1
|
Zhang S, Lu M, Shang W, Du H, Wang C, Wen Z, Duan T, Xu W, Liu J, Du J, Chen D. Network pharmacology, molecular docking, and experimental verification reveal the mechanism of Yi-Shen-Hua-Shi granules treating acute kidney injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119320. [PMID: 39755185 DOI: 10.1016/j.jep.2025.119320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi-Shen-Hua-Shi granules (YSHSG) have been shown to improve kidney function in various renal disorders, which are characterized by the sudden decline and impairment of kidney function. AIM OF THE STUDY To investigate the precise mechanisms and targets of YSHSG in combating sepsis-induced AKI. MATERIALS AND METHODS Through network pharmacology, the active ingredients, main target proteins, and related signaling pathways of YSHSG in the treatment of sepsis-induced AKI were predicted. The AKI model was induced by sepsis using the cecal ligation and puncture (CLP) technique. Prior to the operation, YSHSG was administered intragastrically once daily for 1 week. Blood and kidney tissues were collected 48 h post-CLP to verify the network pharmacology analysis. RESULTS The core target proteins of YSHSG in the treatment of sepsis-induced AKI include AKT1, JUN, IL6, PTGS2, NFKBIA, MAPK3, Caspase-3 and MMP9, which were further confirmed by molecular docking. Pathway analyses such as Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) show that YSHSG plays a role in protecting the kidneys from sepsis-induced AKI through the PI3K/AKT, TNF, and IL17 signaling pathways. These findings were validated using qPCR and western blotting. In vivo experiments demonstrated that YSHSG inhibits the activation of TNF and IL17 signaling pathways while protecting against deactivation of the PI3K/AKT signaling pathway in sepsis-induced AKI. YSHSG also exhibits an effect on attenuating inflammation response and pyroptosis processes associated with the PI3K/AKT, TNF, and IL17 signaling pathways. CONCLUSION YSHSG mitigated sepsis-induced AKI by influencing the PI3K/AKT, TNF, and IL17 signaling pathways associated with inflammation and pyroptosis.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Minmin Lu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Weifeng Shang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Hangxiang Du
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Changnan Wang
- School of Life Sciences, Shanghai University, No.99 Shangda Road, Shanghai, 200444, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Tingting Duan
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Dongpeng Road 71, Guangzhou, China
| | - Wei Xu
- Department of Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China.
| | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Jiankui Du
- Department of Physiology, Navy Medical University, No.800 Xiangyin Road, Shanghai, 200433, China.
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
2
|
Singh S, Singh N, Chauhan A, Koshta K, Baby S, Tiwari R, Jagdale PR, Kumar M, Sharma V, Singh D, Srivastava V. Prenatal arsenic exposure alters EZH2/H3K27me3 to induce RKIP/NF-kB/ERK1/2-mediated early-onset kidney disease in mouse offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8498-8517. [PMID: 40085388 DOI: 10.1007/s11356-025-36229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
The rising incidences of chronic kidney disease (CKD) and renal failure are a major public health concern. Arsenic, a widespread water contaminant and environmental toxicant, is well-known to contribute to kidney disease in adults. However, its long-term effects on kidney health following early-life exposure remain poorly understood. Therefore, we investigated the impact of prenatal arsenic exposure on kidney health in offspring using a BALB/c mouse model. 0.4 ppm arsenic, an environmentally relevant dose, was orally administered to female mice from 15 days before mating until delivery. Structural and ultrastructural changes in the kidney were assessed using histopathology and transmission electron microscopy, while markers of inflammation, kidney injury, and function were evaluated through Luminex assays, FITC-sinistrin-based glomerular filtration rate (GFR), real-time PCR, immunohistochemistry, and immunoblotting. Notably, arsenic-exposed offspring showed reduced body weight, crown-to-rump length, inflammation, and early signs of kidney injury on postnatal day 2 (PND-2). By 6 weeks, examination showed tubular dilation, mitochondrial damage, vacuolated cytoplasm, and basement membrane disruption were more evident in the kidneys. Furthermore, elevated levels of kidney injury markers, including kidney injury molecule-1, beta-2 microglobulin, cystatin C, and tissue inhibitor of metalloproteinase 1, were detected in urine. These changes were accompanied by increased serum creatinine and a decline in kidney function, as evidenced by reduced GFR levels. Proinflammatory cytokines (TNF-α, IL-6) and NF-κB were significantly elevated along with an increased immune cell infiltration in the kidneys of arsenic-exposed offspring. Further analysis showed increased mesenchymal markers fibronectin and alpha-smooth muscle actin and reduced epithelial marker E-cadherin in the kidneys, indicating fibrosis and epithelial-to-mesenchymal transition. Mechanistic studies revealed that arsenic exposure leads to increased levels of epigenetic regulators enhancer of zeste homolog 2 (EZH2) and histone H3 lysine 27 trimethylation (H3K27me3), which were associated with the activation of inflammatory pathways, fibrosis, and impaired kidney function. Overall, our findings demonstrate that only developmental exposure to arsenic can cause dysregulation of EZH2 and H3K27me3, driving inflammation and renal fibrosis. These changes ultimately lead to chronic kidney disease in offspring, highlighting a critical window of vulnerability for arsenic toxicity with significant implications for long-term kidney health.
Collapse
Affiliation(s)
- Sukhveer Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Neha Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Anchal Chauhan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Kavita Koshta
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Samiya Baby
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies (MRIIRS), Faridabad, 121004, Haryana, India
| | - Ratnakar Tiwari
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Division of Nephrology and Feinberg Cardiovascular & Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Pankaj Ramji Jagdale
- Pathology Laboratory, Regulatory Toxicology Group, ASSIST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mahadeo Kumar
- Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vineeta Sharma
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies (MRIIRS), Faridabad, 121004, Haryana, India
| | - Dhirendra Singh
- Animal Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vikas Srivastava
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Mimura I, Chen Z, Natarajan R. Epigenetic alterations and memory: key players in the development/progression of chronic kidney disease promoted by acute kidney injury and diabetes. Kidney Int 2025; 107:434-456. [PMID: 39725223 DOI: 10.1016/j.kint.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 12/28/2024]
Abstract
Chronic kidney disease (CKD) is a highly prevalent global public health issue and can progress to kidney failure. Survivors of acute kidney injury (AKI) have an increased risk of progressing to CKD by 8.8-fold and kidney failure by 3.1-fold. Further, 20% to 40% of individuals with diabetes will develop CKD, also known as diabetic kidney disease (DKD). Thus, preventing these kidney diseases can positively impact quality-of-life and life-expectancy outcomes for affected individuals. Frequent episodes of hyperglycemia and renal hypoxia are implicated in the pathophysiology of CKD. Prior periods of hyperglycemia/uncontrolled diabetes can result in development/progression of DKD even after achieving normoglycemia, a phenomenon known as metabolic memory or legacy effect. Similarly, in AKI, hypoxic memory is stored in renal cells even after recovery from the initial AKI episode and can transition to CKD. Epigenetic mechanisms involving DNA methylation, chromatin histone post-translational modifications, and noncoding RNAs are implicated in both metabolic and hypoxic memory, collectively known as "epigenetic memory." This epigenetic memory is generally reversible and provides a therapeutic avenue to ameliorate persistent disease progression due to hyperglycemia and hypoxia and prevent/ameliorate CKD progression. Indeed, therapeutic strategies targeting epigenetic memory are effective at preventing CKD development/progression in experimental models of AKI and DKD. Here, we review the latest in-depth evidence for epigenetic features in DKD and AKI, and in epigenetic memories of AKI-to-CKD transition or DKD development and progression, followed by translational and clinical implications of these epigenetic changes for the treatment of these widespread kidney disorders.
Collapse
Affiliation(s)
- Imari Mimura
- Division of Nephrology and Endocrinology, the University of Tokyo School of Medicine, Tokyo Japan.
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA.
| |
Collapse
|
4
|
Alhumaidi R, Huang H, Saade MC, Clark AJ, Parikh SM. NAD + metabolism in acute kidney injury and chronic kidney disease transition. Trends Mol Med 2025:S1471-4914(24)00337-X. [PMID: 39757045 DOI: 10.1016/j.molmed.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
Disturbances in kidney tubular cell metabolism are increasingly recognized as a feature of acute kidney injury (AKI). In AKI, tubular epithelial cells undergo abnormal metabolic shifts that notably disrupt NAD+ metabolism. Recent advancements have highlighted the critical role of NAD+ metabolism in AKI, revealing that acute disruptions may lead to lasting cellular changes, thereby promoting the transition to chronic kidney disease (CKD). This review explores the molecular mechanisms underlying metabolic dysfunction in AKI, with a focus on NAD+ metabolism, and proposes several cellular processes through which acute aberrations in NAD+ may contribute to long-term changes in the kidney.
