1
|
Zou Q, Wang HW, Di XL, Li Y, Gao H. Long noncoding RNAs HAND2-AS1 ultrasound microbubbles suppress hepatocellular carcinoma progression by regulating the miR-873-5p/tissue inhibitor of matrix metalloproteinase-2 axis. World J Gastrointest Oncol 2024; 16:1547-1563. [PMID: 38660652 PMCID: PMC11037064 DOI: 10.4251/wjgo.v16.i4.1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Increasing data indicated that long noncoding RNAs (lncRNAs) were directly or indirectly involved in the occurrence and development of tumors, including hepatocellular carcinoma (HCC). Recent studies had found that the expression of lncRNA HAND2-AS1 was downregulated in HCC tissues, but its role in HCC progression is unclear. Ultrasound targeted microbubble destruction mediated gene transfection is a new method to overexpress genes. AIM To study the role of ultrasound microbubbles (UTMBs) mediated HAND2-AS1 in the progression of HCC, in order to provide a new reference for the treatment of HCC. METHODS In vitro, we transfected HAND2-AS1 siRNA into HepG2 cells by UTMBs, and detected cell proliferation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) by cell counting kit-8 assay, flow cytometry, Transwell invasion assay and Western blotting, respectively. In addition, we transfected miR-837-5p mimic into UTMBs treated cells and observed the changes of cell behavior. Next, the UTMBs treated HepG2 cells were transfected together with miR-837-5p mimic and tissue inhibitor of matrix metalloproteinase-2 (TIMP2) overexpression vector, and we detected cell proliferation, apoptosis, invasion and EMT. In vivo, we established a mouse model of subcutaneous transplantation of HepG2 cells and observed the effect of HAND2-AS1 silencing on tumor formation ability. RESULTS We found that UTMBs carrying HAND2-AS1 restricted cell proliferation, invasion, and EMT, encouraged apoptosis, and HAND2-AS1 silencing eliminated the effect of UTMBs. Additionally, miR-873-5p targets the gene HAND2-AS1, which also targets the 3'UTR of TIMP2. And miR-873-5p mimic counteracted the impact of HAND2-AS1. Further, miR-873-5p mimic solely or in combination with pcDNA-TIMP2 had been transformed into HepG2 cells exposed to UTMBs. We discovered that TIMP2 reversed the effect of miR-873-5p mimic caused by the blocked signalling cascade for matrix metalloproteinase (MMP) 2/MMP9. In vivo results showed that HAND2-AS1 silencing significantly inhibited tumor formation in mice. CONCLUSION LncRNA HAND2-AS1 promotes TIMP2 expression by targeting miR-873-5p to inhibit HepG2 cell growth and delay HCC progression.
Collapse
Affiliation(s)
- Qiang Zou
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hao-Wen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, China
| | - Xi-Liang Di
- Department of Hematology and Oncology, Linyi People’s Hospital, Linyi 251500, Shandong Province, China
| | - Yuan Li
- Department of Hematology and Oncology, Linyi People’s Hospital, Linyi 251500, Shandong Province, China
| | - Hui Gao
- Department of Comprehensive Oncology, Baotou Cancer Hospital, Baotou 014030, Inner Mongolia Autonomous Region, China
| |
Collapse
|
2
|
Liu R, Li Y, Zheng Q, Ding M, Zhou H, Li X. Epigenetic modification in liver fibrosis: Promising therapeutic direction with significant challenges ahead. Acta Pharm Sin B 2024; 14:1009-1029. [PMID: 38486982 PMCID: PMC10935124 DOI: 10.1016/j.apsb.2023.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 03/17/2024] Open
Abstract
Liver fibrosis, characterized by scar tissue formation, can ultimately result in liver failure. It's a major cause of morbidity and mortality globally, often associated with chronic liver diseases like hepatitis or alcoholic and non-alcoholic fatty liver diseases. However, current treatment options are limited, highlighting the urgent need for the development of new therapies. As a reversible regulatory mechanism, epigenetic modification is implicated in many biological processes, including liver fibrosis. Exploring the epigenetic mechanisms involved in liver fibrosis could provide valuable insights into developing new treatments for chronic liver diseases, although the current evidence is still controversial. This review provides a comprehensive summary of the regulatory mechanisms and critical targets of epigenetic modifications, including DNA methylation, histone modification, and RNA modification, in liver fibrotic diseases. The potential cooperation of different epigenetic modifications in promoting fibrogenesis was also highlighted. Finally, available agonists or inhibitors regulating these epigenetic mechanisms and their potential application in preventing liver fibrosis were discussed. In summary, elucidating specific druggable epigenetic targets and developing more selective and specific candidate medicines may represent a promising approach with bright prospects for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 22460, USA
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| |
Collapse
|
3
|
Li Z, Liu J, Wang P, Zhang B, He G, Yang L. The novel miR-873-5p-YWHAE-PI3K/AKT axis is involved in non-small cell lung cancer progression and chemoresistance by mediating autophagy. Funct Integr Genomics 2024; 24:33. [PMID: 38363382 DOI: 10.1007/s10142-024-01295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
Non-small cell lung cancer (NSCLC) encompasses approximately 85% of all lung cancer cases and is the foremost cancer type worldwide; it is prevalent in both sexes and known for its high fatality rate. Expanding scientific inquiry underscores the indispensability of microRNAs in NSCLC. Here, we probed the impact of miR-873-5p on NSCLC development and chemoresistance. qRT‒PCR was used to measure the miR-873-5p level in NSCLC cells with or without chemoresistance. A model of miR-873-5p overexpression was constructed. The proliferation and viability of NSCLC cells were evaluated through CCK8 and colony formation experiments. Cell migration and invasion were monitored via Transwell assays. Western blotting was used to determine the levels of YWHAE, PI3K, AKT, EMT, apoptosis, and autophagy-related proteins. The sensitivity of NSCLC cells to the chemotherapeutic agent gefitinib was assessed. Additionally, the correlation of YWHAE with miR-873-5p was validated via a dual-luciferase reporter assay and RNA immunoprecipitation (RIP). Overexpressed miR-873-5p suppressed migration, proliferation, invasion, and EMT while concurrently stimulating apoptotic processes. miR-873-5p was downregulated in NSCLC cells resistant to gefitinib. Upregulating miR-873-5p reversed gefitinib resistance by inducing autophagy. YWHAE was confirmed to be a downstream target of miR-873-5p. YWHAE overexpression promoted the malignant behaviors of NSCLC cells and boosted tumor growth, while these effects were reversed following miR-873-5p overexpression. Subsequent investigations revealed that overexpressing YWHAE promoted PI3K/AKT pathway activation, with miR-873-5p displaying inhibitory effects on the YWHAE-mediated PI3K/AKT signaling cascade. miR-873-5p affects proliferation, invasion, migration, EMT, autophagy, and chemoresistance in NSCLC by controlling the YWHAE/PI3K/AKT axis.
Collapse
Affiliation(s)
- Zhifeng Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China
| | - Jinglei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China
| | - Ping Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Boyu Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China
| | - Guanghui He
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China
| | - Liwei Yang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China.
| |
Collapse
|
4
|
Rodríguez-Agudo R, González-Recio I, Serrano-Maciá M, Bravo M, Petrov P, Blaya D, Herranz JM, Mercado-Gómez M, Rejano-Gordillo CM, Lachiondo-Ortega S, Gil-Pitarch C, Azkargorta M, Van Liempd SM, Martinez-Cruz LA, Simão A, Elortza F, Martín C, Nevzorova YA, Cubero FJ, Delgado TC, Argemi J, Bataller R, Schoonjans K, Banales JM, Castro RE, Sancho-Bru P, Avila MA, Julve J, Jover R, Mabe J, Simon J, Goikoetxea-Usandizaga N, Martínez-Chantar ML. Anti-miR-873-5p improves alcohol-related liver disease by enhancing hepatic deacetylation via SIRT1. JHEP Rep 2024; 6:100918. [PMID: 38192540 PMCID: PMC10772393 DOI: 10.1016/j.jhepr.2023.100918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 01/10/2024] Open
Abstract
Background & Aims Current therapies for the treatment of alcohol-related liver disease (ALD) have proven largely ineffective. Patients relapse and the disease progresses even after liver transplantation. Altered epigenetic mechanisms are characteristic of alcohol metabolism given excessive acetate and NAD depletion and play an important role in liver injury. In this regard, novel therapeutic approaches based on epigenetic modulators are increasingly proposed. MicroRNAs, epigenetic modulators acting at the post-transcriptional level, appear to be promising new targets for the treatment of ALD. Methods MiR-873-5p levels were measured in 23 liver tissue from Patients with ALD, and GNMT levels during ALD were confirmed using expression databases (transcriptome n = 62, proteome n = 68). High-resolution proteomics and metabolomics in mice following the Gao-binge model were used to investigate miR-873-5p expression in ALD. Hepatocytes exposed to 50 mM alcohol for 12 h were used to study toxicity. The effect of anti-miR-873-5p in the treatment outcomes of ALD was investigated. Results The analysis of human and preclinical ALD samples revealed increased expression of miR-873-5p in the liver. Interestingly, there was an inverse correlation with NNMT, suggesting a novel mechanism for NAD depletion and aberrant acetylation during ALD progression. High-resolution proteomics and metabolomics identified miR-873-5p as a key regulator of NAD metabolism and SIRT1 deacetylase activity. Anti-miR-873-5p reduced NNMT activity, fuelled the NAD salvage pathway, restored the acetylome, and modulated the levels of NF-κB and FXR, two known SIRT1 substrates, thereby protecting the liver from apoptotic and inflammatory processes, and improving bile acid homeostasis. Conclusions These data indicate that targeting miR-873-5p, a repressor of GNMT previously associated with NAFLD and acetaminophen-induced liver failure. is a novel and attractive approach to treating alcohol-induced hepatoxicity. Impact and implications The role of miR-873-5p has not been explicitly examined in the progression of ALD, a pathology with no therapeutic options. In this study, inhibiting miR-873-5p exerted hepatoprotective effects against ALD through rescued SIRT1 activity and consequently restored bile acid homeostasis and attenuated the inflammatory response. Targeting hepatic miR-873-5p may represent a novel therapeutic approach for the treatment of ALD.
