1
|
Albeitawi S, Bani-Mousa SU, Jarrar B, Aloqaily I, Al-Shlool N, Alsheyab G, Kassab A, Qawasmi B, Awaisheh A. Associations Between Follicular Fluid Biomarkers and IVF/ICSI Outcomes in Normo-Ovulatory Women-A Systematic Review. Biomolecules 2025; 15:443. [PMID: 40149979 PMCID: PMC11940193 DOI: 10.3390/biom15030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
(1) Background: The follicular fluid (FF) comprises a large portion of ovarian follicles, and serves as both a communication and growth medium for oocytes, and thus should be representative of the metabolomic status of the follicle. This review aims to explore FF biomarkers as well as their effects on fertilization, oocyte, and embryo development, and later on implantation and maintenance of pregnancy. (2) Methods: This review was registered in the PROSPERO database with the ID: CRD42025633101. We parsed PubMed, Scopus, and Google Scholar for research on the effects of different FF biomarkers on IVF/ICSI outcomes in normo-ovulatory women. Included studies were assessed for risk of bias using the NOS scale. Data were extracted and tabulated by two independent researchers. (3) Results: 22 included articles, with a sample size range of 31 to 414 and a median of 60 participants, contained 61 biomarkers, including proteins, growth factors, steroid and polypeptide hormones, inflammation and oxidative stress markers, amino acids, vitamins, lipids of different types, and miRNAs. Most of the biomarkers studied had significant effects on IVF/ICSI outcomes, and seem to have roles in various cellular pathways responsible for oocyte and embryo growth, implantation, placental formation, and maintenance of pregnancy. The FF metabolome also seems to be interconnected, with its various components influencing the levels and activities of each other through feedback loops. (4) Conclusions: FF biomarkers can be utilized for diagnostic and therapeutic purposes in IVF; however, further studies are required for choosing the most promising ones due to heterogeneity of results. Widespread adoption of LC-MS and miRNA microarrays can help quantify a representative FF metabolome, and we see great potential for in vitro supplementation (IVS) of some FF biomarkers in improving IVF/ICSI outcomes.
Collapse
Affiliation(s)
- Soha Albeitawi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | | | - Baraa Jarrar
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ibrahim Aloqaily
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Nour Al-Shlool
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ghaida Alsheyab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ahmad Kassab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Baha’a Qawasmi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Abdalrahman Awaisheh
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| |
Collapse
|
2
|
Zhu C, Yang Q, Xu Q, Song Y, Tang C. The role of heart and neural crest derivatives-expressed protein factors in pregnancy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167639. [PMID: 39725090 DOI: 10.1016/j.bbadis.2024.167639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Heart and neural crest derivatives-expressed protein 1 (HAND1) and Heart and neural crest derivatives-expressed protein 2 (HAND2), members of the Twist-family of basic Helix-Loop-Helix (bHLH) proteins, act as critical transcription factors that play a key role in various developmental processes, including placental development and fetal growth during pregnancy. This review aims to explore the current understanding of HAND1 and HAND2 in pregnant maintenance and their potential implications for maternal and fetal health. We will summarize the mechanisms of action of HAND1 and HAND2 in pregnancy, their expression regulation and association with pregnancy complications such as preterm birth and preeclampsia. Furthermore, we will discuss the potential therapeutic implications of targeting HAND1 and HAND2 in pregnancy-related disorders. This review highlights the importance of HAND1 and HAND2 in pregnancy and their potential as targets for future research and therapeutic interventions of gestational disorders.