Collapse
Affiliation(s)
- Rahil Alhumaidi
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huihui Huang
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Marie Christelle Saade
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda J Clark
- Division of Nephrology, Department of Pediatrics, University of Texas Southwestern and Children's Medical Center, Dallas, TX, USA
| | - Samir M Parikh
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Acharya N, Kandel R, Roy P, Warraich I, Singh KP. Epigenetic therapeutics attenuate kidney injury and fibrosis by restoring the expression of epigenetically reprogrammed fibrogenic genes and signaling pathways. Eur J Pharm Sci 2025; 204:106977. [PMID: 39617304 PMCID: PMC11646179 DOI: 10.1016/j.ejps.2024.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Kidney fibrosis is a commonly observed pathological condition during development of chronic kidney disease. Therapeutic options currently available are effective only in slowing the progression of kidney fibrosis and there is no cure for this disease. Aberrant expression and excessive accumulation of extracellular matrix (ECM) proteins in the peritubular space is a characteristic pathological feature of fibrotic kidney. However, the molecular basis of aberrant regulation of fibrotic genes in kidneys is not clear. In this context, this study aimed to evaluate the role of epigenetic reprogramming in kidney fibrosis. Folic acid (FA)-induced acute kidney injury (AKI) and kidney fibrosis in mice as an in vivo model and long-term arsenic or FA-exposed fibrogenic HK-2 cells as an in vitro model were used to evaluate the role of DNA methylation and histone modifications in fibrosis. DNA demethylating agent 5aza2 deoxycytidine (5-aza-2-dC) and histone deacetylase inhibitor Trichostatin A (TSA) were used to treat FA-injected mice. Results of histopathological and immunofluorescence staining of kidney tissue, serum albumin- creatinine levels, body weight, and gene expression analysis revealed significant protective effects of 5-aza-2-dC and TSA in FA-induced AKI and fibrosis. Insignificant change in the expression of N-cadherin whereas a significant decrease in E-cadherin as well as an increase in the expression of Vimentin and α-SMA suggest partial EMT associated with fibrosis. Aberrant expression of epithelial-mesenchymal-transition (EMT) and ECM-regulators (MMP2, Smad7, and TIMP3) as well as fibrogenic signaling pathways (Notch, TGF-beta, and Wnt signaling), and their restoration by 5-aza-2-dC and TSA treatments suggest epigenetic reprogramming of these genes and signaling pathways during FA-induced fibrosis. In summary, this study provides new information on the role of epigenetic reprogramming of fibrogenic genes and signaling pathways during the development of kidney fibrosis. Attenuation of fibrosis after 5-aza-2-dC and TSA treatments suggest the promise of these epigenetic-based therapeutics in the clinical management of this disease.
Collapse
Affiliation(s)
- Narayan Acharya
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, United States
| | - Ramji Kandel
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, United States
| | - Priti Roy
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, United States
| | - Irfan Warraich
- Department of Pathology, Texas Tech University Health Science Center, Lubbock, TX 79430, United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
6
|
Zhou Y, Yang Y, Wang B, Chen W, Wei Y, Wu R, Meng L, Lyu L. Discovery of ferroptosis-related genes in renal ischemia reperfusion and evaluate the potential impact on kidney transplantation. Front Immunol 2024; 15:1394477. [PMID: 39308866 PMCID: PMC11412852 DOI: 10.3389/fimmu.2024.1394477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Background Renal ischemia reperfusion injury (IRI) is one of the pivotal event of acute kidney injury (AKI), and they are unavoidable in the process of kidney transplantation, which eventually leads to the loss of renal allograft. Ferroptosis is a newly identified programmed cell death. Recent studies have suggested that ferroptosis may participate in the pathophysiological process of renal IRI. Therefore, we aimed to determine biomarkers associated with ferroptosis during renal IRI and their impact on renal allografts. Methods We conducted a comprehensive bioinformatics analysis and established an IRI-AKI animal model to illustrate the critical role of ferroptosis-related hub genes (FRHGs) in IRI-AKI and their potential impact on kidney transplantation. Results In this study, we identified 60 ferroptosis-related genes (FRGs) in renal IRI based on the GSE148420 dataset and FerrDb database. And then we performed functional annotation analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Protein-protein interaction (PPI) network was constructed by online tool String. EZH2, CDKN1A, PPARA, EGR1, ATF3, and CD44 were identited as six ferroptosis-related hubgenes (FRHGs) using four methods, including MMC, Degree, DMNC, and EPC. FRHGs expression level were verified by the validation sets GSE58438 and GSE126805. Protein expression level of FRHGs verified by Proteomics and Western blot. Cibersort was utilized to analyze immune cell infiltration during renal IRI as well as the correlation between FRHGs and immune cells. The GSE21374 dataset was used for renal allografts survival analysis. Finally, We induced the IRI-AKI animal model and illustrated the importance of FRGHs CD44 in ferroptosis and the accumulation of macrophages. Conclusion We identified 6 FRHGs. We found that FRHGs not only exhibited significant correlation with immune cells but also directly influenced the survival of transplanted kidneys in the human population. Among six FRHGs, only CD44 was overexpressed at both the gene and protein levels. Anti-CD44 exerts a protective effect by inhibiting ferroptosis and the accumulation of M1 macrophages during renal IRI. This study provided new insights into the pathogenesis of renal IRI and provided new evidence for its treatment.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Emergency, Guangxi Academy of Medical Sciences & People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuwei Yang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Bo Wang
- Department of Emergency, Guangxi Academy of Medical Sciences & People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wan Chen
- Department of Emergency, Guangxi Academy of Medical Sciences & People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yanlin Wei
- Department of Emergency, Guangxi Academy of Medical Sciences & People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ruihua Wu
- Department of Emergency, Guangxi Academy of Medical Sciences & People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - LingZhang Meng
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, & The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Liwen Lyu
- Department of Emergency, Guangxi Academy of Medical Sciences & People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
7
|
Klimm W, Szamotulska K, Karwański M, Bartoszewicz Z, Witkowski W, Rozmyslowicz T, Niemczyk S. Tissue Inhibitors of Metalloproteinase 1 (TIMP-1) and 3 (TIMP-3) as New Markers of Acute Kidney Injury After Massive Burns. Med Sci Monit 2024; 30:e943500. [PMID: 38706186 PMCID: PMC11084814 DOI: 10.12659/msm.943500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common and serious complication after massive burn injury. One of the postulated etiologies is destruction of the extracellular matrix of nephrons, caused by a local imbalance between matrix metalloproteinases (MMPs) and specific inhibitors. The aim of this study was to analyze the dynamics of tissue inhibitors of metalloproteinases (TIMPs) during the first 5 days after massive thermal injury and the relationship with the risk of AKI. MATERIAL AND METHODS Thirty-three adults (22 men, 11 women) with severe burns were enrolled in the study. The values of TIMPs 1 to 4 were measured in blood serum and urine using the multiplex Luminex system. The associations between TIMPs and the risk of AKI were analyzed by using the generalized linear mixed models for repeated measurements. RESULTS Significant changes in serum and urine activities of TIMPs were confirmed, especially during the first 2 days after burn injury. Almost half of patients presented renal problems during the study. Significant differences between values of TIMPs in AKI and non-AKI status were also observed. However, a significant relationship between concentration of TIMPs and risk of AKI was confirmed only for urine TIMP-1 and serum TIMP-3. CONCLUSIONS The evaluation of TIMPs in the early stage after burn injury has potential benefits. The important roles of urine TIMP-1 and serum TIMP-3, as novel markers of the risk of AKI development, were confirmed. Other parameters require further analysis.
Collapse
Affiliation(s)
- Wojciech Klimm
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Katarzyna Szamotulska
- Department of Epidemiology and Biostatistics, Institute of Mother and Child, Warsaw, Poland
| | - Marek Karwański
- Department of Applied Mathematics, University of Life Sciences, SGGW, Warsaw, Poland
| | - Zbigniew Bartoszewicz
- Department of Internal Diseases and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Wojciech Witkowski
- Department of Burns, Plastic and Reconstructive Surgery, Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Tomasz Rozmyslowicz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stanisław Niemczyk
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine – National Research Institute, Warsaw, Poland
| |
Collapse
|
8
|
Yu C, Tang J, Yu J, Wang Y, Liu N, Dong Z, Zhuang S. JMJD3 activation contributes to renal protection and regeneration following acute kidney injury in mice. FASEB J 2024; 38:e23583. [PMID: 38551634 DOI: 10.1096/fj.202300681r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
We have recently demonstrated that Jumonji domain-containing protein D3 (JMJD3), a histone demethylase of histone H3 on lysine 27 (H3K27me3), is protective against renal fibrosis, but its role in acute kidney injury (AKI) remains unexplored. Here, we report that JMJD3 activity is required for renal protection and regeneration in murine models of AKI induced by ischemia/reperfusion (I/R) and folic acid (FA). Injury to the kidney upregulated JMJD3 expression and induced expression of H3K27me3, which was coincident with renal dysfunction, renal tubular cell injury/apoptosis, and proliferation. Blocking JMJD3 activity by GSKJ4 led to worsening renal dysfunction and pathological changes by aggravating tubular epithelial cell injury and apoptosis in both murine models of AKI. JMJD3 inhibition by GSKJ4 also reduced renal tubular cell proliferation and suppressed expression of cyclin E and phosphorylation of CDK2, but increased p21 expression in the injured kidney. Furthermore, inactivation of JMJD3 enhanced I/R- or FA-induced expression of TGF-β1, vimentin, and Snail, phosphorylation of Smad3, STAT3, and NF-κB, and increased renal infiltration by F4/80 (+) macrophages. Finally, GSKJ4 treatment caused further downregulation of Klotho, BMP-7, Smad7, and E-cadherin, all of which are associated with renal protection and have anti-fibrotic effects. Therefore, these data provide strong evidence that JMJD3 activation contributes to renal tubular epithelial cell survival and regeneration after AKI.
Collapse
Affiliation(s)
- Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhua Tang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanjin Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
9
|
Jin J, Liu XM, Shao W, Meng XM. Nucleic acid and protein methylation modification in renal diseases. Acta Pharmacol Sin 2024; 45:661-673. [PMID: 38102221 PMCID: PMC10943093 DOI: 10.1038/s41401-023-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023]
Abstract
Although great efforts have been made to elucidate the pathological mechanisms of renal diseases and potential prevention and treatment targets that would allow us to retard kidney disease progression, we still lack specific and effective management methods. Epigenetic mechanisms are able to alter gene expression without requiring DNA mutations. Accumulating evidence suggests the critical roles of epigenetic events and processes in a variety of renal diseases, involving functionally relevant alterations in DNA methylation, histone methylation, RNA methylation, and expression of various non-coding RNAs. In this review, we highlight recent advances in the impact of methylation events (especially RNA m6A methylation, DNA methylation, and histone methylation) on renal disease progression, and their impact on treatments of renal diseases. We believe that a better understanding of methylation modification changes in kidneys may contribute to the development of novel strategies for the prevention and management of renal diseases.