Collapse
Affiliation(s)
- Rubén Rodríguez-Agudo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Irene González-Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Miren Bravo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Petar Petrov
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Experimental Hepatology Joint Research Unit, IIS Hospital La Fe and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Delia Blaya
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Liver Cell Plasticity and Tissue Repair Lab, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose María Herranz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - María Mercado-Gómez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Claudia María Rejano-Gordillo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Clàudia Gil-Pitarch
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Mikel Azkargorta
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Sebastiaan Martijn Van Liempd
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Luis Alfonso Martinez-Cruz
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - A.L. Simão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Félix Elortza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - César Martín
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Yulia A. Nevzorova
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT Complutense University School of Medicine Madrid Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Internal Medicine III, University Hospital RWTH Aachen, Germany
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT Complutense University School of Medicine Madrid Spain, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Josepmaria Argemi
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Ramón Bataller
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania, USA
| | - Kristina Schoonjans
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jesús M. Banales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pau Sancho-Bru
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Liver Cell Plasticity and Tissue Repair Lab, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Matías A. Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain
| | - Josep Julve
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Experimental Hepatology Joint Research Unit, IIS Hospital La Fe and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Jon Mabe
- Business Department, IK4-Tekniker, Eibar, Spain
| | - Jorge Simon
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - María L. Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| |
Collapse
|
5
|
Kishi S, Mori S, Fujiwara-Tani R, Ogata R, Sasaki R, Ikemoto A, Goto K, Sasaki T, Miyake M, Sasagawa S, Kawaichi M, Luo Y, Bhawal UK, Fujimoto K, Nakagawa H, Kuniyasu H. ERVK13-1/miR-873-5p/GNMT Axis Promotes Metastatic Potential in Human Bladder Cancer though Sarcosine Production. Int J Mol Sci 2023; 24:16367. [PMID: 38003554 PMCID: PMC10671720 DOI: 10.3390/ijms242216367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-glycine (sarcosine) is known to promote metastatic potential in some cancers; however, its effects on bladder cancer are unclear. T24 cells derived from invasive cancer highly expressed GNMT, and S-adenosyl methionine (SAM) treatment increased sarcosine production, promoting proliferation, invasion, anti-apoptotic survival, sphere formation, and drug resistance. In contrast, RT4 cells derived from non-invasive cancers expressed low GNMT, and SAM treatment did not produce sarcosine and did not promote malignant phenotypes. In T24 cells, the expression of miR-873-5p, which suppresses GNMT expression, was suppressed, and the expression of ERVK13-1, which sponges miR-873-5p, was increased. The growth of subcutaneous tumors, lung metastasis, and intratumoral GNMT expression in SAM-treated nude mice was suppressed in T24 cells with ERVK13-1 knockdown but promoted in RT4 cells treated with miR-873-5p inhibitor. An increase in mouse urinary sarcosine levels was observed to correlate with tumor weight. Immunostaining of 86 human bladder cancer cases showed that GNMT expression was higher in cases with muscle invasion and metastasis. Additionally, urinary sarcosine concentrations increased in cases of muscle invasion. Notably, urinary sarcosine concentration may serve as a marker for muscle invasion in bladder cancer; however, further investigation is necessitated.
Collapse
Grants
- 22K09341 Ministry of Education, Culture, Sports, Science and Technology
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 23K16621 Ministry of Education, Culture, Sports, Science and Technology
- 23K19900 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
- Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Japan; (S.S.); (M.K.); (H.N.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| | - Makito Miyake
- Department of Urology, Nara Medical University, Kashihara 634-8522, Japan; (M.M.); (K.F.)
| | - Satoru Sasagawa
- Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Japan; (S.S.); (M.K.); (H.N.)
| | - Masashi Kawaichi
- Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Japan; (S.S.); (M.K.); (H.N.)
| | - Yi Luo
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China;
| | - Ujjal Kumar Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Japan;
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, Kashihara 634-8522, Japan; (M.M.); (K.F.)
| | - Hidemitsu Nakagawa
- Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Japan; (S.S.); (M.K.); (H.N.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.K.); (S.M.); (R.F.-T.); (R.O.); (R.S.); (A.I.); (K.G.); (T.S.)
| |
Collapse
|
6
|
Carmona-Rodríguez L, Gajadhar AS, Blázquez-García I, Guerrero L, Fernández-Rojo MA, Uriarte I, Mamani-Huanca M, López-Gonzálvez Á, Ciordia S, Ramos A, Herrero JI, Fernández-Barrena MG, Arechederra M, Berasain C, Quiroga J, Sangro B, Argemi J, Pardo F, Rotellar F, López D, Barbas C, Ávila MA, Corrales FJ. Mapping early serum proteome signatures of liver regeneration in living donor liver transplant cases. Biofactors 2023; 49:912-927. [PMID: 37171157 DOI: 10.1002/biof.1954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 05/13/2023]
Abstract
The liver is the only solid organ capable of regenerating itself to regain 100% of its mass and function after liver injury and/or partial hepatectomy (PH). This exceptional property represents a therapeutic opportunity for severe liver disease patients. However, liver regeneration (LR) might fail due to poorly understood causes. Here, we have investigated the regulation of liver proteome and phosphoproteome at a short time after PH (9 h), to depict a detailed mechanistic background of the early LR phase. Furthermore, we analyzed the dynamic changes of the serum proteome and metabolome of healthy living donor liver transplant (LDLT) donors at different time points after surgery. The molecular profiles from both analyses were then correlated. Insulin and FXR-FGF15/19 signaling were stimulated in mouse liver after PH, leading to the activation of the main intermediary kinases (AKT and ERK). Besides, inhibition of the hippo pathway led to an increased expression of its target genes and of one of its intermediary proteins (14-3-3 protein), contributing to cell proliferation. In association with these processes, metabolic reprogramming coupled to enhanced mitochondrial activity cope for the energy and biosynthetic requirements of LR. In human serum of LDLT donors, we identified 56 proteins and 13 metabolites statistically differential which recapitulate some of the main cellular processes orchestrating LR in its early phase. These results provide mechanisms and protein mediators of LR that might prove useful for the follow-up of the regenerative process in the liver after PH as well as preventing the occurrence of complications associated with liver resection.
Collapse
Affiliation(s)
| | | | - Irene Blázquez-García
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Laura Guerrero
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Manuel A Fernández-Rojo
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies in Food, Madrid, Spain
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Iker Uriarte
- Proteobotics SL, Madrid, Spain
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Antonio Ramos
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - José Ignacio Herrero
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Maite G Fernández-Barrena
- Proteobotics SL, Madrid, Spain
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - María Arechederra
- Proteobotics SL, Madrid, Spain
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Carmen Berasain
- Proteobotics SL, Madrid, Spain
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Jorge Quiroga
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Bruno Sangro
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Josepmaría Argemi
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Fernando Pardo
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Fernando Rotellar
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Daniel López
- Thermo Fisher Scientific, San Jose, California, USA
| | - Coral Barbas
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Matías A Ávila
- Proteobotics SL, Madrid, Spain
- CIMA, Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
7
|
Fernández-Tussy P, Sun J, Cardelo MP, Price NL, Goedeke L, Xirouchaki CE, Yang X, Pastor-Rojo O, Bennett AM, Tiganis T, Suárez Y, Fernández-Hernando C. Hepatocyte-specific miR-33 deletion attenuates NAFLD-NASH-HCC progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.523503. [PMID: 36711578 PMCID: PMC9882318 DOI: 10.1101/2023.01.18.523503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The complexity of the multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of NAFLD. We report that miR-33 is overexpressed in hepatocytes isolated from mice with NAFLD and demonstrate that its specific suppression in hepatocytes (miR-33 HKO ) improves multiple aspects of the disease, including insulin resistance, steatosis, and inflammation and limits the progression to non-alcoholic steatohepatitis (NASH), fibrosis and hepatocellular carcinoma (HCC). Mechanistically, we find that hepatic miR-33 deficiency reduces lipid biosynthesis and promotes mitochondrial fatty acid oxidation to reduce lipid burden in hepatocytes. Additionally, miR-33 deficiency improves mitochondrial function, reducing oxidative stress. In miR-33 deficient hepatocytes, we found an increase in AMPKα activation, which regulates several pathways resulting in the attenuation of liver disease. The reduction in lipid accumulation and liver injury resulted in decreased transcriptional activity of the YAP/TAZ pathway, which may be involved in the reduced progression to HCC in the HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach at different stages of NAFLD/NASH/HCC disease progression.
Collapse
|
8
|
Zu Y, Guo S, Li G, Gao Q, Wang X, Zhang C, Liu D. Serum microRNAs as non-invasive diagnostic biomarkers for intrahepatic cholestasis of pregnancy. Am J Transl Res 2022; 14:6763-6773. [PMID: 36247288 PMCID: PMC9556493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Intrahepatic cholestasis of pregnancy (IHCP) causes itching, preterm birth, and stillbirth. However, there is no accurate diagnostic method for IHCP. Currently, circulating microRNAs (miRNAs) have become candidate biomarkers for the diagnosis of multiple diseases. Here, we investigated the diagnostic value of miRNAs in IHCP and aimed to predict the molecular mechanism of IHCP pathogenesis. METHODS We analyzed differentially expressed miRNAs in both women with IHCP and normal pregnant women. The selected candidate miRNAs were validated in 46 IHCP cases and 46 normal pregnant subjects, and we constructed receiver operator characteristic curves of miRNAs. Pearson correlations between levels of total bile acid (TBA) and differentially expressed miRNAs were also calculated. In addition, we clustered functionally significant biological pathways using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. RESULTS The expression levels of 13 miRNAs were remarkably upregulated while the other 35 miRNAs were significantly downregulated, in women with IHCP (P≤0.05) when compared with healthy pregnant women. The areas under the curves of miRNA-7706, miRNA-877-3p, and miRNA-128-3p were higher than 0.90, indicating more reliable diagnosis of IHCP. The Pearson analysis showed that the levels of these miRNAs were positively correlated to TBA level. Additionally, the results of bioinformatics analysis revealed that the differentially expressed miRNAs mainly influenced fatty acid biosynthesis, the endoplasmic reticulum ubiquitin ligase complex, and the p53, and mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) signaling pathways. CONCLUSION The panel of three-miRNAs (miRNA-7706, miRNA-877-3p, and miRNA-128-3p) may be a useful noninvasive diagnostic biomarker of IHCP.
Collapse
Affiliation(s)
- Yue Zu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Sheng Guo
- The First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan, China
| | - Guodong Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Qianyan Gao
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Ximin Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Chengliang Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Dong Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| |
Collapse
|
9
|
Shi Q, Wei S, Li ZC, Xu J, Li Y, Guo C, Wu X, Shi C, Di G. Collagen-binding fibroblast growth factor ameliorates liver fibrosis in murine bile duct ligation injury. J Biomater Appl 2022; 37:918-929. [PMID: 35969638 DOI: 10.1177/08853282221121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cholestatic liver injury, characterized by liver fibrosis, has increasingly become a global health problem, with no effective treatment available. Hepatic stellate cells (HSCs) differentiate into myofibroblasts, leading to excessive deposition of the extracellular matrix (ECM), which is a feature of liver fibrosis. Basic fibroblast growth factor (bFGF) has proven antifibrotic effects in chronic liver disease; however, the lack of an effective delivery system to the injury site reduces its therapeutic efficacy. The aim of this study was to assess the therapeutic effect of collagen-binding bFGF (CBD-bFGF) for the treatment of liver fibrosis in a murine bile duct ligation (BDL) model. We found that CBD-bFGF treatment significantly alleviated liver injury in the early phase of BDL injury, and was associated with decreased necroptotic cell death and inflammatory response. Moreover, CBD-bFGF had enhanced therapeutic effects for liver fibrosis on day 7 after surgery compared to those obtained with native bFGF treatment. In vitro, CBD-bFGF treatment notably inhibited TGF-β1-induced LX-2 cell activation, migration, and contraction compared with native bFGF. In conclusion, CBD-bFGF may be a promising treatment for hepatic fibrosis.
Collapse
Affiliation(s)
- Qiangqiang Shi
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Susu Wei
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Zhi Chao Li
- Department of Gynaecology and Obstetrics, Qingdao Municipal Hospital, 12593Qingdao University, Qingdao, China
| | - Jing Xu
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Yaxin Li
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Chunying Shi
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Guohu Di
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Martínez-García J, Molina A, González-Aseguinolaza G, Weber ND, Smerdou C. Gene Therapy for Acquired and Genetic Cholestasis. Biomedicines 2022; 10:biomedicines10061238. [PMID: 35740260 PMCID: PMC9220166 DOI: 10.3390/biomedicines10061238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cholestatic diseases can be caused by the dysfunction of transporters involved in hepatobiliary circulation. Although pharmacological treatments constitute the current standard of care for these diseases, none are curative, with liver transplantation being the only long-term solution for severe cholestasis, albeit with many disadvantages. Liver-directed gene therapy has shown promising results in clinical trials for genetic diseases, and it could constitute a potential new therapeutic approach for cholestatic diseases. Many preclinical gene therapy studies have shown positive results in animal models of both acquired and genetic cholestasis. The delivery of genes that reduce apoptosis or fibrosis or improve bile flow has shown therapeutic effects in rodents in which cholestasis was induced by drugs or bile duct ligation. Most studies targeting inherited cholestasis, such as progressive familial intrahepatic cholestasis (PFIC), have focused on supplementing a correct version of a mutated gene to the liver using viral or non-viral vectors in order to achieve expression of the therapeutic protein. These strategies have generated promising results in treating PFIC3 in mouse models of the disease. However, important challenges remain in translating this therapy to the clinic, as well as in developing gene therapy strategies for other types of acquired and genetic cholestasis.
Collapse
Affiliation(s)
- Javier Martínez-García
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
| | - Angie Molina
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
| | - Gloria González-Aseguinolaza
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
| | - Nicholas D. Weber
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
- Correspondence: (N.D.W.); (C.S.); Tel.: +34-948194700 (N.D.W. & C.S.)
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
- Correspondence: (N.D.W.); (C.S.); Tel.: +34-948194700 (N.D.W. & C.S.)
| |
Collapse
|
11
|
Rodríguez-Agudo R, Goikoetxea-Usandizaga N, Serrano-Maciá M, Fernández-Tussy P, Fernández-Ramos D, Lachiondo-Ortega S, González-Recio I, Gil-Pitarch C, Mercado-Gómez M, Morán L, Bizkarguenaga M, Lopitz-Otsoa F, Petrov P, Bravo M, Van Liempd SM, Falcon-Perez JM, Zabala-Letona A, Carracedo A, Castell JV, Jover R, Martínez-Cruz LA, Delgado TC, Cubero FJ, Lucena MI, Andrade RJ, Mabe J, Simón J, Martínez-Chantar ML. Methionine Cycle Rewiring by Targeting miR-873-5p Modulates Ammonia Metabolism to Protect the Liver from Acetaminophen. Antioxidants (Basel) 2022; 11:897. [PMID: 35624761 PMCID: PMC9137496 DOI: 10.3390/antiox11050897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle. Anti-miR-873-5p treatment prevents cell death in primary hepatocytes and the appearance of necrotic areas in liver from APAP-administered mice. In our study, we demonstrate a GNMT and methionine cycle activity restoration by the anti-miR-873-5p that reduces mitochondrial dysfunction and oxidative stress. The lack of hyperammoniemia caused by the therapy results in a decreased urea cycle, enhancing the synthesis of polyamines from ornithine and AdoMet and thus impacting the observed recovery of mitochondria and hepatocyte proliferation for regeneration. In summary, anti-miR-873-5p appears to be an effective therapy against APAP-induced liver injury, where the restoration of GNMT and the methionine cycle may prevent mitochondrial dysfunction while activating hepatocyte proliferative response.
Collapse
Affiliation(s)
- Rubén Rodríguez-Agudo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Marina Serrano-Maciá
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Pablo Fernández-Tussy
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - David Fernández-Ramos
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Clàudia Gil-Pitarch
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - María Mercado-Gómez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), 28040 Madrid, Spain;
| | - Maider Bizkarguenaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Petar Petrov
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Miren Bravo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Sebastiaan Martijn Van Liempd
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (S.M.V.L.); (J.M.F.-P.)
| | - Juan Manuel Falcon-Perez
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (S.M.V.L.); (J.M.F.-P.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain;
| | - Amaia Zabala-Letona
- Cancer Cell Signaling and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Arkaitz Carracedo
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain;
- Cancer Cell Signaling and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
- Traslational prostate cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Research Health Institute, 48903 Barakaldo, Spain
| | - Jose Vicente Castell
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Teresa Cardoso Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), 28040 Madrid, Spain;
| | - María Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga—IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Malaga, Spain
- UICEC IBIMA, Plataforma ISCiii de Investigación Clínica, 28020 Madrid, Spain
| | - Raúl Jesús Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Malaga, Spain
| | - Jon Mabe
- IK4-Tekniker, 20600 Eibar, Spain;
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
| |
Collapse
|
12
|
Wang Y, Chen B, Xiao C, Yu J, Bu X, Jiang F, Ding W, Ge Z. Effect of miR-183-5p on Cholestatic Liver Fibrosis by Regulating Fork Head Box Protein O1 Expression. Front Physiol 2021; 12:737313. [PMID: 34867446 PMCID: PMC8639207 DOI: 10.3389/fphys.2021.737313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is a common pathological feature of end-stage liver disease and has no effective treatment. MicroRNAs (miRNAs) have been found to modulate gene expression in liver disease. But the potential role of miRNA in hepatic fibrosis is still unclear. The objective of this research is to study the potential mechanism and biological function of miR-183-5p in liver fibrosis. In this study, we used high-throughput sequencing to find that miR-183-5p is upregulated in human fibrotic liver tissues. In addition, miR-183-5p was upregulated both in rat liver fibrosis tissue induced by bile-duct ligation (BDL) and activated LX-2 cells (human hepatic stellate cell line) according to the result of quantitative real-time PCR (RT-qPCR). Moreover, the inhibition of miR-183-5p alleviated liver fibrosis, decreased the fibrotic biomarker levels in vitro and in vivo, and led toLX-2 cell proliferation inhibition and, apoptosis induction. The result of dual-luciferase assay revealed that miR-183-5p suppressed fork head box protein O1 (FOXO1) expression by binding to its 3'UTR directly. Next, we used lentivirus to overexpress FOXO1 in LX-2 cells, and we found that overexpression of FOXO1 reversed the promotion of miR-183-5p on liver fibrosis, reducing the fibrotic biomarker levels inLX-2 cells, inhibitingLX-2 cell proliferation, and promoting apoptosis. Furthermore, overexpression of FOXO1 prevented the activation of the transforming growth factor (TGF)-β signaling pathway in TGF-β1-induced LX-2 cells according to the result of western blotting. In conclusion, the findings showed thatmiR-183-5p might act as a key regulator of liver fibrosis, and miR-183-5p could promote cholestatic liver fibrosis by inhibiting FOXO1 expression through the TGF-β signaling pathway. Thus, inhibition of miR-183-5pmay be a new way to prevent and improve liver fibrosis.
Collapse
Affiliation(s)
- Yongxin Wang
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bin Chen
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chengcheng Xiao
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jiang Yu
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiangyang Bu
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Fengxing Jiang
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Weijie Ding
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zhong Ge
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Tadokoro T, Morishita A, Masaki T. Diagnosis and Therapeutic Management of Liver Fibrosis by MicroRNA. Int J Mol Sci 2021; 22:8139. [PMID: 34360904 PMCID: PMC8347497 DOI: 10.3390/ijms22158139] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Remarkable progress has been made in the treatment and control of hepatitis B and C viral infections. However, fundamental treatments for diseases in which liver fibrosis is a key factor, such as cirrhosis, alcoholic/nonalcoholic steatohepatitis, autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis, are still under development and remain an unmet medical need. To solve this problem, it is essential to elucidate the pathogenesis of liver fibrosis in detail from a molecular and cellular perspective and to develop targeted therapeutic agents based on this information. Recently, microRNAs (miRNAs), functional RNAs of 22 nucleotides, have been shown to be involved in the pathogenesis of liver fibrosis. In addition, extracellular vesicles called "exosomes" have been attracting attention, and research is being conducted to establish noninvasive and extremely sensitive biomarkers using miRNAs in exosomes. In this review, we summarize miRNAs directly involved in liver fibrosis, miRNAs associated with diseases leading to liver fibrosis, and miRNAs related to complications of cirrhosis. We will also discuss the efficacy of each miRNA as a biomarker of liver fibrosis and pathology, and its potential application as a therapeutic agent.
Collapse
Affiliation(s)
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (T.T.); (T.M.)
| | | |
Collapse
|
14
|
Shi CX, Wang Y, Jiao FZ, Chen Q, Cao P, Pei MH, Zhang LY, Guo J, Deng W, Wang LW, Gong ZJ. Epigenetic Regulation of Hepatic Stellate Cell Activation and Macrophage in Chronic Liver Inflammation. Front Physiol 2021; 12:683526. [PMID: 34276405 PMCID: PMC8281248 DOI: 10.3389/fphys.2021.683526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic liver inflammation is a complex pathological process under different stress conditions, and the roles of stellate cells and macrophages in chronic liver inflammation have been widely reported. Moderate liver inflammation can protect the liver from damage and facilitate the recovery of liver injury. However, an inflammatory response that is too intense can result in massive death of hepatocytes, which leads to irreversible damage to the liver parenchyma. Epigenetic regulation plays a key part in liver inflammation. This study reviews the regulation of epigenetics on stellate cells and macrophages to explore the new mechanisms of epigenetics on liver inflammation and provide new ideas for the treatment of liver disease.
Collapse
Affiliation(s)
- Chun-Xia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang-Zhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pan Cao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mao-Hua Pei
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu-Yi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Deng
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Ye M, Wang S, Sun P, Qie J. Integrated MicroRNA Expression Profile Reveals Dysregulated miR-20a-5p and miR-200a-3p in Liver Fibrosis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9583932. [PMID: 34235224 PMCID: PMC8218919 DOI: 10.1155/2021/9583932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) have been demonstrated to involve in liver fibrogenesis. However, the miRNA-gene regulation in liver fibrosis is still unclear. Herein, the miRNA expression profile GSE40744 was obtained to analyze the dysregulated miRNAs between liver fibrosis and normal samples. Then, we predicted the target genes of screened miRNAs by miRTarBase, followed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Then, the protein-protein interaction (PPI) network was constructed to identify the functional miRNA-gene regulatory modules. Furthermore, we verified the hub gene expression using the gene expression profile GSE14323. Finally, 89 DEMs were identified in fibrotic liver samples compared to normal liver samples. The top 3 upregulated DEMs (miR-200b-3p, miR-200a-3p, and miR-182-5p) and downregulated DEMs (miR-20a-5p, miR-194-3p, and miR-148a-3p) were further studied. 516 and 1416 target genes were predicted, respectively. KEGG analysis demonstrated that the predicted genes were enriched in the p53 signaling pathway and hepatitis B, etc. Through constructing a PPI network, the genes with the highest connectivity were identified as hub genes. Of note, most of the hub genes were potentially targeted by miR-20a-5p and miR-200a-3p. Based on the data from GSE14323, the expression of EGFR, STAT3, CTNNB1, and TP53 targeted by miR-200a-3p was significantly downregulated in fibrotic liver samples. Oppositely, the expression of PTEN, MYC, MAPK1, UBC, and CCND1 potentially targeted by miR-20a-5p was significantly upregulated. In conclusion, it is demonstrated that miR-20a-5p and miR-200a-3p were identified as the novel liver fibrosis-associated miRNAs, which may play critical roles in liver fibrogenesis.
Collapse
Affiliation(s)
- Mu Ye
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Sheng Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Peilong Sun
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Jingbo Qie
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Fernández-Tussy P, Rodríguez-Agudo R, Fernández-Ramos D, Barbier-Torres L, Zubiete-Franco I, Davalillo SLD, Herraez E, Goikoetxea-Usandizaga N, Lachiondo-Ortega S, Simón J, Lopitz-Otsoa F, Juan VGD, McCain MV, Perugorria MJ, Mabe J, Navasa N, Rodrigues CMP, Fabregat I, Boix L, Sapena V, Anguita J, Lu SC, Mato JM, Banales JM, Villa E, Reeves HL, Bruix J, Reig M, Marin JJG, Delgado TC, Martínez-Chantar ML. Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. Cell Death Dis 2021; 12:555. [PMID: 34050139 PMCID: PMC8163806 DOI: 10.1038/s41419-021-03827-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023]
Abstract
Dysregulation of miRNAs is a hallmark of cancer, modulating oncogenes, tumor suppressors, and drug responsiveness. The multi-kinase inhibitor sorafenib is one of the first-line drugs for advanced hepatocellular carcinoma (HCC), although the outcome for treated patients is heterogeneous. The identification of predictive biomarkers and targets of sorafenib efficacy are sorely needed. Thus, selected top upregulated miRNAs from the C19MC cluster were analyzed in different hepatoma cell lines compared to immortalized liver human cells, THLE-2 as control. MiR-518d-5p showed the most consistent upregulation among them. Thus, miR-518d-5p was measured in liver tumor/non-tumor samples of two distinct cohorts of HCC patients (n = 16 and n = 20, respectively). Circulating miR-518d-5p was measured in an independent cohort of HCC patients receiving sorafenib treatment (n = 100), where miR-518d-5p was analyzed in relation to treatment duration and patient's overall survival. In vitro and in vivo studies were performed in human hepatoma BCLC3 and Huh7 cells to analyze the effect of miR-518d-5p inhibition/overexpression during the response to sorafenib. Compared with healthy individuals, miR-518d-5p levels were higher in hepatic and serum samples from HCC patients (n = 16) and in an additional cohort of tumor/non-tumor paired samples (n = 20). MiR-518d-5p, through the inhibition of c-Jun and its mitochondrial target PUMA, desensitized human hepatoma cells and mouse xenograft to sorafenib-induced apoptosis. Finally, serum miR-518d-5p was assessed in 100 patients with HCC of different etiologies and BCLC-stage treated with sorafenib. In BCLC-C patients, higher serum miR-518d-5p at diagnosis was associated with shorter sorafenib treatment duration and survival. Hence, hepatic miR-518d-5p modulates sorafenib resistance in HCC through inhibition of c-Jun/PUMA-induced apoptosis. Circulating miR-518d-5p emerges as a potential lack of response biomarker to sorafenib in BCLC-C HCC patients.
Collapse
Affiliation(s)
- Pablo Fernández-Tussy
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rubén Rodríguez-Agudo
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - David Fernández-Ramos
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Barbier-Torres
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Imanol Zubiete-Franco
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sergio López de Davalillo
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Elisa Herraez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sofia Lachiondo-Ortega
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jorge Simón
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Virginia Gutiérrez-de Juan
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Misti V McCain
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Maria J Perugorria
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jon Mabe
- Electronics and Communications Unit, IK4-Tekniker, Eibar, Spain
| | - Nicolás Navasa
- Inflammation and Macrophage Plasticity, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Fabregat
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona, Barcelona, Spain
| | - Loreto Boix
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Victor Sapena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Juan Anguita
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Inflammation and Macrophage Plasticity, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - José M Mato
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesus M Banales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Erica Villa
- Department of Gastroenterology, Azienda Ospedaliero-Universitaria and University of Modena and Reggio Emilia, Modena, Italy
| | - Helen L Reeves
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Hepatopancreatobiliary Multidisciplinary Team, Freeman Hospital, Freeman Road, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Jordi Bruix
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Maria Reig
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Barcelona-Clínic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer,Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María L Martínez-Chantar
- Liver Disease Laboratory, Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Lu Y, Cheng J, Cai W, Zhuo H, Wu G, Cai J. Inhibition of circRNA circVPS33B Reduces Warburg Effect and Tumor Growth Through Regulating the miR-873-5p/HNRNPK Axis in Infiltrative Gastric Cancer. Onco Targets Ther 2021; 14:3095-3108. [PMID: 34012268 PMCID: PMC8126971 DOI: 10.2147/ott.s292575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNA VPS33B (circVPS33B) has been revealed to be upregulated in gastric cancer (GC) tissues. However, the role of circVPS33B in infiltrative GC is indistinct. Methods Expression of circVPS33B was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation, migration, and invasion of infiltrative GC cells (XGC-1) were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), plate clone, wound-healing, or transwell assays. Protein levels were detected by Western blotting. Measurements of extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were executed using an XF96 extracellular flux analyzer. Glucose uptake and lactate production were analyzed by glycolysis assay. The regulatory mechanism of circVPS33B had been explored by bioinformatics analysis, dual-luciferase reporter assay, and/or RNA pull-down assay. In vivo tumorigenesis assay was executed to verify the oncogenicity of circVPS33B. Results CircVPS33B was upregulated in infiltrative GC tissues and cells. CircVPS33B silencing decreased tumor growth in vivo and inhibited proliferation, migration, invasion, EMT, and Warburg effect of infiltrative GC cells in vitro. Mechanically, circVPS33B regulated heterogeneous nuclear ribonucleoprotein K (HNRNPK) expression via sponging miR-873-5p. Furthermore, miR-873-5p inhibitor offset circVPS33B knockdown-mediated effects on malignant behaviors and Warburg effect of infiltrative GC cells. HNRNPK overexpression reversed the inhibitory impact of miR-873-5p mimic on malignant behaviors and Warburg effect of infiltrative GC cells. Conclusion CircVPS33B accelerated Warburg effect and tumor growth through regulating the miR-873-5p/HNRNPK axis in infiltrative GC, manifesting that circVPS33B might be a potential target for infiltrative GC treatment.
Collapse
Affiliation(s)
- Yizhuo Lu
- Department of General Surgery, Zhongshan Hospital Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, Fujian, 361004, People's Republic of China
| | - Jia Cheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, Fujian, 361004, People's Republic of China
| | - Wangyu Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, Fujian, 361004, People's Republic of China
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, Zhongshan Hospital Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, Fujian, 361004, People's Republic of China
| | - Guoyang Wu
- Department of General Surgery, Zhongshan Hospital Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, Fujian, 361004, People's Republic of China
| | - Jianchun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, Fujian, 361004, People's Republic of China
| |
Collapse
|
18
|
Chen C, Zong Y, Tang J, Ke R, Lv L, Wu M, Lu J. miR-369-3p serves as prognostic factor and regulates cancer progression of hepatocellular carcinoma. Per Med 2021; 18:375-388. [PMID: 33792408 DOI: 10.2217/pme-2020-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: The aim of this study was to investigate the role of miR-369-3p in hepatocellular carcinoma (HCC). Materials & methods: The expression levels of miR-369-3p were detected using the quantitative real-time reverse transcription-PCR analysis. The cell counting kit-8 and transwell assays were used to explore the effects of miR-369-3p on cell proliferation, migration and invasion of HCC cells. Results: The miR-369-3p expression was downregulated in HCC tissues and cell lines, in comparison to the normal controls, respectively. In vitro, overexpression of miR-369-3p in Hep 3B and Huh7 cells inhibited cell proliferation, migration and invasion. SOX4 was a direct target of miR-369-3p. Conclusion: Our results suggested that miR-369-3p may be a tumor suppressor in HCC by targeting SOX4.
Collapse
Affiliation(s)
- Can Chen
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, 350108, PR China.,Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Yi Zong
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, 350108, PR China.,The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Jiaojiao Tang
- Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Ruisheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, 350025, PR China
| | - Mengchao Wu
- Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Junhua Lu
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| |
Collapse
|
19
|
Riaz F, Chen Q, Lu K, Osoro EK, Wu L, Feng L, Zhao R, Yang L, Zhou Y, He Y, Zhu L, Du X, Sadiq M, Yang X, Li D. Inhibition of miR-188-5p alleviates hepatic fibrosis by significantly reducing the activation and proliferation of HSCs through PTEN/PI3K/AKT pathway. J Cell Mol Med 2021; 25:4073-4087. [PMID: 33689215 PMCID: PMC8051718 DOI: 10.1111/jcmm.16376] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Persistent hepatic damage and chronic inflammation in liver activate the quiescent hepatic stellate cells (HSCs) and cause hepatic fibrosis (HF). Several microRNAs regulate the activation and proliferation of HSCs, thereby playing a critical role in HF progression. Previous studies have reported that miR‐188‐5p is dysregulated during the process of HF. However, the role of miR‐188‐5p in HF remains unclear. This study investigated the potential role of miR‐188‐5p in HSCs and HF. Firstly, we validated the miR‐188‐5p expression in primary cells isolated from liver of carbon tetrachloride (CCl4)‐induced mice, TGF‐β1‐induced LX‐2 cells, livers from 6‐month high‐fat diet (HFD)‐induced rat and 4‐month HFD‐induced mice NASH models, and human non‐alcoholic fatty liver disease (NAFLD) patients. Furthermore, we used miR‐188‐5p inhibitors to investigate the therapeutic effects of miR‐188‐5p inhibition in the HFD + CCl4 induced in vivo model and the potential role of miR‐188‐5p in the activation and proliferation of HSCs. This present study reported that miR‐188‐5p expression is significantly increased in the human NAFLD, HSCs isolated from liver of CCl4 induced mice, and in vitro and in vivo models of HF. Mimicking the miR‐188‐5p resulted in the up‐regulation of HSC activation and proliferation by directly targeting the phosphatase and tensin homolog (PTEN). Moreover, inhibition of miR‐188‐5p reduced the activation and proliferation markers of HSCs through PTEN/AKT pathway. