCA1. Cancer Chemother Pharmacol 2020; 86:663-672. [PMID: 33030583 DOI: 10.1007/s00280-020-04152-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA which has been identified to be involved in alternative non-homologous end joining (A-NHEJ) pathways by binding with PARP1 and LIG3 in myeloma cells. This study aims to explore the roles of MALAT1 in DNA repair processes in non-small cell lung cancer (NSCLC). METHODS The interactions between MALAT1 and proteins were identified by co-immunoprecipitation and RNA pulldown. The interactions between MALAT1 and microRNAs (miRNA) were predicted by bioinformatics tools and confirmed by luciferase assay and RNA pulldown. The DNA damages were quantified by comet assay. The cell viability was examined by MTT assay and the cell apoptosis was determined by flow cytometry. RESULTS MALAT1 is identified to be involved in A-NHEJ pathway in NSCLC cells. However, in LIG3-null cells where A-NHEJ pathway is inactivated, targeting MALAT1 still increases DNA damages, suggesting that MALAT1 participates in other DNA repair pathways. Subsequently, MALAT1 is identified to bind with miR-146a and miR-216b, which directly target the 3'UTR of BRCA1. MALAT1 is confirmed to functions as a competing endogenous RNA (ceRNA) absorbing miR-146a and miR-216b, upregulating BRCA1 expression and protecting Homologous Recombination (HR) pathway in NSCLC cells. Finally, overexpression MALAT1 protects NSCLC cells from the cytotoxic effect of cisplatin. While, targeting MALAT1 in NSCLC cells induces DNA damages by repressing HR pathway and sensitizes NSCLC cells to cisplatin which had the potential for NSCLC treatment. CONCLUSION MALAT1 is involved in HR pathway by protecting BRCA1 and targeting MALAT1 induces DNA damages in NSCLC.
Collapse
|
25
|
Chen FR, Wang Y, Cheng Y, Shi HT, Li H, Jia M, Sha SM, Dong L. The AC006262.5-miR-7855-5p-BPY2C axis facilitates hepatocellular carcinoma proliferation and migration. Biochem Cell Biol 2020; 99:348-355. [PMID: 32956593 DOI: 10.1139/bcb-2019-0239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is typically fatal, and patients with hepatocellular carcinoma are usually diagnosed at the late stages. Although the treatments for HCC have been rapidly advancing, novel targets for HCC are still desperately needed, especially for targeted therapies. Here, we identified an enriched long non-coding RNA, AC006262.5, associated with HCC, that promoted the proliferation, migration, and invasiveness of HCC cells, both in vitro and in vivo. In addition, our results revealed that AC006262.5 bound to and regulated miR-7855-5p, a tumor-suppressive miRNA, in HCC. Moreover, our data show that AC006262.5 regulates the expression of BPY2C via miR-7855-5p. Finally, we found that AC006262.5 and miR-7855-5p formed a regulatory loop. Upregulation of AC006262.5 resulted in decreased expression of miR-7855-5p, and downregulation of miR-7855-5p further facilitated the expression of AC006262.5. Our work provides novel targets for HCC diagnosis and treatment, and sheds light on the lncRNA-miRNA regulatory nexus that controls the pathology of HCC.
Collapse
Affiliation(s)
- Fen-Rong Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China.,Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China
| | - Yan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China.,Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China
| | - Yan Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China.,Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China
| | - Hai-Tao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China.,Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China.,Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China
| | - Miao Jia
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China.,Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China
| | - Su-Mei Sha
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China.,Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China.,Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No 157 Xinwu Road, Xi'an, 710004, China
| |
Collapse
|
26
|
Grigaitis P, Starkuviene V, Rost U, Serva A, Pucholt P, Kummer U. miRNA target identification and prediction as a function of time in gene expression data. RNA Biol 2020; 17:990-1000. [PMID: 32249661 PMCID: PMC7549638 DOI: 10.1080/15476286.2020.1748921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/01/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
The understanding of miRNA target interactions is still limited due to conflicting data and the fact that high-quality validation of targets is a time-consuming process. Faster methods like high-throughput screens and bioinformatics predictions are employed but suffer from several problems. One of these, namely the potential occurrence of downstream (i.e. secondary) effects in high-throughput screens has been only little discussed so far. However, such effects limit usage for both the identification of interactions and for the training of bioinformatics tools. In order to analyse this problem more closely, we performed time-dependent microarray screening experiments overexpressing human miR-517a-3p, and, together with published time-dependent datasets of human miR-17-5p, miR-135b and miR-124 overexpression, we analysed the dynamics of deregulated genes. We show that the number of deregulated targets increases over time, whereas seed sequence content and performance of several miRNA target prediction algorithms actually decrease over time. Bioinformatics recognition success of validated miR-17 targets was comparable to that of data gained only 12 h post-transfection. We therefore argue that the timing of microarray experiments is of critical importance for detecting direct targets with high confidence and for the usability of these data for the training of bioinformatics prediction tools.
Collapse
Affiliation(s)
- Pranas Grigaitis
- Centre for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | - Vytaute Starkuviene
- Centre for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
- Institute of Biosciences, Vilnius University Life Sciences Centre, Vilnius, Lithuania
| | - Ursula Rost
- Centre for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | - Andrius Serva
- Centre for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | - Pascal Pucholt
- Centre for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | - Ursula Kummer
- Centre for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
27
|
Long noncoding RNA DLEU2 predicts a poor prognosis and enhances malignant properties in laryngeal squamous cell carcinoma through the miR-30c-5p/PIK3CD/Akt axis. Cell Death Dis 2020; 11:472. [PMID: 32555190 PMCID: PMC7303144 DOI: 10.1038/s41419-020-2581-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been identified as potential prognostic tools and therapeutic biomarkers for a variety of human cancers. However, the functional roles and underlying mechanisms of key lncRNAs affecting laryngeal squamous cell carcinomas (LSCCs) are largely unknown. Here, we adopted a novel subpathway strategy based on the lncRNA-mRNA profiles from the Cancer Genome Atlas (TCGA) database and identified the lncRNA deleted in lymphocytic leukemia 2 (DLEU2) as an oncogene in the pathogenesis of LSCCs. We found that DLEU2 was significantly upregulated and predicted poor clinical outcomes in LSCC patients. In addition, ectopic overexpression of DLEU2 promoted the proliferation and migration of LSCC cells both in vivo and in vitro. Mechanistically, DLEU2 served as a competing endogenous RNA to regulate PIK3CD expression by sponging miR-30c-5p and subsequently activated the Akt signaling pathway. As a target gene of DLEU2, PIK3CD was also upregulated and could predict a poor prognosis in LSCC patients. In conclusion, we found that the novel LSCC-related gene DLEU2 enhances the malignant properties of LSCCs via the miR-30c-5p/PIK3CD/Akt axis. DLEU2 and its targeted miR-30c-5p/PIK3CD/Akt axis may represent valuable prognostic biomarkers and therapeutic targets for LSCCs.
Collapse
|
28
|
Zheng X, Ren J, Peng B, Ye J, Wu X, Zhao W, Li Y, Chen R, Gong X, Bai C, Wang Y, Zhao H, Zhang Y. MALAT1 overexpression promotes the growth of colon cancer by repressing β-catenin degradation. Cell Signal 2020; 73:109676. [PMID: 32485228 DOI: 10.1016/j.cellsig.2020.109676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022]
Abstract
Colon cancer is one of the most common types of cancer and more than 80% of colon cancer cases are associated with Wnt-β-catenin signaling activation. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a multi-functional long non-coding RNA that is overexpressed in many types of cancers, including colon cancer. In this study, MALAT1 and β-catenin were found to be overexpressed in tumor samples from 62 patients with colon cancer. A positive correlation was identified between MALAT1 levels and β-catenin protein levels in tumors. MALAT1 was found to upregulate β-catenin protein levels in HCT116 and LOVO cells without changing the mRNA expression levels. β-catenin degradation was confirmed to be upregulated in MALAT1-knockdown cells and inhibited in cells overexpressing MALAT1 overexpressing. MALAT1 was then identified as a negative regulator of GSK-3β; it did so via promotion of H3K27 trimethylation of the promoter region. In conclusion, MALAT1 is an oncogene in colon cancer, which inhibits β-catenin degradation by upregulating H3K27 trimethylation and repressing GSK-3β expression.
Collapse
Affiliation(s)
- Xiaoying Zheng
- Department of Pathology, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, China
| | - Jianhua Ren
- Department of EEG and Neuromyoelectric diagnosis, Chengde Central Hospital, Chengde, Hebei 067000, China
| | - Bingjun Peng
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, China
| | - Junling Ye
- Department of Pathology, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, China
| | - Xinchun Wu
- The Fourth department in Qianxi County people's Hospital, Tangshan, Hebei 064308, China
| | - Wenhui Zhao
- Department of Pathology, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, China
| | - Yanjun Li
- Department of Pathology, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, China
| | - Ruihui Chen
- Department of Pathology, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, China
| | - Xue Gong
- Department of Pathology, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, China
| | - Chengmei Bai
- Department of Pathology, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, China
| | - Yating Wang
- Department of Pathology, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, China
| | - Haiyun Zhao
- Menyuan Hui Autonomous County traditional Chinese Medicine Hospital, Xining, Qinghai 810300, China
| | - Yiqing Zhang
- Department of Pathology, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, China.
| |
Collapse
|
29
|
Li H, Tian X, Wang P, Hu J, Qin R, Xu R, Liu K, Hao J, Tian N. LINC01128 resisted acute myeloid leukemia through regulating miR-4260/NR3C2. Cancer Biol Ther 2020; 21:615-622. [PMID: 32338183 DOI: 10.1080/15384047.2020.1740054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a prevalent class of blood disease with a high occurrence rate and relapse rate. The role of dysregulated microRNAs (miRNAs) in AML is emerging. MiR-4260 was identified to be a carcinogenic miRNA in colorectal cancer, but never has it been reported in AML. We aimed to study the function and mechanism of miR-4260 in AML. The miR-4260 level was higher in AML cell lines than the normal cell lines. Inhibition of miR-4260 hindered proliferation and increased apoptosis of AML cells. Mechanistically, long intergenic non-protein coding RNA 1128 (LINC01128) competed with nuclear receptor subfamily 3 group C member 2 (NR3C2) for miR-4260 so as to upregulate NR3C2. We identified the reduced levels of LINC01128 and NR3C2 in AML and it was suggested through rescue assays that LINC01128 repressed AML progression through regulating miR-4260/NR3C2 axis. In conclusion, we firstly uncovered that LINC01128 resisted acute myeloid leukemia through regulating miR-4260/NR3C2, providing novel clues for the treatment improvement of AML.
Collapse
Affiliation(s)
- Haixia Li
- The Third Department of Rehabilitation (Department of Integrated Chinese and Western Medicine), Hunan Children's Hospital , Changsha, Hunan, China.,Hunan University of Chinese Medicine , Changsha, Hunan, China
| | - Xuefei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine
| | - Paoqiu Wang
- The Third Department of Rehabilitation (Department of Integrated Chinese and Western Medicine), Hunan Children's Hospital , Changsha, Hunan, China
| | - Jihong Hu
- The First Department of Rehabilitation, Hunan Children's Hospital , Changsha, Hunan, China
| | - Rong Qin
- The Second Department of Rehabilitation, Hunan Children's Hospital , Changsha, Hunan, China
| | - Ronghua Xu
- Department of Hematology, The First Hospital of Hunan University of Traditional Chinese Medicine , Changsha, Hunan, China
| | - Kai Liu
- Department of Hematology, The First Hospital of Hunan University of Traditional Chinese Medicine , Changsha, Hunan, China
| | - Jingquan Hao
- Department of Hematology, The First Hospital of Hunan University of Traditional Chinese Medicine , Changsha, Hunan, China
| | - Nie Tian
- Department of Hematology, The First Hospital of Hunan University of Traditional Chinese Medicine , Changsha, Hunan, China
| |
Collapse
|
30
|
Fan L, Huang X, Chen J, Zhang K, Gu YH, Sun J, Cui SY. Long Noncoding RNA MALAT1 Contributes to Sorafenib Resistance by Targeting miR-140-5p/Aurora-A Signaling in Hepatocellular Carcinoma. Mol Cancer Ther 2020; 19:1197-1209. [PMID: 32220970 DOI: 10.1158/1535-7163.mct-19-0203] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 09/09/2019] [Accepted: 03/11/2020] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs (lncRNA) have been found to play critical roles in tumorigenesis and the development of various cancers, including hepatocellular carcinoma (HCC). Metastasis associated with lung adenocarcinoma transcript-1 (MALAT1) has been identified as an oncogene and prognostic biomarker in HCC. Here, we demonstrated that MALAT1 expression was obviously high in sorafenib-resistant HCC cells. Furthermore, knockdown of MALAT1 increased sorafenib sensitivity in nonresponsive HCC cells, whereas forced expression of MALAT1 conferred sorafenib resistance to responsive HCC cells in vitro In addition, loss/gain-of-function assays revealed that MALAT1 promoted cell proliferation, migration, and epithelial-mesenchymal transition in HCC cells. Mechanistically, MALAT1 regulated Aurora-A expression by sponging miR-140-5p, thus promoting sorafenib resistance in HCC cells. Moreover, MALAT1 inhibition enhanced the antitumor efficacy of sorafenib in vivo Clinically, we found that MALAT1 expression was negatively correlated with miR-140-5p expression but positively correlated with Aurora-A expression in patients with HCC and that upregulated MALAT1 was closely correlated with poor survival outcomes in patients with HCC. These findings indicated that MALAT1 may be a novel target for prognosis prediction and therapeutic strategies in patients with HCC treated with sorafenib.
Collapse
Affiliation(s)
- Lei Fan
- Department of General Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nangjing, P.R. China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jing Chen
- Department of Respiratory, Zhongda Hospital, Southeast University, Nanjing, P.R. China
| | - Kai Zhang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yan-Hong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jing Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Shi-Yun Cui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| |
Collapse
|
31
|
Knockdown of LINC00467 contributed to Axitinib sensitivity in hepatocellular carcinoma through miR-509-3p/PDGFRA axis. Gene Ther 2020; 28:634-645. [DOI: 10.1038/s41434-020-0137-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
|
32
|
Lapitz A, Arbelaiz A, O’Rourke CJ, Lavin JL, La Casta A, Ibarra C, Jimeno JP, Santos-Laso A, Izquierdo-Sanchez L, Krawczyk M, Perugorria MJ, Jimenez-Aguero R, Sanchez-Campos A, Riaño I, Gónzalez E, Lammert F, Marzioni M, Macias RI, Marin JJ, Karlsen TH, Bujanda L, Falcón-Pérez JM, Andersen JB, Aransay AM, Rodrigues PM, Banales JM. Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis. Cells 2020; 9:721. [PMID: 32183400 PMCID: PMC7140677 DOI: 10.3390/cells9030721] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
: Cholangiocarcinoma (CCA) comprises a group of heterogeneous biliary cancers with dismal prognosis. The etiologies of most CCAs are unknown, but primary sclerosing cholangitis (PSC) is a risk factor. Non-invasive diagnosis of CCA is challenging and accurate biomarkers are lacking. We aimed to characterize the transcriptomic profile of serum and urine extracellular vesicles (EVs) from patients with CCA, PSC, ulcerative colitis (UC), and healthy individuals. Serum and urine EVs were isolated by serial ultracentrifugations and characterized by nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting. EVs transcriptome was determined by Illumina gene expression array [messenger RNAs (mRNA) and non-coding RNAs (ncRNAs)]. Differential RNA profiles were found in serum and urine EVs from patients with CCA compared to control groups (disease and healthy), showing high diagnostic capacity. The comparison of the mRNA profiles of serum or urine EVs from patients with CCA with the transcriptome of tumor tissues from two cohorts of patients, CCA cells in vitro, and CCA cells-derived EVs, identified 105 and 39 commonly-altered transcripts, respectively. Gene ontology analysis indicated that most commonly-altered mRNAs participate in carcinogenic steps. Overall, patients with CCA present specific RNA profiles in EVs mirroring the tumor, and constituting novel promising liquid biopsy biomarkers.
Collapse
Affiliation(s)
- Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Ander Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Colm J. O’Rourke
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), 2200 Copenhagen, Denmark; (C.J.O.); (J.B.A.)
| | - Jose L. Lavin
- CIC bioGUNE, Genome Analysis Platform, 48160 Derio, Spain; (J.L.L.); (A.M.A.)
| | - Adelaida La Casta
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Cesar Ibarra
- Hospital of Cruces, 48903 Bilbao, Spain; (C.I.); (A.S.-C.)
| | - Juan P. Jimeno
- “Complejo Hospitalario de Navarra”, 31008 Pamplona, Spain;
| | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Centre, Saarland University, 66421 Homburg, Germany; (M.K.); (F.L.)
- Department of General, Transplant and Liver Surgery, Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, 02-091 Warsaw, Poland
| | - Maria J. Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
| | - Raul Jimenez-Aguero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | | | - Ioana Riaño
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Esperanza Gónzalez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Exosomes Laboratory, 48160 Derio, Spain;
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Centre, Saarland University, 66421 Homburg, Germany; (M.K.); (F.L.)
| | - Marco Marzioni
- Department of Gastroenterology, “Università Politecnica delle Marche”, 60121 Ancona, Italy;
| | - Rocio I.R. Macias
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain; (R.I.R.M.); (J.J.G.M.)
| | - Jose J.G. Marin
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain; (R.I.R.M.); (J.J.G.M.)
| | - Tom H. Karlsen
- Division of Cancer Medicine, Surgery and Transplantation, Norwegian PSC Research Center, Oslo University Hospital, 0372 Oslo, Spain;
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
| | - Juan M. Falcón-Pérez
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Exosomes Laboratory, 48160 Derio, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jesper B. Andersen
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), 2200 Copenhagen, Denmark; (C.J.O.); (J.B.A.)
| | - Ana M. Aransay
- CIC bioGUNE, Genome Analysis Platform, 48160 Derio, Spain; (J.L.L.); (A.M.A.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
| | - Pedro M. Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (A.L.); (A.A.); (A.L.C.); (A.S.-L.); (L.I.-S.); (M.J.P.); (R.J.-A.); (I.R.); (L.B.)
- Carlos III National Institute of Health, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), 28220 Madrid, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
33
|
Liu GM, Lu TC, Sun ML, Ji X, Zhao YA, Jia WY, Luo YG. RP11-874J12.4 promotes oral squamous cell carcinoma tumorigenesis via the miR-19a-5p/EBF1 axis. J Oral Pathol Med 2020; 49:645-654. [PMID: 32004389 DOI: 10.1111/jop.13000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/14/2020] [Accepted: 01/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) ranks as the fifth most frequent cancer worldwide, and the recurrence and migration of OSCC still pose large threats to patients. Long non-coding RNAs (lncRNAs) have recently emerged as crucial players in cancer development, and it is of great significance to understand the regulatory nexus of lncRNAs in OSCC. METHODS Here, we identified a novel lncRNA, RP11-874J12.4, which is ectopically expressed in OSCC and facilitates OSCC. RESULTS RP11-874J12.4 directly binds to and regulates miR-19a-5p. Interestingly, RP11-874J12.4 and miR-19a-5p form a negative regulatory loop that inhibits the expression of miR-19a-5p in OSCC. The expression of an oncogenic transcription factor, EBF1, is unleashed in OSCC due to the low expression of miR-19a-5p, which promotes the growth and migration of OSCC. CONCLUSION Our data illustrate a regulatory axis of RP11-874J12.4/miR-19a-5P/EBF1 and an inhibitory loop with RP11-874J12.4 and miR-19a-5p. These data provide insights into the tumorigenesis of OSCC and the novel drug targets for OSCC.
Collapse
Affiliation(s)
- Guo-Min Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China.,Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China
| | - Tian-Cheng Lu
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Life Sciences College, Jilin Agricultural University, Changchun, China
| | - Mao-Lei Sun
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| | - Xuan Ji
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| | - Yi-An Zhao
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| | - Wen-Yuan Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China.,Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China
| | - Yun-Gang Luo
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Ma WR, Xu P, Liu ZJ, Zhou J, Gu LK, Zhang J, Deng DJ. Impact of GFRA1 gene reactivation by DNA demethylation on prognosis of patients with metastatic colon cancer. World J Gastroenterol 2020; 26:184-198. [PMID: 31988584 PMCID: PMC6962434 DOI: 10.3748/wjg.v26.i2.184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The expression of the membrane receptor protein GFRA1 is frequently upregulated in many cancers, which can promote cancer development by activating the classic RET-RAS-ERK and RET-RAS-PI3K-AKT pathways. Several therapeutic anti-GFRA1 antibody-drug conjugates are under development. Demethylation (or hypomethylation) of GFRA1 CpG islands (dmGFRA1) is associated with increased gene expression and metastasis risk of gastric cancer. However, it is unknown whether dmGFRA1 affects the metastasis of other cancers, including colon cancer (CC).
AIM To study whether dmGFRA1 is a driver for CC metastasis and GFRA1 is a potential therapeutic target.
METHODS CC and paired surgical margin tissue samples from 144 inpatients and normal colon mucosal biopsies from 21 noncancer patients were included in this study. The methylation status of GFRA1 islands was determined by MethyLight and denaturing high-performance liquid chromatography and bisulfite-sequencing. Kaplan-Meier analysis was used to explore the effect of dmGFRA1 on the survival of CC patients. Impacts of GFRA1 on CC cell proliferation and migration were evaluated by a battery of biological assays in vitro and in vivo. The phosphorylation of AKT and ERK proteins was examined by Western blot analysis.
RESULTS The proportion of dmGFRA1 in CC, surgical margin, and normal colon tissues by MethyLight was 68.4%, 73.4%, and 35.9% (median; nonparametric test, P = 0.001 and < 0.001), respectively. Using the median value of dmGFRA1 peak area proportion as the cutoff, the proportion of dmGFRA1-high samples was much higher in poorly differentiated CC samples than in moderately or well-differentiated samples (92.3%% vs 55.8%, Chi-square test, P = 0.002) and significantly higher in CC samples with distant metastasis than in samples without (77.8% vs 46.0%, P = 0.021). The overall survival of patients with dmGFRA1-low CC was significantly longer than that of patients with dmGFRA1-high CC (adjusted hazard ratio = 0.49, 95% confidence interval: 0.24-0.98), especially for 89 CC patients with metastatic CC (adjusted hazard ratio = 0.41, 95% confidence interval: 0.18-0.91). These data were confirmed by the mining results from TCGA datasets. Furthermore, GFRA1 overexpression significantly promoted the proliferation/invasion of RKO and HCT116 cells and the growth of RKO cells in nude mice but did not affect their migration. GFRA1 overexpression markedly increased the phosphorylation levels of AKT and ERK proteins, two key molecules in two classic GFRA1 downstream pathways.
CONCLUSION GFRA1 expression is frequently reactivated by DNA demethylation in CC tissues and is significantly associated with a poor prognosis in patients with CC, especially those with metastatic CC. GFRA1 can promote the proliferation/growth of CC cells, probably by the activation of AKT and ERK pathways. GFRA1 might be a therapeutic target for CC patients, especially those with metastatic potential.
Collapse
Affiliation(s)
- Wan-Ru Ma
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100143, China
| | - Peng Xu
- Shihezi University School of Medicine, Shihezi 832000, Xinjiang Uygur Autonomous Region, China
- Morphological Center of Basic Medical School of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous Region, China
| | - Zhao-Jun Liu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100143, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100143, China
| | - Lian-Kun Gu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100143, China
| | - Jun Zhang
- Shihezi University School of Medicine, Shihezi 832000, Xinjiang Uygur Autonomous Region, China
| | - Da-Jun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100143, China
| |
Collapse
|
35
|
Ferro E, Enrico Bena C, Grigolon S, Bosia C. From Endogenous to Synthetic microRNA-Mediated Regulatory Circuits: An Overview. Cells 2019; 8:E1540. [PMID: 31795372 PMCID: PMC6952906 DOI: 10.3390/cells8121540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are short non-coding RNAs that are evolutionarily conserved and are pivotal post-transcriptional mediators of gene regulation. Together with transcription factors and epigenetic regulators, they form a highly interconnected network whose building blocks can be classified depending on the number of molecular species involved and the type of interactions amongst them. Depending on their topology, these molecular circuits may carry out specific functions that years of studies have related to the processing of gene expression noise. In this review, we first present the different over-represented network motifs involving microRNAs and their specific role in implementing relevant biological functions, reviewing both theoretical and experimental studies. We then illustrate the recent advances in synthetic biology, such as the construction of artificially synthesised circuits, which provide a controlled tool to test experimentally the possible microRNA regulatory tasks and constitute a starting point for clinical applications.
Collapse
Affiliation(s)
- Elsi Ferro
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Chiara Enrico Bena
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Silvia Grigolon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carla Bosia
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
36
|
Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long Noncoding RNA (lncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. Int J Mol Sci 2019; 20:E5758. [PMID: 31744051 PMCID: PMC6888455 DOI: 10.3390/ijms20225758] [Citation(s) in RCA: 439] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and has a high metastasis and reoccurrence rate. Long noncoding RNAs (lncRNAs) play an important role in CRC growth and metastasis. Recent studies revealed that lncRNAs participate in CRC progression by coordinating with microRNAs (miRNAs) and protein-coding mRNAs. LncRNAs function as competitive endogenous RNAs (ceRNAs) by competitively occupying the shared binding sequences of miRNAs, thus sequestering the miRNAs and changing the expression of their downstream target genes. Such ceRNA networks formed by lncRNA/miRNA/mRNA interactions have been found in a broad spectrum of biological processes in CRC, including liver metastasis, epithelial to mesenchymal transition (EMT), inflammation formation, and chemo-/radioresistance. In this review, we summarize typical paradigms of lncRNA-associated ceRNA networks, which are involved in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the competitive crosstalk among RNA transcripts and the novel targets for CRC prognosis and therapy.
Collapse
Affiliation(s)
- Liye Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX,77204, USA; (K.B.C.); (Y.L.); (G.T.); (Z.X.)
| | | | | | | | | | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX,77204, USA; (K.B.C.); (Y.L.); (G.T.); (Z.X.)
| |
Collapse
|
37
|
Lu Q, Meng Q, Qi M, Li F, Liu B. Shear-Sensitive lncRNA AF131217.1 Inhibits Inflammation in HUVECs via Regulation of KLF4. Hypertension 2019; 73:e25-e34. [PMID: 30905197 DOI: 10.1161/hypertensionaha.118.12476] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atherosclerosis is one of the most common vascular diseases, and inflammation participates in all stages of its progression. Laminar shear stress protects arteries from atherosclerosis and reduces endothelial inflammation. Long noncoding RNAs have emerged as critical regulators in many diseases, including atherosclerosis. However, the expression and functions of long noncoding RNAs subjected to laminar shear stress in endothelial cells remain unclear. This study aimed to reveal the mechanism by which shear stress-regulated long noncoding RNAs contribute to anti-inflammation. In this study, we identified a novel long noncoding RNA AF131217.1, which was upregulated after laminar shear stress treatment in human umbilical vein endothelial cells. Knockdown of AF131217.1 inhibited flow-mediated reduction of monocyte adhesion VCAM-1 (vascular cell adhesion molecule-1) and ICAM-1 (intercellular adhesion molecule-1) expression and inhibited flow-mediated enhancement of flow-responsive expression of KLF (Kruppel-like factor) 2 and eNOS (endothelial NO synthase). Furthermore, TNF-α (tumor necrosis factor-α) was used to induce an inflammatory response in human umbilical vein endothelial cells. Knockdown of AF131217.1 promoted ICAM-1 and VCAM-1 expression, as well as changes in monocyte adhesion and KLF2 and eNOS expression induced by TNF-α. Mechanistic investigations indicated that AF131217.1 acted as a competing endogenous RNA for miR-128-3p, leading to regulation of its target gene KLF4. In conclusion, our study demonstrates for the first time that laminar shear stress regulates the expression of AF131217.1 in human umbilical vein endothelial cells, and the AF131217.1/miR-128-3p/KLF4 axis plays a vital role in atherosclerosis development.
Collapse
Affiliation(s)
- Qing Lu
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Qingyu Meng
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Mingran Qi
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Fan Li
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, Jilin, China (B.L.)
| |
Collapse
|
38
|
Es-Haghi M, Godakumara K, Häling A, Lättekivi F, Lavrits A, Viil J, Andronowska A, Nafee T, James V, Jaakma Ü, Salumets A, Fazeli A. Specific trophoblast transcripts transferred by extracellular vesicles affect gene expression in endometrial epithelial cells and may have a role in embryo-maternal crosstalk. Cell Commun Signal 2019; 17:146. [PMID: 31727082 PMCID: PMC6854687 DOI: 10.1186/s12964-019-0448-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background Successful establishment of pregnancy hinges on appropriate communication between the embryo and the uterus prior to implantation, but the nature of this communication remains poorly understood. Here, we tested the hypothesis that the endometrium is receptive to embryo-derived signals in the form of RNA. Methods We have utilized a non-contact co culture system to simulate the conditions of pre implantation environment of the uterus. We bioorthogonally tagged embryonic RNA and tracked the transferred transcripts to endometrium. Transferred transcripts were separated from endometrial transcripts and sequenced. Changes in endometrial transcripts were quantified using quantitative PCR. Results We show that three specific transcripts are transferred to endometrial cells. We subsequently demonstrate a role of extracellular vesicles (EVs) in this process, as EVs obtained from cultured trophoblast spheroids incubated with endometrial cells induced down-regulation of all the three identified transcripts in endometrial cells. Finally, we show that EVs/nanoparticles captured from conditioned culture media of viable embryos as opposed to degenerating embryos induce ZNF81 down-regulation in endometrial cells, hinting at the functional importance of this intercellular communication. Conclusion Ultimately, our findings demonstrate the existence of an RNA-based communication which may be of critical importance for the establishment of pregnancy.
Collapse
Affiliation(s)
- Masoumeh Es-Haghi
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Kasun Godakumara
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Annika Häling
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Freddy Lättekivi
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Arina Lavrits
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Janeli Viil
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Tamer Nafee
- Academic unit of reproductive and developmental medicine, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Ülle Jaakma
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Competence Centre on Health Technologies, Tartu, Estonia.,Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alireza Fazeli
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia. .,Academic unit of reproductive and developmental medicine, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
| |
Collapse
|
39
|
Metastasis Associated Lung Adenocarcinoma Transcript 1: An update on expression pattern and functions in carcinogenesis. Exp Mol Pathol 2019; 112:104330. [PMID: 31712117 DOI: 10.1016/j.yexmp.2019.104330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/03/2019] [Indexed: 12/28/2022]
Abstract
The Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is among long non-coding RNAs (lncRNAs) which has disapproved the old term of "junk DNA" which was used for majority of human genome which are not transcribed to proteins. An extensive portion of literature points to the fundamental role of this lncRNA in tumorigenesis process of diverse cancers ranging from solid tumors to leukemia. Being firstly identified in lung cancer, it has prognostic and diagnostic values in several cancer types. Consistent with the proposed oncogenic roles for this lncRNA, most of studies have shown up-regulation of MALAT1 in malignant tissues compared with non-malignant/normal tissues of the same source. However, few studies have shown down-regulation of MALAT1 in breast cancer, endometrial cancer, colorectal cancer and glioma. In the current study, we have conducted a comprehensive literature search and provided an up-date on the role of MALAT1 in cancer biology. Our investigation underscores a potential role as a diagnostic/prognostic marker and a putative therapeutic target for MALAT1.
Collapse
|
40
|
Liu C, Ren S, Zhao S, Wang Y. LncRNA MALAT1/MiR-145 Adjusts IL-1β-Induced Chondrocytes Viability and Cartilage Matrix Degradation by Regulating ADAMTS5 in Human Osteoarthritis. Yonsei Med J 2019; 60:1081-1092. [PMID: 31637891 PMCID: PMC6813144 DOI: 10.3349/ymj.2019.60.11.1081] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Accumulating evidence suggests that microRNA-145 (miR-145) plays an important role in osteoarthritis (OA), which is a chronic progressive joint disease. Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes metastasis in cancers and functions as a sponge for miR-145. However, the role of MALAT1/miR-145 in OA pathogenesis has not yet been elucidated. MATERIALS AND METHODS The expression of MALAT1 and miR-145 was examined by quantitative real-time PCR; the interaction between miR-145, MALAT1 and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 5 was verified by luciferase reporter assay. Correlations among MALAT1, miR-145, and ADAMTS5 were analyzed by Spearman rank analysis. Chondrocytes viability and cartilage extracellular matrix (ECM) degradation were investigated with cell viability assay and Western blotting analyzing expression of ADAMTS5, collagen type 2 alpha 1 (COL2A1), aggrecan (ACAN), and cartilage oligomeric matrix protein (COMP). RESULTS MALAT1 was upregulated, and miR-145 was downregulated in OA samples and IL-1β-induced chondrocytes. Mechanically, miR-145 could directly bind to MALAT1 and ADAMTS5. Moreover, miR-145 expression was negatively correlated with MALAT1 and ADAMTS5 expression in OA patients, whereas MALAT1 and ADAMTS5 expression was positively correlated. Functionally, overexpression of MALAT1 inhibited chondrocyte viability and promoted cartilage ECM degradation in IL-1β-induced chondrocytes. In support thereof, MALAT1 silencing and miR-145 upregulation exerted the opposite effect in IL-1β-induced chondrocytes. Moreover, the effect of MALAT1 was counteracted by miR-145 upregulation, and ADAMTS5 restoration could abate miR-145 effects. CONCLUSION An MALAT1/miR-145 axis contributes to ECM degradation in IL-1β-induced chondrocytes through targeting ADAMTS5, suggesting that MALAT1/miR-145/ADAMTS5 signaling may underlie human OA pathogenesis.
Collapse
Affiliation(s)
- Chengyao Liu
- Department of Bone and Joint Surgery, The Sixth People's Hospital of Ji'nan City (Zhangqiu People's Hospital affiliated to Jining Medical University), Shandong, China
| | - Shan Ren
- Department of Bone and Joint Surgery, The Sixth People's Hospital of Ji'nan City (Zhangqiu People's Hospital affiliated to Jining Medical University), Shandong, China
| | - Shifeng Zhao
- Department of Dermatology, The Sixth People's Hospital of Ji'nan City (Zhangqiu People's Hospital affiliated to Jining Medical University), Shandong, China
| | - Yandong Wang
- Department of Orthopedics, the Forth Hospital of Yulin (Xingyuan Hospital), West Yulin, Shaanxi, China.
| |
Collapse
|
41
|
Li P, Zhang X, Gu L, Zhou J, Deng D. P16 methylation increases the sensitivity of cancer cells to the CDK4/6 inhibitor palbociclib. PLoS One 2019; 14:e0223084. [PMID: 31652270 PMCID: PMC6814222 DOI: 10.1371/journal.pone.0223084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
The P16 (CDKN2Aink4a) gene is an endogenous CDK4/6 inhibitor. Palbociclib (PD0332991) is an anti-CDK4/6 chemical for cancer treatment. P16 is most frequently inactivated by copy number deletion and DNA methylation in cancers. It is well known that cancer cells with P16 deletion are more sensitive to palbociclib than those without. However, whether P16 methylation is related to palbociclib sensitivity is not known. By analyzing public pharmacogenomic datasets, we found that the IC50 of palbociclib in cancer cell lines (n = 522) was positively correlated with both the P16 expression level and P16 gene copy number. Our experimental results further showed that cancer cell lines with P16 methylation were more sensitive to palbociclib than those without. To determine whether P16 methylation directly increased the sensitivity of cancer cells to palbociclib, we induced P16 methylation in the lung cancer cell lines H661 and HCC827 and the gastric cancer cell line BGC823 via an engineered P16-specific DNA methyltransferase (P16-Dnmt) and found that the sensitivity of these cells to palbociclib was significantly increased. The survival rate of P16-Dnmt cells was significantly lower than that of vector control cells 48 hrs post treatment with palbociclib (10 μM). Notably, palbociclib treatment also selectively inhibited the proliferation of the P16-methylated subpopulation of P16-Dnmt cells, further indicating that P16 methylation can increase the sensitivity of cells to this CDK4/6 inhibitor. These results were confirmed in an animal experiment. In conclusion, inactivation of the P16 gene by DNA methylation can increase the sensitivity of cancer cells to palbociclib.
Collapse
Affiliation(s)
- Paiyun Li
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xuehong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
- * E-mail:
| |
Collapse
|
42
|
Xiong W, Qin J, Cai X, Xiong W, Liu Q, Li C, Ju Y, Wang Q, Li Y, Yang Y. Overexpression LINC01082 suppresses the proliferation, migration and invasion of colon cancer. Mol Cell Biochem 2019; 462:33-40. [PMID: 31432387 DOI: 10.1007/s11010-019-03607-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/10/2019] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as pivotal regulators in human cancer. LINC01082 was expressed as decreased in colon cancer by previous lncRNA-seq result and TCGA database, however, the role and function of LINC0182 is not clear in colon cancer. Here, we aimed to explore the role of LINC01082 in colon cancer for exploring the etiopathogenesis of colon cancer. RT-qPCR for LINC01082 expression in tissues (colon cancer vs. their matched adjacent non-cancerous tissues, ANT, n = 39) and cells (colon cancer cells vs. normal colon cells, n = 4) were performed. CCK-8 assay for proliferation of colon cancer, Transwell assay for migration and invasion were carried out in sw480 and sw620 cells. The results revealed that LINC01082 was significantly decreased in tissues and cell lines of colon cancer. Overexpressed LINC01082 significantly suppressed the proliferation ability of colon cancer cells. The migration and invasion of colon cancer cells were also suppressed after LINC01082 overexpression. These findings demonstrated that LINC01082 may act in suppressing the incidence and development of colon cancer via suppressing cell proliferation, migration and invasion, indicating that LINC01082 may act as a new tumor suppressor and may be a promising therapy target for colon cancer.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Jiyong Qin
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Xinyi Cai
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Wei Xiong
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Qiuyan Liu
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Cheng Li
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Yunhe Ju
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Qiaoli Wang
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Yunfeng Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China.
| | - Yi Yang
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China.
| |
Collapse
|
43
|
Zhao ZB, Chen F, Bai XF. Long Noncoding RNA MALAT1 Regulates Hepatocellular Carcinoma Growth Under Hypoxia via Sponging MicroRNA-200a. Yonsei Med J 2019; 60:727-734. [PMID: 31347327 PMCID: PMC6660435 DOI: 10.3349/ymj.2019.60.8.727] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a common cancer worldwide. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long noncoding RNA (lncRNA), has been reported to be aberrantly expressed in hypoxic cancer cells. MALAT1 plays a significant role in many malignancies, including HCC. The aim of this study was to explore the role of MALAT1 in hypoxic HCC cells and its underlying regulatory mechanism. MATERIALS AND METHODS Quantitative reverse transcription PCR (qRT-PCR) assay was performed to detect the mRNA levels of MALAT1 and microRNA-200a (miR-200a) in HCC cells. Cell invasion and migration ability were evaluated by Transwell assay. Starbase v2.0 and luciferase reporter assay were employed to identify the association between MALAT1 and miR-200a. Cell proliferation and apoptosis were measured by MTT assay and flow cytometry, respectively. RESULTS MALAT1 levels were significantly upregulated in HCC cells under hypoxia. Hypoxia promoted proliferation, migration, and invasion, and blocked apoptosis in Hep3B cells, which were weakened by knockdown of MALAT1. Starbase v2.0 showed that MALAT1 and miR-200a have a complementarity region, and luciferase reporter assay verified that MALAT1 interacted with miR-200a in Hep3B cells. Moreover, MALAT1 negatively regulated the expression of miR-200a. miR-200a levels were dramatically downregulated in HCC cells under hypoxia. Upregulation of miR-200a inhibited proliferation, migration, and invasion, and induced apoptosis in Hep3B cells under hypoxia. Interestingly, downregulation of miR-200a partially reversed the tumor-suppressive effect of knockdown of MALAT1 on Hep3B cells in hypoxic condition. CONCLUSION LncRNA MALAT1 was involved in proliferation, migration, invasion, and apoptosis by interacting with miR-200a in hypoxic Hep3B cells, revealing a new mechanism of MALAT1 involved in hypoxic HCC progression.
Collapse
Affiliation(s)
- Zheng Bin Zhao
- Infection Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Fei Chen
- Department of Ultrasound, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Xiao Fang Bai
- Department of Ultrasound, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
44
|
Yang J, Wu W, Wu M, Ding J. Long noncoding RNA ADPGK-AS1 promotes cell proliferation, migration, and EMT process through regulating miR-3196/OTX1 axis in breast cancer. In Vitro Cell Dev Biol Anim 2019; 55:522-532. [DOI: 10.1007/s11626-019-00372-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 05/27/2019] [Indexed: 12/16/2022]
|
45
|
Zhang J, Zhang S, Zuo L, Yue W, Li S, Xin S, Liu L, Lu J. Differential expression profiling of lncRNAs related to Epstein‐Barr virus infection in the epithelial cells. J Med Virol 2019; 91:1845-1855. [DOI: 10.1002/jmv.25516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jing Zhang
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya HospitalCentral South University Changsha China
- Department of Microbiology, School of Basic Medical ScienceCentral South University Changsha China
| | - Siwei Zhang
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya HospitalCentral South University Changsha China
- Department of Microbiology, School of Basic Medical ScienceCentral South University Changsha China
| | - Lielian Zuo
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya HospitalCentral South University Changsha China
- Department of Microbiology, School of Basic Medical ScienceCentral South University Changsha China
| | - Wenxing Yue
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya HospitalCentral South University Changsha China
- Department of Microbiology, School of Basic Medical ScienceCentral South University Changsha China
| | - Shen Li
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya HospitalCentral South University Changsha China
- Department of Microbiology, School of Basic Medical ScienceCentral South University Changsha China
| | - Shuyu Xin
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya HospitalCentral South University Changsha China
- Department of Microbiology, School of Basic Medical ScienceCentral South University Changsha China
| | - Lingzhi Liu
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya HospitalCentral South University Changsha China
- Department of Microbiology, School of Basic Medical ScienceCentral South University Changsha China
| | - Jianhong Lu
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya HospitalCentral South University Changsha China
- Department of Microbiology, School of Basic Medical ScienceCentral South University Changsha China
| |
Collapse
|
46
|
Li T, Tian H, Li J, Zuo A, Chen J, Xu D, Guo Y, Gao H. Overexpression of lncRNA Gm2691 attenuates apoptosis and inflammatory response after myocardial infarction through PI3K/Akt signaling pathway. IUBMB Life 2019; 71:1561-1570. [PMID: 31169981 DOI: 10.1002/iub.2081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/19/2019] [Indexed: 01/11/2023]
Abstract
Acute myocardial infarction is one of the most threatening disease in the world. In previous studies, numerous dysregulated lncRNAs exposed to ischemic reperfusion injury have been identified. In this differential lncRNAs, Gm2691 attracted our attention due to its high fold change. The aim of the study was to investigate the function and mechanism of lncRNA Gm2691 in ischemic reperfusion injury. AnaeroPack anaerobic system treated neonatal rat ventricular cardiomyocytes were used to analyze the function of lncRNA Gm2691 in vitro. Tunel, Caspase3, and inflammation markers were detected to evaluate apoptosis and inflammatory response. Rat acute myocardial infarction was performed to elucidate the function of lncRNA Gm2691 in vivo. The results showed that LncRNA Gm2691 improved the cardiac function and attenuated the inflammatory response in vivo. We also found that lncRNA Gm2691 reduced the apoptosis and improved cell survival rates in anaeroPack anaerobic system treated neonatal rat ventricular cardiomyocytes. Western blot analysis revealed that lncRNA Gm2691 decreased Akt and ERK1/2 activities, suggesting that lncRNA Gm2691 may functioned through Akt signaling pathway. We verified the function and mechanism of lncRNA Gm2691 and provide evidence that lncRNA Gm2691 may play important role in ischemic reperfusion injury, and understanding the precise role of Gm2691 will undoubtedly shed new light on the clinical treatment.
Collapse
Affiliation(s)
- Tingting Li
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatric, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hongbo Tian
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Jun Li
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Anju Zuo
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiying Chen
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dan Xu
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuan Guo
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haiqing Gao
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatric, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
47
|
Ye Y, Gu B, Wang Y, Shen S, Huang W. YY1-Induced Upregulation of Long Noncoding RNA ARAP1-AS1 Promotes Cell Migration and Invasion in Colorectal Cancer Through the Wnt/β-Catenin Signaling Pathway. Cancer Biother Radiopharm 2019; 34:519-528. [PMID: 31173500 DOI: 10.1089/cbr.2018.2745] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introduction: It has been reported that long noncoding RNAs (lncRNAs) are crucial regulators in progression of human cancers, including colorectal cancer (CRC). However, the function of lncRNA ARAP1 antisense RNA 1 (ARAP1-AS1) in CRC remains unclear. Aim: The aim of this study was to investigate the function and molecular mechanism of lncRNA ARAP1-AS1 in CRC. Results: ARAP1-AS1 was highly expressed in CRC tissues and cell lines. ARAP1-AS1 knockdown suppressed cell migration, invasion, and epithelial-mesenchymal transition (EMT). YY1 transcription factor (YY1) enhanced the transcription activity of ARAP1-AS1. The YY1/ARAP1-AS1 axis promoted CRC cell migration and invasion. YY1/ARAP1-AS1 could regulate the Wnt/β-catenin signaling pathway. Conclusions: This study revealed that YY1-induced upregulation of ARAP1-AS1 promoted cell migration, invasion, and EMT process in CRC through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yaqun Ye
- The Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Gu
- Nutrition Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Nutrition Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sudan Shen
- Nutrition Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Huang
- Nutrition Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
48
|
Tian W, Du Y, Ma Y, Zhang B, Gu L, Zhou J, Deng D. miR663a‑TTC22V1 axis inhibits colon cancer metastasis. Oncol Rep 2019; 41:1718-1728. [PMID: 30664167 PMCID: PMC6365692 DOI: 10.3892/or.2019.6969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
An increasing number of studies have demonstrated that microRNAs (miRs) may act as oncogenes or anti‑oncogenes in various types of cancer, including colon cancer (CC). However, the clinical and biological significance of miR663a in the prognosis of CC and its underlying molecular mechanisms remain unknown. Using the reverse transcription‑quantitative polymerase chain reaction on CC and surgical margin tissue samples from 172 patients with CC, it was identified that miR663a was significantly downregulated in CC (P<0.001), particularly in metastatic CC (P=0.044). miR663a overexpression inhibited the proliferation and migration/invasion of CC cells in vitro, and also tumor growth and metastasis of CC cells in vivo. Additionally, miR663a target genes were analyzed. Inverse changes in tetratricopeptide repeat domain 22 variant 1 (TTC22V1) in response to alterations in miR663a expression were observed. miR663a decreased the reporter activity of the wild‑type TTC22V1‑3' untranslated region (UTR), but did not decrease that of a 3'UTR mutant. miR663a completely abolished cell migration/invasion induced by TTC22V1 containing the wild‑type 3'UTR sequence, but not that induced by TTC22V1 containing the 3'UTR mutant. An inverse correlation between miR663a and TTC22 mRNA levels was observed in CC tissues. These results suggest that TTC22V1 mRNA is a crucial miR663a target that directly promotes cell migration/invasion. TTC22, which, to the best of our knowledge, has rarely been investigated, is located in the nuclei of epithelial cells in colon stem cell niches at crypt bases, and is significantly downregulated in CC, particularly in non‑metastatic CC. High TTC22V1 expression is a significant poor survival factor for patients with CC. Collectively, the results of the present study suggested that TTC22V1 may be a metastasis‑associated gene and that the miR663a‑TTC22V1 axis inhibited CC metastasis.
Collapse
Affiliation(s)
- Wei Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Yantao Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Yuwan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
49
|
Zhang C, Xie L, Liang H, Cui Y. LncRNA MIAT facilitates osteosarcoma progression by regulating mir-128-3p/VEGFC axis. IUBMB Life 2019; 71:845-853. [PMID: 30629798 DOI: 10.1002/iub.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Chunyan Zhang
- Department of Clinical Laboratory; Zhengzhou Central Hospital Affiliated to Zhengzhou University; Zhengzhou People's Republic of China
| | - Linsen Xie
- Department of Clinical Laboratory; Zhengzhou Central Hospital Affiliated to Zhengzhou University; Zhengzhou People's Republic of China
| | - Huiling Liang
- Department of Oncology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| | - Yuanbo Cui
- School of Life Sciences; Zhengzhou University; Zhengzhou People's Republic of China
- Translational Medicine Center; Zhengzhou Central Hospital Affiliated to Zhengzhou University; Zhengzhou People's Republic of China
| |
Collapse
|
50
|
Jiang S, Tan B, Zhang X. Identification of key lncRNAs in the carcinogenesis and progression of colon adenocarcinoma by co-expression network analysis. J Cell Biochem 2018; 120:6490-6501. [PMID: 30430631 DOI: 10.1002/jcb.27940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022]
Abstract
Colon adenocarcinoma (COAD) is one of the most common cancers, and its carcinogenesis and progression is influenced by multiple long non-coding RNAs (lncRNA), especially through the miRNA sponge effect. In this study, more than 4000 lncRNAs were re-annotated from the microarray datasets through probe sequence mapping to obtain reliable lncRNA expression profiles. As a systems biology method for describing the correlation patterns among genes across microarray samples, weighted gene co-expression network analysis was conducted to identify lncRNA modules associated with the five stepwise stages from normal colonic samples to COAD (n = 94). In the most relevant module (R2 = -0.78, P = 4E-20), four hub lncRNAs were identified (CTD-2396E7.11, PCGF5, RP11-33O4.1, and RP11-164P12.5). Then, these four hub lncRNAs were validated using two other independent datasets including GSE20916 (n = 145) and GSE39582 (n = 552). The results indicated that all hub lncRNAs were significantly negatively correlated with the three-stage colonic carcinogenesis, as well as TNM stages in COAD (one-way analysis of variance P < 0.05). Kaplan-Meier survival curve showed that patients with higher expression of each hub lncRNA had a significantly higher overall survival rate and lower relapse risk (log-rank P < 0.05). In conclusion, through co-expression analysis, we identified and validated four key lncRNAs in association with the carcinogenesis and progression of COAD, and these lncRNAs might have important clinical implications for improving the risk stratification, therapeutic decision and prognosis prediction in COAD patients.
Collapse
Affiliation(s)
- Shi Jiang
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Biyong Tan
- Department of Radiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Xingqiang Zhang
- Department of Radiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| |
Collapse
|