Collapse
Affiliation(s)
- Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xue-Mei Liu
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
10
|
Cao Y, Sun H, Li X, Pommer W, Xiong Y, Chen X, Chu C, Yu F, Hocher B, Wang Z. GSK343 modulates macrophage M2 polarization through the EZH2/MST1/YAP1 signaling axis to mitigate neurological damage induced by hypercalcemia in CKD mice. Cell Signal 2024; 116:111063. [PMID: 38242267 DOI: 10.1016/j.cellsig.2024.111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Chronic kidney disease (CKD) often culminates in hypercalcemia, instigating severe neurological injuries that are not yet fully understood. This study unveils a mechanism, where GSK343 ameliorates CKD-induced neural damage in mice by modulating macrophage polarization through the EZH2/MST1/YAP1 signaling axis. Specifically, GSK343 downregulated the expression of histone methyltransferase EZH2 and upregulated MST1, which suppressed YAP1, promoting M2 macrophage polarization and thereby, alleviating neural injury in hypercalcemia arising from renal failure. This molecular pathway introduced herein not only sheds light on the cellular machinations behind CKD-induced neurological harm but also paves the way for potential therapeutic interventions targeting the identified axis, especially considering the M2 macrophage polarization as a potential strategy to mitigate hypercalcemia-induced neural injuries.
Collapse
Affiliation(s)
- Yaochen Cao
- Department of Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou 570102, Hannan, China; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin 10117, Germany; Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany; Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hongming Sun
- Department of Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou 570102, Hannan, China; Department of Neurology and Neuroscience, Okayama University School of Medicine, Okayama 700-8558, Japan
| | - Xitong Li
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin 10117, Germany; Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Pommer
- Kuratorium für Dialyse und Nierentransplantation (KfH) - Bildungszentrum, Martin-Behaim-Str. 20, Neu-Isenburg 63263, Germany
| | - Yingquan Xiong
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin 10117, Germany; Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Xin Chen
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin 10117, Germany; Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Fabiao Yu
- Department of Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou 570102, Hannan, China; Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany; Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Institute of Medical Diagnostics, IMD Berlin, Berlin, Germany.
| | - Ziqiang Wang
- Department of Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou 570102, Hannan, China; Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Pharmacy, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
11
|
Han X, Akinseye L, Sun Z. KDM6A Demethylase Regulates Renal Sodium Excretion and Blood Pressure. Hypertension 2024; 81:541-551. [PMID: 38164755 PMCID: PMC10922853 DOI: 10.1161/hypertensionaha.123.22026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND KDM6A (Lysine-Specific Demethylase 6A) is a specific demethylase for histone 3 lysine (K) 27 trimethylation (H3K27me3). The purpose of this study is to investigate whether KDM6A in renal tubule cells plays a role in the regulation of kidney function and blood pressure. METHODS We first crossed Ksp-Cre+/- and KDM6Aflox/flox mice for generating inducible kidney-specific deletion of KDM6A gene. RESULTS Notably, conditional knockout of KDM6A gene in renal tubule cells (KDM6A-cKO) increased H3K27me3 levels which leads to a decrease in Na excretion and elevation of blood pressure. Further analysis showed that the expression of NKCC2 (Na-K-2Cl cotransporter 2) and NCC (Na-Cl cotransporters) was upregulated which contributes to impaired Na excretion in KDM6A-cKO mice. The expression of AQP2 (aquaporin 2) was also increased in KDM6A-cKO mice, which may facilitate water reabsorption in KDM6A-cKO mice. The expression of Klotho was downregulated while expression of aging markers including p53, p21, and p16 was upregulated in kidneys of KDM6A-cKO mice, indicating that deletion of KDM6A in the renal tubule cells promotes kidney aging. Interestingly, KDM6A-cKO mice developed salt-sensitive hypertension which can be rescued by treatment with Klotho. KDM6A deficiency induced salt-sensitive hypertension likely through downregulation of the Klotho/ERK (extracellular signal-regulated kinase) signaling and upregulation of the WNK (with-no-lysine kinase) signaling. CONCLUSIONS This study provides the first evidence that KDM6A plays an essential role in maintaining normal tubular function and blood pressure. Renal tubule cell specific KDM6A deficiency causes hypertension due to increased H3K27me3 levels and the resultant downregulation of Klotho gene expression which disrupts the Klotho/ERK/NCC/NKCC2 signaling.
Collapse
Affiliation(s)
- Xiaobin Han
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Leah Akinseye
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zhongjie Sun
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
12
|
Zhou X, Chen H, Hu Y, Ma X, Li J, Shi Y, Tao M, Wang Y, Zhong Q, Yan D, Zhuang S, Liu N. Enhancer of zeste homolog 2 promotes renal fibrosis after acute kidney injury by inducing epithelial-mesenchymal transition and activation of M2 macrophage polarization. Cell Death Dis 2023; 14:253. [PMID: 37029114 PMCID: PMC10081989 DOI: 10.1038/s41419-023-05782-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
Long-term follow-up data indicates that 1/4 patients with acute kidney injury (AKI) will develop to chronic kidney disease (CKD). Our previous studies have demonstrated that enhancer of zeste homolog 2 (EZH2) played an important role in AKI and CKD. However, the role and mechanisms of EZH2 in AKI-to-CKD transition are still unclear. Here, we demonstrated EZH2 and H3K27me3 highly upregulated in kidney from patients with ANCA-associated glomerulonephritis, and expressed positively with fibrotic lesion and negatively with renal function. Conditional EZH2 deletion or pharmacological inhibition with 3-DZNeP significantly improved renal function and attenuated pathological lesion in ischemia/reperfusion (I/R) or folic acid (FA) mice models (two models of AKI-to-CKD transition). Mechanistically, we used CUT & Tag technology to verify that EZH2 binding to the PTEN promoter and regulating its transcription, thus regulating its downstream signaling pathways. Genetic or pharmacological depletion of EZH2 upregulated PTEN expression and suppressed the phosphorylation of EGFR and its downstream signaling ERK1/2 and STAT3, consequently alleviating the partial epithelial-mesenchymal transition (EMT), G2/M arrest, and the aberrant secretion of profibrogenic and proinflammatory factors in vivo and vitro experiments. In addition, EZH2 promoted the EMT program induced loss of renal tubular epithelial cell transporters (OAT1, ATPase, and AQP1), and blockade of EZH2 prevented it. We further co-cultured macrophages with the medium of human renal tubular epithelial cells treated with H2O2 and found macrophages transferred to M2 phenotype, and EZH2 could regulate M2 macrophage polarization through STAT6 and PI3K/AKT pathways. These results were further verified in two mice models. Thus, targeted inhibition of EZH2 might be a novel therapy for ameliorating renal fibrosis after acute kidney injury by counteracting partial EMT and blockade of M2 macrophage polarization.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin Zhong
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danying Yan
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Wei W, Li W, Yang L, Weeramantry S, Ma L, Fu P, Zhao Y. Tight junctions and acute kidney injury. J Cell Physiol 2023; 238:727-741. [PMID: 36815285 DOI: 10.1002/jcp.30976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Acute kidney injury (AKI) is characterized by a rapid reduction in kidney function caused by various etiologies. Tubular epithelial cell dysregulation plays a pivotal role in the pathogenesis of AKI. Tight junction (TJ) is the major molecular structure that connects adjacent epithelial cells and is critical in maintaining barrier function and determining the permeability of epithelia. TJ proteins are dysregulated in various types of AKI, and some reno-protective drugs can reverse TJ changes caused by insult. An in-depth understanding of TJ regulation and its causality with AKI will provide more insight to the disease pathogenesis and will shed light on the potential role of TJs to serve as novel therapeutic targets in AKI.
Collapse
Affiliation(s)
- Wei Wei
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiying Li
- Department of Internal Medicine, Florida Hospital/AdventHealth, Orlando, Florida, USA
| | - Letian Yang
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Savidya Weeramantry
- Department of Internal Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Liang Ma
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuliang Zhao
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Zhao Y, Li D, Zhou P, Zhao Y, Kuang J. microRNA-29b-3p attenuates diabetic nephropathy in mice by modifying EZH2. Hormones (Athens) 2023; 22:223-233. [PMID: 36692688 DOI: 10.1007/s42000-022-00426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/30/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Diabetic nephropathy (DN) is the leading cause of end-stage renal disease around the world. This study investigated the role of microRNA (miR)-29b-3p in DN and the mechanism of the miR-29b-3p/EZH2 axis in DN. METHODS Peripheral blood samples of DN patients were collected and miR-29b-3p and EZH2 expression levels were evaluated using RT-qPCR. DN mouse models were successfully established, and then treated with miR-29b-3p overexpression or EZH2 silence. IL-1β, IL-6, and TNF-α levels were assessed by ELISA. Blood glucose, serum creatinine (Scr), 24-h urine volume, 24-h urine protein, and blood urea nitrogen (BUN) levels were examined by automatic biochemical analyzer detection. HE staining was performed to observe the renal histopathology, and TUNEL staining was implemented to test apoptosis in renal tissues. The binding relationship between miR-29b-3p and EZH2 was validated by using a bioinformatics website and dual luciferase reporter gene assay. RESULTS miR-29b-3p was lowly expressed, and EZH2 was highly expressed in patients with DN. Overexpressing miR-29b-3p or silencing EZH2 attenuated renal dysfunction, suppressed inflammation and apoptosis, and relieved renal injuries in mice with DN. miR-29b-3p inhibited EZH2, and miR-29b-3p overexpression mitigated renal injuries in DN mice by repressing EZH2. CONCLUSION miR-29b-3p suppresses EZH2 expression thereby inhibiting the progression of DN in mice.
Collapse
Affiliation(s)
- Yurong Zhao
- Department of Endocrinology, the Fourth People's Hospital of Shenyang, Shenyang, 110000, Liaoning, China
| | - Dandan Li
- Department of Endocrinology, the Fourth People's Hospital of Shenyang, Shenyang, 110000, Liaoning, China
| | - Ping Zhou
- Department of Anesthesiology, Suizhou Maternal and Child Health Hospital, Suizhou, 441300, Hubei, China
| | - Yujie Zhao
- Shenzhen Yuce Biological Technology Company, Shenzhen, 518172, Guangdong, China
| | - Jinsong Kuang
- Department of Endocrinology, the Fourth People's Hospital of Shenyang, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
15
|
Wang J, Shen F, Liu F, Zhuang S. Histone Modifications in Acute Kidney Injury. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:466-477. [PMID: 36590679 PMCID: PMC9798838 DOI: 10.1159/000527799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022]
Abstract
Background Acute kidney injury (AKI) is a serious clinical problem associated with high morbidity and mortality worldwide. The pathophysiology and pathogenesis of AKI is complex and multifactorial. In recent years, epigenetics has emerged as an important regulatory mechanism in AKI. Summary There are several types of histone modification, including methylation, acetylation, phosphorylation, crotonylation, citrullination, and sumoylation. Histone modifications are associated with the transcription of many genes and activation of multiple signaling pathways that contribute to the pathogenesis of AKI. Thus, targeting histone modification may offer novel strategies to protect kidneys from AKI and enhance kidney repair and recovery. In this review, we summarize recent advances on the modification, regulation, and implication of histone modifications in AKI. Key Messages Histone modifications contribute to the pathogenesis of AKI. Understanding of epigenetic regulation in AKI will aid in establishing the utility of pharmacologic targeting of histone modification as a potential novel therapy for AKI.
Collapse
Affiliation(s)
- Jun Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengchen Shen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
16
|
Sun H, Li X, Chen X, Xiong Y, Cao Y, Wang Z. Drp1 activates ROS/HIF-1α/EZH2 and triggers mitochondrial fragmentation to deteriorate hypercalcemia-associated neuronal injury in mouse model of chronic kidney disease. J Neuroinflammation 2022; 19:213. [PMID: 36050772 PMCID: PMC9438241 DOI: 10.1186/s12974-022-02542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background Chronic kidney disease (CKD), characterized as renal dysfunction, is regarded as a major public health problem which carries a high risk of cardiovascular diseases. The purpose of this study is to evaluate the functional significance of Drp1 in hypercalcemia-associated neuronal damage following CKD and the associated mechanism. Methods Initially, the CKD mouse models were established. Next, RT-qPCR and Western blot analysis were performed to measure expression of Fis1 and Drp1 in CKD. Chromatin immunoprecipitation (ChIP) assay and dual-luciferase reporter gene assay were utilized to explore the relationship among Drp1, HIF-1α, EZH2, and ROS with primary cortical neurons isolated from neonatal mice. Next, CKD mice were subjected to calcitonin treatment or manipulation with adenovirus expressing sh-Drp1, so as to explore the effects of Drp1 on hypercalcemia-induced neuronal injury in CKD. TUNEL assay and immunofluorescence staining were performed to detect apoptosis and NeuN-positive cells (neurons) in prefrontal cortical tissues of CKD mice. Results It was found that hypercalcemia could induce neuronal injury in CKD mice. An increase of Fis1 and Drp1 expression in cerebral cortex of CKD mice correlated with mitochondrial fragmentation. Calcitonin suppressed Drp1/Fis1-mediated mitochondrial fragmentation to attenuate hypercalcemia-induced neuronal injury after CKD. Additionally, Drp1 could increase EZH2 expression through the binding of HIF-1α to EZH2 promoter via elevating ROS generation. Furthermore, Drp1 knockdown inhibited hypercalcemia-induced neuronal injury in CKD while overexpression of EZH2 could reverse this effect in vivo. Conclusion Taken together, the key findings of the current study demonstrate the promotive role of Drp1 in mitochondrial fragmentation which contributes to hypercalcemia-induced neuronal injury in CKD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02542-7.
Collapse
Affiliation(s)
- Hongming Sun
- The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou, 570102, Hannan, China.,Department of Neurology and Neuroscience, Okayama University School of Medicine, Okayama, 700-8558, Japan
| | - Xitong Li
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Xin Chen
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Yingquan Xiong
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Yaochen Cao
- The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou, 570102, Hannan, China. .,Department of Nephrology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany.
| | - Ziqiang Wang
- The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou, 570102, Hannan, China.
| |
Collapse
|
17
|
Zhao YB, Wei W, Lin XX, Chai YF, Jin H. The Role of Histone H3 Methylation in Acute Kidney Injury. Drug Des Devel Ther 2022; 16:2453-2461. [PMID: 35941926 PMCID: PMC9356748 DOI: 10.2147/dddt.s376673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 12/28/2022] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome in which kidney function declines sharply due to various reasons. Although the morbidity and mortality of AKI are high, the mechanism of occurrence and development of AKI has not been fully elucidated, and precise prevention and treatment measures are lacking. Epigenetics is a branch of genetics that provides a new perspective to explore the pathophysiology of AKI and renal repair. A large amount of literature shows that the methylation mechanism of H3 in histones is closely related to the development of kidney diseases. The sorting out of histone H3 methylation mechanism in AKI and kidney repair can help understand the pathophysiological process of the disease more deeply. It may also provide new ideas for diagnosing and treating of the disease.
Collapse
Affiliation(s)
- Yi-Bo Zhao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
| | - Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
| | - Xiao-Xi Lin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
- Correspondence: Heng Jin; Yan-Fen Chai, Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China, Email ;
| |
Collapse
|
18
|
Selective EZH2 inhibitor zld1039 alleviates inflammation in cisplatin-induced acute kidney injury partially by enhancing RKIP and suppressing NF-κB p65 pathway. Acta Pharmacol Sin 2022; 43:2067-2080. [PMID: 34937916 PMCID: PMC9343430 DOI: 10.1038/s41401-021-00837-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2), a component of polycomb repressive complex 2 (PRC2), is a histone lysine methyltransferase mediating trimethylation of histone H3 at lysine 27 (H3K27me3), which is a repressive marker at the transcriptional level. EZH2 sustains normal renal function and its overexpression has bad properties. Inhibition of EZH2 overexpression exerts protective effect against acute kidney injury (AKI). A small-molecule compound zld1039 has been developed as an efficient and selective EZH2 inhibitor. In this study, we evaluated the efficacy of zld1039 in the treatment of cisplatin-induced AKI in mice. Before injection of cisplatin (20 mg/kg, i.p.), mice were administered zld1039 (100, 200 mg/kg, i.g.) once, then in the following 3 days. We found that cisplatin-treated mice displayed serious AKI symptoms, evidenced by kidney dysfunction and kidney histological injury, accompanied by EZH2 upregulation in the nucleus of renal tubular epithelial cells. Administration of zld1039 dose-dependently alleviated renal dysfunction as well as the histological injury, inflammation and cell apoptosis in cisplatin-treated mice. We revealed that zld1039 administration exerted an anti-inflammatory effect in kidney of cisplatin-treated mice via H3K27me3 inhibition, raf kinase inhibitor protein (RKIP) upregulation and NF-κB p65 repression. In the cisplatin-treated mouse renal tubular epithelial (TCMK-1) cells, silencing of RKIP with siRNA did not abolish the anti-inflammatory effect of EZH2 inhibition, suggesting that RKIP was partially involved in the anti-inflammatory effect of zld1039. Collectively, EZH2 inhibition alleviates inflammation in cisplatin-induced mouse AKI via upregulating RKIP and blocking NF-κB p65 signaling in cisplatin-induced AKI. The potent and selective EZH2 inhibitor zld1039 has the potential as a promising agent for the treatment of AKI.
Collapse
|
19
|
LncRNA ANRIL mediates endothelial dysfunction through BDNF downregulation in chronic kidney disease. Cell Death Dis 2022; 13:661. [PMID: 35906216 PMCID: PMC9338026 DOI: 10.1038/s41419-022-05068-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023]
Abstract
Endothelial dysfunction is common in patients with chronic kidney disease (CKD), but the mechanism is unknown. In this study, we found that the circulating ANRIL level was increased and correlated with vascular endothelial dysfunction in patients with CKD, also negatively correlated with plasma brain-derived neurotrophic factor (BDNF) concentration. We constructed the ANRIL knockout mice model, and found that ANRIL deficiency reversed the abnormal expression of BDNF, along with endothelial nitric oxide synthase (eNOS), vascular adhesion molecule 1 (VCAM-1) and Von Willebrand factor (vWF). Meanwhile, mitochondrial dynamics-related proteins, Dynamin-related protein 1 (Drp1) and mitofusins (Mfn2) level were also recovered. In addition, in vitro, serum derived from CKD patients and uremia toxins induced abnormal expression of ANRIL. By making use of the gain- and loss-of-function approaches, we observed that ANRIL mediated endothelial dysfunction through BDNF downregulation. To explore the specific mechanism, RNA pull-down and RNA-binding protein immunoprecipitation (RIP) were used to explore the binding of ANRIL to histone methyltransferase Enhancer of zeste homolog 2 (EZH2). Further experiments found increased EZH2 and histone H3 lysine 27 trimethylation (H3K27me3) levels at the BDNF promoter region. Collectively, we demonstrated that ANRIL mediate BDNF transcriptional suppression through recruitment of EZH2 to the BDNF promoter region, then regulated the proteins expression related to endothelial function and mitochondrial dynamics. This study provides new insights for the study of endothelial dysfunction in CKD.
Collapse
|
20
|
Demethylation of H3K9 and H3K27 Contributes to the Tubular Renal Damage Triggered by Endoplasmic Reticulum Stress. Antioxidants (Basel) 2022; 11:antiox11071355. [PMID: 35883846 PMCID: PMC9312208 DOI: 10.3390/antiox11071355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Loss of protein homeostasis (proteostasis) in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR), restoring correct protein folding. Sustained ER stress exacerbates activation of the major UPR branches (IRE1α/XBP1, PERK/ATF4, ATF6), inducing expression of numerous genes involved in inflammation, cell death, autophagy, and oxidative stress. We investigated whether epigenetic dynamics mediated by histone H3K9 and H3K27 methylation might help to reduce or inhibit the exacerbated and maladaptive UPR triggered in tubular epithelial cells. Epigenetic treatments, specific silencing, and chromatin immunoprecipitation assays were performed in human proximal tubular cells subjected to ER stress. Pharmacological blockage of KDM4C and JMJD3 histone demethylases with SD-70 and GSKJ4, respectively, enhanced trimethylation of H3K9 and H3K27 in the ATF4 and XBP1 genes, inhibiting their expression and that of downstream genes. Conversely, specific G9a and EZH2 knockdown revealed increases in ATF4 and XBP1 expression. This is a consequence of the reduced recruitment of G9a and EZH2 histone methylases, diminished H3K9me3 and H3K27me3 levels, and enhanced histone acetylation at the ATF4 and XBP1 promoter region. G9a and EZH2 cooperate to maintain the repressive chromatin structure in both UPR-induced genes, ATF4 and XBP1. Therefore, preserving histone H3K9 and H3K27 methylation could ameliorate the ER stress, and consequently the oxidative stress and the triggered pathological processes that aggravate renal damage.
Collapse
|
21
|
Yu C, Li T, Li J, Cui B, Liu N, Bayliss G, Zhuang S. Inhibition of polycomb repressive complex 2 by targeting EED protects against cisplatin-induced acute kidney injury. J Cell Mol Med 2022; 26:4061-4075. [PMID: 35734954 PMCID: PMC9279598 DOI: 10.1111/jcmm.17447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 12/05/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a multicomponent complex with methyltransferase activity that catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3). Interaction of the epigenetic reader protein EED with EZH2, a catalytic unit of PRC, allosterically stimulates PRC2 activity. In this study, we investigated the role and underlying mechanism of the PRC2 in acute kidney injury (AKI) by using EED226, a highly selective PRC2 inhibitor, to target EED. Administration of EED226 improved renal function, attenuated renal pathological changes, and reduced renal tubular cell apoptosis in a murine model of cisplatin‐induced AKI. In cultured renal epithelial cells, treatment with either EED226 or EED siRNA also ameliorated cisplatin‐induced apoptosis. Mechanistically, EED226 treatment inhibited cisplatin‐induced phosphorylation of p53 and FOXO3a, two transcriptional factors contributing to apoptosis, and preserved expression of Sirtuin 3 and PGC1α, two proteins associated with mitochondrial protection in vivo and in vitro. EED226 was also effective in enhancing renal tubular cell proliferation, suppressing expression of multiple inflammatory cytokines, and reducing infiltration of macrophages to the injured kidney. These data suggest that inhibition of the PRC2 activity by targeting EED can protect against cisplatin‐induced AKI by promoting the survival and proliferation of renal tubular cells and inhibiting inflammatory response.
Collapse
Affiliation(s)
- Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jialu Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital, and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital, and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
22
|
Xiang X, Zhu J, Dong G, Dong Z. Epigenetic Regulation in Kidney Transplantation. Front Immunol 2022; 13:861498. [PMID: 35464484 PMCID: PMC9024296 DOI: 10.3389/fimmu.2022.861498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 12/29/2022] Open
Abstract
Kidney transplantation is a standard care for end stage renal disease, but it is also associated with a complex pathogenesis including ischemia-reperfusion injury, inflammation, and development of fibrosis. Over the past decade, accumulating evidence has suggested a role of epigenetic regulation in kidney transplantation, involving DNA methylation, histone modification, and various kinds of non-coding RNAs. Here, we analyze these recent studies supporting the role of epigenetic regulation in different pathological processes of kidney transplantation, i.e., ischemia-reperfusion injury, acute rejection, and chronic graft pathologies including renal interstitial fibrosis. Further investigation of epigenetic alterations, their pathological roles and underlying mechanisms in kidney transplantation may lead to new strategies for the discovery of novel diagnostic biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs (VA) Medical Center, Augusta, GA, United States.,Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiefu Zhu
- Center of Nephrology and Dialysis, Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs (VA) Medical Center, Augusta, GA, United States
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs (VA) Medical Center, Augusta, GA, United States
| |
Collapse
|
23
|
Zhou X, Chen H, Li J, Shi Y, Zhuang S, Liu N. The Role and Mechanism of Lysine Methyltransferase and Arginine Methyltransferase in Kidney Diseases. Front Pharmacol 2022; 13:885527. [PMID: 35559246 PMCID: PMC9086358 DOI: 10.3389/fphar.2022.885527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Methylation can occur in both histones and non-histones. Key lysine and arginine methyltransferases under investigation for renal disease treatment include enhancer of zeste homolog 2 (EZH2), G9a, disruptor of telomeric silencing 1-like protein (DOT1L), and protein arginine methyltransferases (PRMT) 1 and 5. Recent studies have shown that methyltransferases expression and activity are also increased in several animal models of kidney injury, such as acute kidney injury(AKI), obstructive nephropathy, diabetic nephropathy and lupus nephritis. The inhibition of most methyltransferases can attenuate kidney injury, while the role of methyltransferase in different animal models remains controversial. In this article, we summarize the role and mechanism of lysine methyltransferase and arginine methyltransferase in various kidney diseases and highlight methyltransferase as a potential therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Sevoflurane Offers Neuroprotection in a Cerebral Ischemia/Reperfusion Injury Rat Model Through the E2F1/EZH2/TIMP2 Regulatory Axis. Mol Neurobiol 2022; 59:2219-2231. [PMID: 35064540 DOI: 10.1007/s12035-021-02602-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury contributes considerably to the poor prognosis in patients with ischemic stroke. This study is aimed to delineate the molecular mechanistic actions by which sevoflurane protects against cerebral I/R injury. A rat model of cerebral I/R injury was established and pre-treated with sevoflurane, in which hippocampal neuron apoptosis was found to be repressed and the level of E2F transcription factor 1 (E2F1) was observed to be down-regulated. Then, the up-regulated expression of E2F1 was validated in rats with cerebral I/R injury, responsible for stimulated neuron apoptosis. Further, the binding of E2F1 to enhancer of zeste homolog 2 (EZH2) and EZH2 to tissue inhibitor of metalloproteinases-2 (TIMP2) was identified. The stimulative effect of the E2F1/EZH2/TIMP2 regulatory axis on neuron apoptosis was subsequently demonstrated through functional assays. After that, it was substantiated in vivo that sevoflurane suppressed the apoptosis of hippocampal neurons in rats with cerebral I/R injury by down-regulating E2F1 to activate the EZH2/TIMP2 axis. Taken together, our data elucidated that sevoflurane reduced neuron apoptosis through mediating the E2F1/EZH2/TIMP2 regulatory axis, thus protecting rats against cerebral I/R injury.
Collapse
|
25
|
METTL3-mediated m 6A modification of TIMP2 mRNA promotes podocyte injury in diabetic nephropathy. Mol Ther 2022; 30:1721-1740. [PMID: 34995800 PMCID: PMC9077313 DOI: 10.1016/j.ymthe.2022.01.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/21/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Epigenetic changes are present in many physiological and pathological processes. The N6-methyladenosine (m6A) modification is the most common modification in eukaryotic mRNA. However, the role of m6A modification in diabetic nephropathy (DN) remains elusive. Here, we found that m6A modification was significantly upregulated in the kidney of type 1 and type 2 diabetic mice, which was caused by elevated levels of METTL3. Moreover, METTL3 is increased in podocyte of renal biopsy from patients with DN, which is related to renal damage. METTL3 knockout significantly reduced the inflammation and apoptosis in high glucose (HG)-stimulated podocytes, while its overexpression significantly aggravated these responses in vitro. Podocyte-conditional knockout METTL3 significantly alleviated podocyte injury and albuminuria in streptozotocin (STZ)-induced diabetic mice. Therapeutically, silencing METTL3 with adeno-associated virus serotype-9 (AAV9)-shMETTL3 in vivo mitigated albuminuria and histopathological injury in STZ-induced diabetic mice and db/db mice. Mechanistically, METTL3 modulated Notch signaling via the m6A modification of TIMP2 in an insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2)-dependent manner and exerted pro-inflammatory and pro-apoptotic effects. In summary, this study suggested that METTL3-mediated m6A modification is an important mechanism of podocyte injury in DN. Targeting m6A through the writer enzyme METTL3 is a potential approach for the treatment of DN.
Collapse
|
26
|
Gao X, Peng Y, Fang Z, Li L, Ming S, Dong H, Li R, Zhu Y, Zhang W, Zhu B, Liao J, Wang Z, Liu M, Lin W, Zeng J, Gao X. Inhibition of EZH2 ameliorates hyperoxaluria-induced kidney injury through the JNK/FoxO3a pathway. Life Sci 2021; 291:120258. [PMID: 34952043 DOI: 10.1016/j.lfs.2021.120258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022]
Abstract
AIMS Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 methyltransferase, has been shown to play a role in kidney diseases. However, its role in hyperoxaluria-induced renal tubular epithelial cells (TECs) injury remains unclear. MATERIALS AND METHODS A hyperoxaluria rat model was established by providing 0.5% ammonium chloride and drinking water containing 1% ethylene glycol. TECs were exposed to oxalate stress. The 3-DZNeP, a selective EZH2 inhibitor, was administered in vivo and in vitro. Cell viability, ROS production, and apoptosis ratio were evaluated. Crystal deposition was detected by Von Kossa staining and kidney tissue injury was detected by HE staining and TUNEL. EZH2, H3K27me3, cleaved-caspase3, IL-6, and MCP-1 were examined by western blot or immunohistochemistry. KEY FINDINGS Inhibition of EZH2 by 3-DZNeP significantly attenuated hyperoxaluria-induced oxidative and inflammatory injury and CaOx crystal deposition in vivo. Similarly, inhibition of EZH2 using 3-DZNeP or shRNA restored cell viability, suppressed LDH release and the production of intracellular ROS in vitro. Furthermore, the MAPK signaling pathway and FoxO3a levels were activated or elevated in TECs exposed to oxalate. EZH2 inhibition using 3-DZNeP blocked these effects. CC90003 (ERK inhibitor) or SB203580 (p38 inhibitor) did not significantly affect the expression of FoxO3a in TECs treated with 3-DZNeP and oxalate; only SP600125 (JNK inhibitor) significantly decreased FoxO3a expression. SIGNIFICANCE EZH2 inhibition protects against oxalate-induced TECs injury and reduces CaOx crystal deposition in the kidney may by modulating the JNK/FoxO3a pathway; EZH2 may be a promising therapeutic target in TECs injury.
Collapse
Affiliation(s)
- Xiaomin Gao
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yonghan Peng
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Ziyu Fang
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Ling Li
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Shaoxiong Ming
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Hao Dong
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Rui Li
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yasheng Zhu
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Wei Zhang
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Baoyi Zhu
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, China
| | - Junhao Liao
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, China
| | - Zeyu Wang
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Min Liu
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Weijian Lin
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, China
| | - Jianwen Zeng
- Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, China.
| | - Xiaofeng Gao
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China.
| |
Collapse
|
27
|
Hu CT, Mandal JP, Wu WS. Regulation on tumor metastasis by Raf kinase inhibitory protein: New insight with reactive oxygen species signaling. Tzu Chi Med J 2021; 33:332-338. [PMID: 34760627 PMCID: PMC8532577 DOI: 10.4103/tcmj.tcmj_296_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/19/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted therapy aiming at the metastatic signal pathway, such as that triggered by receptor tyrosine kinase (RTK), for the prevention of tumor progression is promising. However, RTK-based targeted therapy frequently suffered from drug resistance due to the co-expression of multiple growth factor receptors that may raise compensatory secondary signaling and acquired mutations after treatment. One alternative strategy is to manipulate the common negative regulators of the RTK signaling. Among them, Raf kinase inhibitory protein (RKIP) is highlighted and focused on this review. RKIP can associate with Raf-1, thus suppressing the downstream mitogen-activated protein kinase (MAPK) cascade. RKIP also negatively regulates other metastatic signal molecules including NF-κB, STAT3, and NOTCH1. In general, RKIP achieves this task via associating and blocking the activity of the critical molecules on upstream of the aforementioned pathways. One novel RKIP-related signaling involves reactive oxygen species (ROS). In our recent report, we found that PKCδ-mediated ROS generation may interfere with the association of RKIP with heat shock protein 60 (HSP60)/MAPK complex via oxidation of HSP60 triggered by the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate. The departure of RKIP may impact the downstream MAPK in two aspects. One is to trigger the Mt→cytosol translocation of HSP60 coupled with MAPKs. The other is to change the conformation of HSP60, favoring more efficient activation of the associated MAPK by upstream kinases in cytosol. It is worthy of investigating whether various RTKs capable of generating ROS can drive metastatic signaling via affecting RKIP in the same manner.
Collapse
Affiliation(s)
- Chi-Tan Hu
- Division of Gastroenterology, Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Research Centre for Hepatology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Wen-Sheng Wu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
28
|
Tao Z, Jie Y, Mingru Z, Changping G, Fan Y, Haifeng W, Yuelan W. The Elk1/MMP-9 axis regulates E-cadherin and occludin in ventilator-induced lung injury. Respir Res 2021; 22:233. [PMID: 34425812 PMCID: PMC8382112 DOI: 10.1186/s12931-021-01829-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023] Open
Abstract
Background Ventilator-induced lung injury (VILI) is a common complication in the treatment of respiratory diseases with high morbidity and mortality. ETS-domain containing protein (Elk1) and Matrix metalloproteinase (MMP) 9 are involved in VILI, but the roles have not been fully elucidated. This study examined the mechanisms of the activation of MMP-9 and Elk1 regulating barrier function in VILI in vitro and in vivo. Methods For the in vitro study, Mouse lung epithelial cells (MLE-12) were pre-treated with Elk1 siRNA or MMP-9 siRNA for 48 h prior to cyclic stretch at 20% for 4 h. For the in vivo study, C57BL/6 mice were pre-treated with Elk1 siRNA or MMP-9 siRNA for 72 h prior to 4 h of mechanical ventilation. The expressions of Elk1, MMP-9, Tissue inhibitor of metalloproteinase 1 (TIMP-1), E-cadherin, and occludin were measured by Western blotting. The intracellular distribution of E-cadherin and occludin was shown by immunofluorescence. The degree of pulmonary edema and lung injury were evaluated by Hematoxylin–eosin (HE) staining, lung injury scores, Wet/Dry (W/D) weight ratio, total cell counts, and Evans blue dye. Results 20% cyclic stretch and high tidal volume increases the expressions of Elk1, MMP-9, and TIMP-1, increases the ratio of MMP-9/TIMP-1, decreases the E-cadherin and occludin level. Elk1 siRNA or MMP-9 siRNA reverses the degradations of E-cadherin, occludin, and the ratio of MMP-9/TIMP-1 caused by cyclic stretch. Elk1 siRNA decreases the MMP-9 level with or not 20% cyclic stretch and high tidal volume. Conclusions The results demonstrate mechanical stretch damages the tight junctions and aggravates the permeability in VILI, Elk1 plays an important role in affecting the tight junctions and permeability by regulating the balance of MMP-9 and TIMP-1, thus indicating the therapeutic potential of Elk1 to treat VILI.
Collapse
Affiliation(s)
- Zhao Tao
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.,Department of Anesthesiology, People's Hospital of Rizhao, Jining Medical University, No. 126 Tai'an Road, Rizhao, 276826, Shandong, China.,Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Yan Jie
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Zhang Mingru
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.,Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Gu Changping
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.,Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Yang Fan
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.,Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Wu Haifeng
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.,Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Wang Yuelan
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China. .,Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
29
|
Menez S, Ju W, Menon R, Moledina DG, Thiessen Philbrook H, McArthur E, Jia Y, Obeid W, Mansour SG, Koyner JL, Shlipak MG, Coca SG, Garg AX, Bomback AS, Kellum JA, Kretzler M, Parikh CR. Urinary EGF and MCP-1 and risk of CKD after cardiac surgery. JCI Insight 2021; 6:147464. [PMID: 33974569 PMCID: PMC8262289 DOI: 10.1172/jci.insight.147464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUNDAssessment of chronic kidney disease (CKD) risk after acute kidney injury (AKI) is based on limited markers primarily reflecting glomerular function. We evaluated markers of cell integrity (EGF) and inflammation (monocyte chemoattractant protein-1, MCP-1) for predicting long-term kidney outcomes after cardiac surgery.METHODSWe measured EGF and MCP-1 in postoperative urine samples from 865 adults who underwent cardiac surgery at 2 sites in Canada and the United States and assessed EGF and MCP-1's associations with the composite outcome of CKD incidence or progression. We used single-cell RNA-Seq (scRNA-Seq) of AKI patient biopsies to perform transcriptomic analysis of programs corregulated with the associated genes.RESULTSOver a median (IQR) follow-up of 5.8 (4.2-7.1) years, 266 (30.8%) patients developed the composite CKD outcome. Postoperatively, higher levels of urinary EGF were protective and higher levels of MCP-1 were associated with the composite CKD outcome (adjusted HR 0.83, 95% CI 0.73-0.95 and 1.10, 95% CI 1.00-1.21, respectively). Intrarenal scRNA-Seq transcriptomes in patients with AKI-defined cell populations revealed concordant changes in EGF and MCP-1 levels and underlying molecular processes associated with loss of EGF expression and gain of CCL2 (encoding MCP-1) expression.CONCLUSIONUrinary EGF and MCP-1 were each independently associated with CKD after cardiac surgery. These markers may serve as noninvasive indicators of tubular damage, supported by tissue transcriptomes, and provide an opportunity for novel interventions in cardiac surgery.TRIAL REGISTRATIONClinicalTrials.gov NCT00774137.FUNDINGThe NIH funded the TRIBE-AKI Consortium and Kidney Precision Medicine Project. Yale O'Brien Kidney Center, American Heart Association, Patterson Trust Fund, Dr. Adam Linton Chair in Kidney Health Analytics, Canadian Institutes of Health Research, ICES, Ontario Ministry of Health and Long-Term Care, Academic Medical Organization of Southwestern Ontario, Schulich School of Medicine & Dentistry, Western University, Lawson Health Research Institute, Chan Zuckerberg Initiative Human Cell Atlas Kidney Seed Network.
Collapse
Affiliation(s)
- Steven Menez
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Rajasree Menon
- Division of Nephrology, Department of Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Dennis G. Moledina
- Section of Nephrology and
- Clinical and Translational Research Accelerator, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Heather Thiessen Philbrook
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Yaqi Jia
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wassim Obeid
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sherry G. Mansour
- Section of Nephrology and
- Clinical and Translational Research Accelerator, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jay L. Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Michael G. Shlipak
- Kidney Health Research Collaborative and Division of General Internal Medicine, San Francisco Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California, USA
| | - Steven G. Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amit X. Garg
- ICES, Ontario, Canada
- Division of Nephrology, Department of Medicine, and
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Andrew S. Bomback
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - John A. Kellum
- The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Chirag R. Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
30
|
Li T, Yu C, Zhuang S. Histone Methyltransferase EZH2: A Potential Therapeutic Target for Kidney Diseases. Front Physiol 2021; 12:640700. [PMID: 33679454 PMCID: PMC7930071 DOI: 10.3389/fphys.2021.640700] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme that catalyzes the addition of methyl groups to histone H3 at lysine 27, leading to gene silencing. Mutation or over-expression of EZH2 has been linked to many cancers including renal carcinoma. Recent studies have shown that EZH2 expression and activity are also increased in several animal models of kidney injury, such as acute kidney injury (AKI), renal fibrosis, diabetic nephropathy, lupus nephritis (LN), and renal transplantation rejection. The pharmacological and/or genetic inhibition of EZH2 can alleviate AKI, renal fibrosis, and LN, but potentiate podocyte injury in animal models, suggesting that the functional role of EZH2 varies with renal cell type and disease model. In this article, we summarize the role of EZH2 in the pathology of renal injury and relevant mechanisms and highlight EZH2 as a potential therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Tingting Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Alpert Medical School and Rhode Island Hospital, Brown University, Providence, RI, United States
| |
Collapse
|
31
|
Yu C, Xiong C, Tang J, Hou X, Liu N, Bayliss G, Zhuang S. Histone demethylase JMJD3 protects against renal fibrosis by suppressing TGFβ and Notch signaling and preserving PTEN expression. Am J Cancer Res 2021; 11:2706-2721. [PMID: 33456568 PMCID: PMC7806480 DOI: 10.7150/thno.48679] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: The Jumonji domain containing-3 (JMJD3), a specific histone demethylase for trimethylation on histone H3 lysine 27 (H3K27me3), is associated with the pathogenesis of many diseases, but its role in renal fibrosis remains unexplored. Here we examined the role of JMJD3 and mechanisms involved in the activation of renal fibroblasts and development of renal fibrosis. Methods: Murine models of 5/6 surgical nephrectomy (SNx) and ureteral unilateral obstruction (UUO) were used to assess the effect of a specific JMJD3 inhibitor, GSKJ4, and genetic deletion of JMJD3 from FOXD1 stroma-derived renal interstitial cells on the development of renal fibrosis and activation of renal interstitial fibroblasts. Cultured rat renal interstitial fibroblasts (NRK-49F) and mouse renal tubular epithelial cells (mTECs) were also used to examine JMJD3-mediated activation of profibrotic signaling. Results: JMJD3 and H3K27me3 expression levels were upregulated in the kidney of mice subjected to SNx 5/6 and UUO. Pharmacological inhibition of JMJD3 with GSKJ4 or genetic deletion of JMJD3 led to worsening of renal dysfunction as well as increased deposition of extracellular matrix proteins and activation of renal interstitial fibroblasts in the injured kidney. This was coincident with decreased expression of Smad7 and enhanced expression of H3K27me3, transforming growth factor β1 (TGFβ1), Smad3, Notch1, Notch3 and Jagged1. Inhibition of JMJD3 by GSK J4 or its specific siRNA also resulted in the similar responses in cultured NRK-49F and mTECs exposed to serum or TGFβ1. Moreover, JMJD3 inhibition augmented phosphorylation of AKT and ERK1/2 in vivo and in vitro. Conclusion: These results indicate that JMJD3 confers anti-fibrotic effects by limiting activation of multiple profibrotic signaling pathways and suggest that JMJD3 modulation may have therapeutic effects for chronic kidney disease.
Collapse
|
32
|
Jiang Y, Xiang C, Zhong F, Zhang Y, Wang L, Zhao Y, Wang J, Ding C, Jin L, He F, Wang H. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Am J Cancer Res 2021; 11:361-378. [PMID: 33391480 PMCID: PMC7681085 DOI: 10.7150/thno.46360] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: As the central hallmark of liver fibrosis, transdifferentiation of hepatic stellate cells (HSCs), the predominant contributor to fibrogenic hepatic myofibroblast responsible for extracellular matrix (ECM) deposition, is characterized with transcriptional and epigenetic remodeling. We aimed to characterize the roles of H3K27 methyltransferase EZH2 and demethylase JMJD3 and identify their effective pathways and novel target genes in HSCs activation and liver fibrosis. Methods: In primary HSCs, we analyzed effects of pharmacological inhibitions and genetic manipulations of EZH2 and JMJD3 on HSCs activation. In HSCs cell lines, we evaluated effects of EZH2 inhibition by DZNep on proliferation, cell cycling, senescence and apoptosis. In CCl4 and BDL murine models of liver fibrosis, we assessed in vivo effects of DZNep administration and Ezh2 silencing. We profiled rat primary HSCs transcriptomes with RNA-seq, screened the pathways and genes associated with DZNep treatment, analyzed EZH2 and JMJD3 regulation towards target genes by ChIP-qPCR. Results: EZH2 inhibition by DZNep resulted in retarded growth, lowered cell viability, cell cycle arrest in S and G2 phases, strengthened senescence, and enhanced apoptosis of HSCs, decreased hepatic collagen deposition and rescued the elevated serum ALT and AST activities of diseased mice, and downregulated cellular and hepatic expressions of H3K27me3, EZH2, α-SMA and COL1A. Ezh2 silencing by RNA interference in vitro and in vivo showed similar effects. JMJD3 inhibition by GSK-J4 and overexpression of wild-type but not mutant Jmjd3 enhanced or repressed HSCs activation respectively. EZH2 inhibition by DZNep transcriptionally inactivated TGF-β1 pathway, cell cycle pathways and vast ECM components in primary HSCs. EZH2 inhibition decreased H3K27me3 recruitment at target genes encoding TGF-β1 pseudoreceptor BAMBI, anti-inflammatory cytokine IL10 and cell cycle regulators CDKN1A, GADD45A and GADD45B, and increased their expressions, while Jmjd3 overexpression manifested alike effects. Conclusions: EZH2 and JMJD3 antagonistically modulate HSCs activation. The therapeutic effects of DZNep as epigenetic drug in liver fibrosis are associated with the regulation of EZH2 towards direct target genes encoding TGF-β1 pseudoreceptor BAMBI, anti-inflammatory cytokine IL10 and cell cycle regulators CDKN1A, GADD45A and GADD45B, which are also regulated by JMJD3. Our present study provides new mechanistic insight into the epigenetic modulation of EZH2 and JMJD3 in HSCs biology and hepatic fibrogenesis.
Collapse
|
33
|
Francis M, Gopinathan G, Foyle D, Fallah P, Gonzalez M, Luan X, Diekwisch T. Histone Methylation: Achilles Heel and Powerful Mediator of Periodontal Homeostasis. J Dent Res 2020; 99:1332-1340. [PMID: 32762486 PMCID: PMC7580172 DOI: 10.1177/0022034520932491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The packaging of DNA around nucleosomes exerts dynamic control over eukaryotic gene expression either by granting access to the transcriptional machinery in an open chromatin state or by silencing transcription via chromatin compaction. Histone methylation modification affects chromatin through the addition of methyl groups to lysine or arginine residues of histones H3 and H4 by means of histone methyl transferases or histone demethylases. Changes in histone methylation state modulate periodontal gene expression and have profound effects on periodontal development, health, and therapy. At the onset of periodontal development, progenitor cell populations such as dental follicle cells are characterized by an open H3K4me3 chromatin mark on RUNX2, MSX2, and DLX5 gene promoters. During further development, periodontal progenitor differentiation undergoes a global switch from the H3K4me3 active methyl mark to the H3K27me3 repressive mark. When compared with dental pulp cells, periodontal neural crest lineage differentiation is characterized by repressive H3K9me3 and H3K27me3 marks on typical dentinogenesis-related genes. Inflammatory conditions as they occur during periodontal disease result in unique histone methylation signatures in affected cell populations, including repressive H3K9me3 and H3K27me3 histone marks on extracellular matrix gene promoters and active H3K4me3 marks on interleukin, defensin, and chemokine gene promoters, facilitating a rapid inflammatory response to microbial pathogens. The inflammation-induced repression of chromatin on extracellular matrix gene promoters presents a therapeutic opportunity for the application of histone methylation inhibitors capable of inhibiting suppressive trimethylation marks. Furthermore, inhibition of chromatin coregulators through interference with key inflammatory mediators such as NF-kB by means of methyltransferase inhibitors provides another avenue to halt the exacerbation of the inflammatory response in periodontal tissues. In conclusion, histone methylation dynamics play an intricate role in the fine-tuning of chromatin states during periodontal development and harbor yet-to-be-realized potential for the treatment of periodontal disease.
Collapse
Affiliation(s)
- M. Francis
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - G. Gopinathan
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - D. Foyle
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - P. Fallah
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - M. Gonzalez
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - X. Luan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - T.G.H. Diekwisch
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
34
|
Hu Q, Lan J, Liang W, Chen Y, Chen B, Liu Z, Xiong Y, Zhong Z, Wang Y, Ye Q. MMP7 damages the integrity of the renal tubule epithelium by activating MMP2/9 during ischemia-reperfusion injury. J Mol Histol 2020; 51:685-700. [PMID: 33070277 DOI: 10.1007/s10735-020-09914-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022]
Abstract
Renal ischemia-reperfusion (IR) injury is a common issue in urological surgery, and the renal tubules, particularly the proximal tubules, are extremely vulnerable to IR injury. In this work, we detected the differently expressed genes (DEGs) between normal rabbit kidneys and IR kidneys by RNA-sequencing, then identified that matrix metalloproteinase-7 (MMP7) played an important role in the progress of IR injury. Indeed, A time-dependent promotion of renal injury was detected in rabbit model, as demonstrated by the increased levels of MMP2/7/9, and the decreased of tight junction protein-1 (TJP1). Furtherly, similar results were confirmed in human renal proximal tubule epithelial (HK-2) cells model. Notably, downregulation of MMP7 affected the activity of MMP2/9 by suppressing expression of cleaved-MMP2/9 not the pro-MMP2/9 protein, which directly alleviated the degradation of TJP1 in HK-2 model. On the contrary, MMP7 had not been affected by inhibiting MMP2/9. In addition, coimmunoprecipitation assay showed that knockdown MMP7 restrained the interaction between MMP2/9 and TJP1. Collectively, this study suggested that MMP7 could serve as early biomarkers for renal tubular injury, and revealed that MMP7 could destroy the integrity of tubular epithelium through degrading TJP1 by activating MMP2/9.
Collapse
Affiliation(s)
- Qianchao Hu
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Jianan Lan
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Wenjin Liang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yiwen Chen
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Biao Chen
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zhongzhong Liu
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yan Xiong
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zibiao Zhong
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
| | - Yanfeng Wang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Qifa Ye
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China. .,Transplantation Medicine Engineering and Technology Research Center, National Health Commission, The 3rd Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
35
|
Yu C, Zhuang S. Histone Methyltransferases as Therapeutic Targets for Kidney Diseases. Front Pharmacol 2019; 10:1393. [PMID: 31866860 PMCID: PMC6908484 DOI: 10.3389/fphar.2019.01393] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence has demonstrated that epigenetic regulation plays a vital role in gene expression under normal and pathological conditions. Alterations in the expression and activation of histone methyltransferases (HMTs) have been reported in preclinical models of multiple kidney diseases, including acute kidney injury, chronic kidney disease, diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Pharmacological inhibition of these enzymes has shown promise in preclinical models of those renal diseases. In this review, we summarize recent knowledge regarding expression and activation of various HMTs and their functional roles in some kidney diseases. The preclinical activity of currently available HMT inhibitors and the mechanisms of their actions are highlighted.
Collapse
Affiliation(s)
- Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
36
|
Liu H, Chen Z, Weng X, Chen H, Du Y, Diao C, Liu X, Wang L. Enhancer of zeste homolog 2 modulates oxidative stress-mediated pyroptosis in vitro and in a mouse kidney ischemia-reperfusion injury model. FASEB J 2019; 34:835-852. [PMID: 31914694 DOI: 10.1096/fj.201901816r] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2), a well-known methyltransferase, mediates histone H3 lysine 27 trimethylation (H3K27me3) and plays a crucial role in several kidney disease models. However, its role in renal ischemia/reperfusion (I/R) injury still remains unclear. In this study, we found that EZH2 was positively related to renal I/R injury and inhibition of EZH2 with DZNeP alleviated I/R injury and blocked the activation of oxidative stress and pyroptosis in vivo. Similarly, inhibition of EZH2 with either DZNeP or si-RNA also exerted an inhibitory effect on hypoxia/reoxygenation (H/R)-induced oxidative stress and pyroptosis in vitro. Moreover, further study revealed that ablation of reactive oxygen species (ROS) with N-acetyl-cysteine (NAC) suppressed pyroptosis in human renal proximal tubular epithelial cell line cells exposed to H/R stimulation. Furthermore, Nox4, which was positively related to the generation of ROS, was upregulated during H/R process, while it could be reversed by EZH2 inhibition. Consistently, Nox4-mediated ROS generation was attenuated upon inhibition of EZH2 with DZNeP or si-RNA. Additionally, the transcriptional activity of Nox4 was enhanced by the activation of ALK5/Smad2/3 signaling pathway, which was abolished by ALK5 knockdown in vitro. Finally, EZH2 inhibition blocked H/R and I/R-activated ALK5/Smad2/3 pathway and also resulted in an obvious decrease in the transcriptional activity and protein expression levels of Nox4. In conclusion, our results proved that EZH2 inhibition alleviated renal pyroptosis by blocking Nox4-dependent ROS generation through ALK5/Smad2/3 signaling pathway, indicating that EZH2 could be a potential therapeutic target for renal I/R injury.
Collapse
Affiliation(s)
- Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Changhui Diao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
37
|
3-deazaneplanocin A protects against cisplatin-induced renal tubular cell apoptosis and acute kidney injury by restoration of E-cadherin expression. Cell Death Dis 2019; 10:355. [PMID: 31043583 PMCID: PMC6494881 DOI: 10.1038/s41419-019-1589-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/30/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
Abstract
3-deazaneplanocin A (3-DZNeP) has been used as an inhibitor of enhancer of zeste homolog 2 (EZH2). Here, we explore the role and underlying mechanisms action of 3-DZNeP in abrogating cisplatin nephrotoxicity. Exposure of cultured mouse renal proximal tubular epithelial cells (mTECs) to cisplatin resulted in dose and time-dependent cleavage of caspase-3, decrease of cell viability, and increase of histone H3 lysine 27 trimethylation (H3K27me3), whereas expression levels of EZH2, a major methyltransferase of H3K27me3, were not affected. Treatment with 3-DZNeP significantly inhibited cisplatin-induced activation of caspase-3, apoptosis, loss of cell viability but did not alter levels of EZH2 and H3K27me3 in cultured mTECs. 3-DZNeP treatment did not affect activation of extracellular signal-regulated kinase (ERK) 1/2, p38 or c-Jun N-terminal kinases (JNK) 1/2, which contribute to renal epithelial cell death, but caused dose-dependent restoration of E-cadherin in mTECs exposed to cisplatin. Silencing of E-cadherin expression by siRNA abolished the cytoprotective effects of 3-DZNeP. In contrast, 3-DZNeP treatment potentiated the cytotoxic effect of cisplatin in H1299, a non-small cell lung cancer cell line that expresses lower E-cadherin levels. Finally, administration of 3-DZNeP attenuated renal dysfunction, morphological damage, and renal tubular cell death, which was accompanied by E-cadherin preservation, in a mouse model of cisplatin nephrotoxicity. Overall, these data indicate that 3-DZNeP suppresses cisplatin-induced tubular epithelial cell apoptosis and acute kidney injury via an E-cadherin-dependent mechanism, and suggest that combined application of 3-DZNeP with cisplatin would be a novel chemotherapeutic strategy that enhances the anti-tumor effect of cisplatin and reduces its nephrotoxicity.
Collapse
|
38
|
Liang H, Huang Q, Liao MJ, Xu F, Zhang T, He J, Zhang L, Liu HZ. EZH2 plays a crucial role in ischemia/reperfusion-induced acute kidney injury by regulating p38 signaling. Inflamm Res 2019; 68:325-336. [PMID: 30820607 DOI: 10.1007/s00011-019-01221-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/19/2019] [Accepted: 02/21/2019] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE AND DESIGN Renal ischemia-reperfusion (IR)-induced acute kidney injury (AKI) remains a major challenge in clinic. The histone methyltransferases enhancer of zest homolog-2 (EZH2) is associated with the development of renal injury. However, the molecular mechanism has not been fully elucidated. MATERIALS AKI in C57BL/6 mice was generated by renal IR. TREATMENTS The 3-deazaneplanocin A (DZNeP), a selective EZH2 inhibitor, or vehicle was administrated in mice after IR. HK-2 cells were exposed to hypoxia-reoxygenation (H/R) stress. METHODS Apoptosis was detected by TUNEL assay or flow cytometry. EZH2, caspase-3, p38, F4/80+ macrophages, and CD3+ T cells were examined by immunohistochemistry or Western blot. Tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, IL-6, and IL-18 were measured using RT-PCR. RESULTS Mice treated with DZNeP exhibited less severe renal dysfunction and tubular injury following IR. EZH2 inhibition decreased apoptotic cells while reducing activation of caspase-3 in kidneys under IR condition. Moreover, EZH2 inhibition impaired the recruitment of CD3+ T cells and F4/80+ cells in kidneys with IR. Administration of DZNeP suppressed the production of TNF-α, MCP-1, IL-6, and IL-18 in IR-treated kidneys. Of note, EZH2 inhibition reduced p38 phosphorylation in kidneys after IR. In H/R-treated HK-2 cells, DZNeP treatment or EZH2 knockdown reduced apoptosis. EZH2 inhibition inactivated p38 resulting in reduction of active caspase-3 and proinflammatory molecules. By contrast, EZH2 overexpression induced p38 phosphorylation, caspase-3 activation, and production of proinflammatory molecules, which was reversed by SB203580. CONCLUSIONS EZH2 plays a crucial role in IR-induced AKI via modulation of p38 signaling. Targeting EZH2/p38 signaling pathway may offer novel strategies to protect kidneys from acute kidney injury induced by ischemia-reperfusion.
Collapse
Affiliation(s)
- Hua Liang
- Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, 528000, China.
| | - Qiong Huang
- Department of Medical Statistics, Foshan Chancheng Central Hospital, Foshan, 528000, China.
| | - Mei-Juan Liao
- Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, 528000, China
| | - Feng Xu
- Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, 528000, China
| | - Tao Zhang
- Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, 528000, China
| | - Jian He
- Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, 528000, China
| | - Lei Zhang
- Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, 528000, China
| | - Hong-Zhen Liu
- Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, 528000, China
| |
Collapse
|