Collapse
Affiliation(s)
- Chongying Zhu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Qiwei Yang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China, 200100
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yanhua Song
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
3
|
Nevoránková P, Šulcová M, Kavková M, Zimčík D, Balková SM, Peléšková K, Kristeková D, Jakešová V, Zikmund T, Kaiser J, Holá LI, Kolář M, Buchtová M. Region-specific gene expression profiling of early mouse mandible uncovered SATB2 as a key molecule for teeth patterning. Sci Rep 2024; 14:18212. [PMID: 39107332 PMCID: PMC11303781 DOI: 10.1038/s41598-024-68016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Mammalian dentition exhibits distinct heterodonty, with more simple teeth located in the anterior area of the jaw and more complex teeth situated posteriorly. While some region-specific differences in signalling have been described previously, here we performed a comprehensive analysis of gene expression at the early stages of odontogenesis to obtain complete knowledge of the signalling pathways involved in early jaw patterning. Gene expression was analysed separately on anterior and posterior areas of the lower jaw at two early stages (E11.5 and E12.5) of odontogenesis. Gene expression profiling revealed distinct region-specific expression patterns in mouse mandibles, including several known BMP and FGF signalling members and we also identified several new molecules exhibiting significant differences in expression along the anterior-posterior axis, which potentially can play the role during incisor and molar specification. Next, we followed one of the anterior molecules, SATB2, which was expressed not only in the anterior mesenchyme where incisor germs are initiated, however, we uncovered a distinct SATB2-positive region in the mesenchyme closely surrounding molars. Satb2-deficient animals demonstrated defective incisor development confirming a crucial role of SATB2 in formation of anterior teeth. On the other hand, ectopic tooth germs were observed in the molar area indicating differential effect of Satb2-deficiency in individual jaw regions. In conclusion, our data provide a rich source of fundamental information, which can be used to determine molecular regulation driving early embryonic jaw patterning and serve for a deeper understanding of molecular signalling directed towards incisor and molar development.
Collapse
Affiliation(s)
- Petra Nevoránková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Stomatology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Stomatology, St. Anne's University Hospital, Brno, Czech Republic
| | - Marie Šulcová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Kavková
- Laboratory of Computed Tomography, CEITEC BUT, Brno, Czech Republic
| | - David Zimčík
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simona Moravcová Balková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - Kristýna Peléšková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Veronika Jakešová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - Tomáš Zikmund
- Laboratory of Computed Tomography, CEITEC BUT, Brno, Czech Republic
| | - Jozef Kaiser
- Laboratory of Computed Tomography, CEITEC BUT, Brno, Czech Republic
| | - Lydie Izakovičová Holá
- Department of Stomatology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Stomatology, St. Anne's University Hospital, Brno, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
4
|
Aşır F, Özalp Z, Yülek ÖU, Erdemci F, Korak T, Taş F. CITED1 expression in odontogenic cysts. BMC Oral Health 2024; 24:782. [PMID: 38997708 PMCID: PMC11242007 DOI: 10.1186/s12903-024-04413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/27/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Originating from odontogenic tissue, Odontogenic cysts are pathological cavities lined with epithelial cells and surrounded by fibrous connective tissue. This study investigated expression of CITED1 protein in different types of odontogenic cysts. MATERIAL AND METHOD 40 keratocysts, 40 radicular cysts, and 40 dentigerous cysts were excised and processed for routine paraffin wax embedding protocol. Macroscopic and panoramic radiographies images were used for diagnosis. Demographical properties and dental parameters were recorded. Cystic tissues were stained with hematoxylin-eosin dye and CITED1 antibody. Semi-quantitative analysis was performed for immune staining. The protein-protein interaction network, hub gene detection and KEGG analysis were conducted using Cytoscape software. RESULT Odontogenic keratocysts was imaged with 6-8 layered epithelial cells and fibrous cyst walls with inflammatory cells. Radicular cysts had stratified squamous epithelium with varying thickness, ciliated cells, and Rushton hyaline bodies. Dentigerous cysts presented hyperplastic non-keratinized epithelium, fibrous tissue, rete ridges, and inflammatory cells. CITED1 immunoexpression was highest in odontogenic keratocysts, followed by radicular cysts, and lowest in dentigerous cysts. Nuclear and cytoplasmic CITED1 expression was significantly elevated in odontogenic keratocysts compared to radicular and dentigerous cysts. The top five targets of CITED1 were identified, primarily showing enrichment in hormone and cancer related pathways. CONCLUSIONS Positive CITED1 expression in all three types of odontogenic cysts suggest a potential role for CITED1 in the pathogenesis of odontogenic cysts, particularly in keratocysts. Further investigations are needed to elucidate the exact mechanisms underlying the differential expression of CITED1 and its implications for the development and progression of odontogenic cysts.
Collapse
Affiliation(s)
- Fırat Aşır
- Department of Histology and Embryology, Medical Faculty, Dicle University, Diyarbakır, Turkey.
| | - Zeki Özalp
- Department of Oral, Dental and Maxillofacial Surgery, Siirt Oral and Dental Health Center, Siirt, Turkey
| | - Özden Uçtu Yülek
- Department of Pathology, Çanakkale 18 Mart University, Çanakkale, Turkey
| | - Fikri Erdemci
- Department of Histology and Embryology, Medical Faculty, Dicle University, Diyarbakır, Turkey
| | - Tugcan Korak
- Department of Medical Biology, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Fatih Taş
- Department of Histology and Embryology, Medical Faculty, Siirt University, Siirt, Turkey
| |
Collapse
|
5
|
Lee M, Guo Q, Kim M, Choi J, Segura A, Genceroglu A, LeBlanc L, Ramirez N, Jang YJ, Jang Y, Lee BK, Marcotte EM, Kim J. Systematic mapping of TF-mediated cell fate changes by a pooled induction coupled with scRNA-seq and multi-omics approaches. Genome Res 2024; 34:484-497. [PMID: 38580401 PMCID: PMC11067882 DOI: 10.1101/gr.277926.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/21/2024] [Indexed: 04/07/2024]
Abstract
Transcriptional regulation controls cellular functions through interactions between transcription factors (TFs) and their chromosomal targets. However, understanding the fate conversion potential of multiple TFs in an inducible manner remains limited. Here, we introduce iTF-seq as a method for identifying individual TFs that can alter cell fate toward specific lineages at a single-cell level. iTF-seq enables time course monitoring of transcriptome changes, and with biotinylated individual TFs, it provides a multi-omics approach to understanding the mechanisms behind TF-mediated cell fate changes. Our iTF-seq study in mouse embryonic stem cells identified multiple TFs that trigger rapid transcriptome changes indicative of differentiation within a day of induction. Moreover, cells expressing these potent TFs often show a slower cell cycle and increased cell death. Further analysis using bioChIP-seq revealed that GCM1 and OTX2 act as pioneer factors and activators by increasing gene accessibility and activating the expression of lineage specification genes during cell fate conversion. iTF-seq has utility in both mapping cell fate conversion and understanding cell fate conversion mechanisms.
Collapse
Affiliation(s)
- Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Qingqing Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Mijeong Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Joonhyuk Choi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alia Segura
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alper Genceroglu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lucy LeBlanc
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Nereida Ramirez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yu Jin Jang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yeejin Jang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, New York 12144, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
6
|
Lan R, Yu Y, Song J, Xue M, Gong H. SFRP2 suppresses trophoblast cell migration by inhibiting the Wnt/β‑catenin pathway. Mol Med Rep 2024; 29:66. [PMID: 38426532 PMCID: PMC10926097 DOI: 10.3892/mmr.2024.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
The present study investigates the role of Secreted Frizzled‑Related Protein 2 (SFRP2) in trophoblast cells, a key factor in preeclampsia (PE) progression. Elevated levels of Secreted Frizzled‑Related Protein 1/3/4/5 (SFRP1/3/4/5) are associated with PE, but the role of SFRP2 is unclear. We analyzed SFRP2 expression in PE placental tissue using the GSE10588 dataset and overexpressed SFRP2 in JEG‑3 cells via lentiviral transfection. The viability, migration, apoptosis, and proliferation of SFRP2‑overexpressing JEG‑3 cells were assessed using Cell Counting Kit‑8, Transwell assays, flow cytometry, and EdU staining. Additionally, we evaluated the impact of SFRP2 overexpression on key proteins in the Wnt/β‑catenin pathway and apoptosis markers (Bax, cleaved‑caspase 3, BCL‑2, MMP9, E‑cadherin, Wnt3a, Axin2, CyclinD1, c‑Myc, p‑β‑catenin, β‑catenin, phosphorylated Glycogen Synthase Kinase 3 beta (p‑GSK3β), and GSK3β) through western blotting. Results showed high SFRP2 mRNA and protein expression in PE placenta and JEG‑3 cells post‑transfection. SFRP2 overexpression significantly reduced JEG‑3 cell viability, proliferation, and migration, while increasing apoptosis. It also altered expression levels of Wnt pathway proteins, suggesting SFRP2's potential as a therapeutic target for PE by inhibiting trophoblast cell migration through the Wnt/β‑catenin signaling cascade.
Collapse
Affiliation(s)
- Ruihong Lan
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Yihong Yu
- School of Clinical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jie Song
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Mengdi Xue
- School of Clinical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Humin Gong
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
7
|
Chen W, Jiang J, Gao J, Wang G, Wang R, Lv J, Ben J. Roles and signaling pathways of CITED1 in tumors: overview and novel insights. J Int Med Res 2024; 52:3000605231220890. [PMID: 38190845 PMCID: PMC10775745 DOI: 10.1177/03000605231220890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
CBP/p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (CITED1) is a transcriptional activator belonging to the non-DNA-binding transcription co-regulator family. It regulates diverse pathways, including the transforming growth factor/bone morphogenetic protein/SMAD, estrogen, Wnt-β-catenin, and androgen-AR signaling pathways, by binding to CBP/p300 co-activators through its conserved transactivation domain CR2. CITED1 plays an important role in embryonic development and a certain regulatory role in the occurrence and development of various tumors. In this article, the biological characteristics, expression regulation, participating signaling pathways, and potential roles of CITED1 in the clinical diagnosis and treatment of tumors are reviewed.
Collapse
Affiliation(s)
- Wenting Chen
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Jianing Jiang
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Jinqi Gao
- Department of Intervention, The Second Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Gang Wang
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ruoyu Wang
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Jinyan Lv
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jing Ben
- Department of Oncology Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
8
|
Tong R, Wang H, Jin Y, Li H. Transcription factor HESX1 enhances mesendodermal commitment of human embryonic stem cells by modulating ERK1/2 signaling. Biochem Biophys Res Commun 2022; 619:27-33. [PMID: 35728281 DOI: 10.1016/j.bbrc.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Transcription factors are key determinants of lineage commitment during mammalian development. However, the function and molecular mechanism for the transcription factors in the formation of three primary germ layers during human embryonic development are not fully elucidated. Here, we report that homeobox-containing transcription factor HESX1 plays a critical role in mesendodermal (ME) commitment of human embryonic stem cells (hESCs). Our results show that expression of HESX1 in hESCs is regulated by OCT4 and NANOG, and that its expression level changes with hESC differentiation. We find that knockdown of HESX1 does not disrupt the undifferentiated state of hESCs, in terms of cell morphology and expression levels of pluripotency-associated genes. However, HESX1 deficiency in hESCs impairs their ME commitment, whereas forced expression of HESX1 significantly enhances ME marker expression during ME commitment. Interestingly, HESX1 knockdown in hESCs represses ERK1/2 signaling activated by ME induction, while overexpression of HESX1 markedly enhances ERK1/2 activity during ME commitment of hESCs. Of note, MEK inhibitor PD0325901 weakens or even eliminates HESX1 overexpression-mediated promotive effects on ME induction in a dosage-dependent manner. Together, this study identifies a novel role of HESX1 in hESC commitment to ME cells and establishes the functional link between a transcription factor and lineage-associated signaling. These findings would help to better understand early human development and develop more efficient protocols to induce hESC differentiation to desired lineages.
Collapse
Affiliation(s)
- Ran Tong
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Arefanian H, Ramji Q, Gupta N, Spigelman AF, Grynoch D, MacDonald PE, Mueller TF, Gazda LS, Rajotte RV, Rayat GR. Yield, cell composition, and function of islets isolated from different ages of neonatal pigs. Front Endocrinol (Lausanne) 2022; 13:1032906. [PMID: 36619563 PMCID: PMC9811407 DOI: 10.3389/fendo.2022.1032906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022] Open
Abstract
The yield, cell composition, and function of islets isolated from various ages of neonatal pigs were characterized using in vitro and in vivo experimental models. Islets from 7- and 10-day-old pigs showed significantly better function both in vitro and in vivo compared to islets from 3- and 5-day-old pigs however, the islet yield from 10-day-old pigs were significantly less than those obtained from the other pigs. Since islets from 3-day-old pigs were used in our previous studies and islets from 7-day-old pigs reversed diabetes more efficiently than islets from other groups, we further evaluated the function of these islets post-transplantation. B6 rag-/- mouse recipients of various numbers of islets from 7-day-old pigs achieved normoglycemia faster and showed significantly improved response to glucose challenge compared to the recipients of the same numbers of islets from 3-day-old pigs. These results are in line with the findings that islets from 7-day-old pigs showed reduced voltage-dependent K+ (Kv) channel activity and their ability to recover from post-hypoxia/reoxygenation stress. Despite more resident immune cells and immunogenic characteristics detected in islets from 7-day-old pigs compared to islets from 3-day-old pigs, the combination of anti-LFA-1 and anti-CD154 monoclonal antibodies are equally effective at preventing the rejection of islets from both age groups of pigs. Collectively, these results suggest that islets from various ages of neonatal pigs vary in yield, cellular composition, and function. Such parameters may be considered when defining the optimal pancreas donor for islet xenotransplantation studies.
Collapse
Affiliation(s)
- Hossein Arefanian
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Qahir Ramji
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nancy Gupta
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Aliya F. Spigelman
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Donald Grynoch
- Alberta Precision Labs, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Patrick E. MacDonald
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thomas F. Mueller
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | | | - Ray V. Rajotte
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Gina R. Rayat, ; Ray V. Rajotte,
| | - Gina R. Rayat
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Gina R. Rayat, ; Ray V. Rajotte,
| |
Collapse
|
10
|
Xin C, Zhu C, Jin Y, Li H. Discovering the role of VEGF signaling pathway in mesendodermal induction of human embryonic stem cells. Biochem Biophys Res Commun 2021; 553:58-64. [PMID: 33756346 DOI: 10.1016/j.bbrc.2021.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022]
Abstract
Human embryonic stem cells (hESCs) have the unique feature of unlimited self-renewal and differentiation into derivatives of all three germ layers in human body, providing a powerful in vitro model for studying cell differentiation. FGF2, BMP4 and TGF-β signaling have been shown to play crucial roles in mesendodermal differentiation of hESCs. However, their underlying molecular mechanisms and other signaling pathways potentially involved in mesendodermal differentiation of hESCs remain to be further investigated. In this study, we uncover that VEGF signaling pathway plays a critical role in the mesendodermal induction of hESCs. Treating hESCs with Lenvatinib, a pan-inhibitor of VEGF receptors (VEGFRs), impedes their mesendodermal induction. Conversely, overexpression of VEGFA165, a major human VEGF isoform, promotes the mesendodermal differentiation. Similar to the VEGFR inhibitor, MEK inhibitor PD0325901 hinders mesendodermal induction of hESCs. In contrast, overexpression of ERK2GOF, an intrinsically active ERK2 mutant, markedly reduces the inhibitory effect of the VEGFR inhibitor. Thus, the MEK-ERK cascade plays an important role for the function of VEGF signaling pathway in the mesendodermal induction of hESCs. All together, this study identifies the critical role of VEGF signaling pathway as well as potential crosstalk of VEGF signaling pathway with other known signaling pathways in mesendodermal differentiation of hESCs.
Collapse
Affiliation(s)
- Chenge Xin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaonan Zhu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Zhao ZH, Ma JY, Meng TG, Wang ZB, Yue W, Zhou Q, Li S, Feng X, Hou Y, Schatten H, Ou XH, Sun QY. Single-cell RNA sequencing reveals the landscape of early female germ cell development. FASEB J 2020; 34:12634-12645. [PMID: 32716582 DOI: 10.1096/fj.202001034rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 01/15/2023]
Abstract
Meiosis initiation is a crucial step for the production of haploid gametes, which occurs from anterior to posterior in fetal ovaries. The asynchrony of the transition from mitosis to meiosis results in heterogeneity in the female germ cell populations, which limits the studies of meiosis initiation and progression at a higher resolution level. To dissect the process of meiosis initiation, we investigated the transcriptional profiles of 19 363 single germ cells collected from E12.5, E14.5, and E16.5 mouse fetal ovaries. Clustering analysis identified seven groups and defined dozens of corresponding transcription factors, providing a global view of cellular differentiation from primordial germ cells toward meiocytes. Furthermore, we explored the dynamics of gene expression within the developmental trajectory with special focus on the critical state of meiosis. We found that meiosis initiation occurs as early as E12.5 and the cluster of oogonia_4 is the critical state between mitosis and meiosis. Our data provide key insights into the transcriptome features of peri-meiotic female germ cells, which offers new information not only on meiosis initiation and progression but also on screening pathogenic mutations in meiosis-associated diseases.
Collapse
Affiliation(s)
- Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Yu Ma
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Sen Li
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xie Feng
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
12
|
Chen Y, Wu B, Zheng L, Wu C, Wei M, Chen C, Li X, Bao S. Induction and maintenance of specific multipotent progenitor stem cells synergistically mediated by Activin A and BMP4 signaling. J Cell Physiol 2020; 235:8640-8652. [PMID: 32324269 DOI: 10.1002/jcp.29708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/15/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
We recently reported that epiblast stem cells (EpiSCs)-like cells could be derived from preimplantation embryos (named as AFSCs). Here, we established AFSCs from pre-implantation embryos of multiple mouse strains and showed that unlike EpiSCs, the derivation efficiency of AFSCs was affected by the genetic background. We then used AFSCs lines to dissect the roles of Activin A (Act A) and basic fibroblast growth factor and reported that Act A alone was capable of maintaining self-renewal but not developmental potential in vivo. Finally, we established a novel experimental system, in which AFSCs were efficiently converted to multipotent progenitor stem cells using Act A and bone morphogenetic protein 4 (named as ABSCs). Importantly, these ABSCs contributed to neural mesodermal progenitors and lateral plate mesoderm in postimplantation chimeras. Taken together, our study established a robust experimental system for the generation of specific multipotent progenitor stem cells that was self-renewable and capable of contributing to embryonic and extra-embryonic tissues.
Collapse
Affiliation(s)
- Yanglin Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, Inner Mongolia, China
| | - Li Zheng
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Caixia Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Mengyi Wei
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chen Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, Inner Mongolia, China
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
13
|
Effects of VEGFR1 + hematopoietic progenitor cells on pre-metastatic niche formation and in vivo metastasis of breast cancer cells. J Cancer Res Clin Oncol 2018; 145:411-427. [PMID: 30483898 PMCID: PMC6373264 DOI: 10.1007/s00432-018-2802-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The pre-metastatic niche has been shown to play a critical role in tumor metastasis, and its formation is closely related to the tumor microenvironment. However, the underlying molecular mechanisms remain unclear. In the present study, we successfully established a mouse model of lung metastasis using luciferase-expressing MDA-MB-435s cells. In this model, recruitment of vascular endothelial growth factor receptor-1 (VEGFR1)+CD133+ hematopoietic progenitor cells (HPCs) was gradually increased in lung but gradually decreased after the formation of tumor colonies in lung. We also established a highly metastatic MDA-MB-435s (MDA-MB-435s-HM) cell line from the mouse model. Changes in protein profiles in different culture conditions were investigated by protein microarray analysis. The levels of CXC chemokine ligand 16, interleukin (IL)-2Rα, IL-2Rγ, matrix metalloproteinase (MMP)-1, MMP-9, platelet-derived growth factor receptor (PDGFR)-α, stromal cell-derived factor (SDF)-1α, transforming growth factor (TGF)-β, platelet endothelial cell adhesion molecule (PECAM)-1 and vascular endothelial (VE)-cadherin were significantly greater (> fivefold) in the culture medium from MDA-MB-435s-HM cells than in that from MDA-MB-435s cells. Moreover, the levels of MMP-9, PDGFR-α, and PECAM-1 were significantly greater in the co-culture medium of MDA-MB-435s-HM cells and CD133+ HPCs than in that from MDA-MB-435s-HM cells. Differentially expressed proteins were validated by enzyme-linked immunosorbent assay, and expression of their transcripts was confirmed by quantitative real-time polymerase chain reaction. Moreover, inhibition of MMP-9, PDGFR-α, and PECAM-1 by their specific inhibitors or antibodies significantly decreased cell migration, delayed lung metastasis, and decreased recruitment of VEGFR1+CD133+ HPCs into lung. Intra-hepatic growth of HPCs enhanced the invasive growth of MDA-MB-435s-HM cells in the liver. Our data indicate that VEGFR1+CD133+ HPCs contribute to lung metastasis.
Collapse
|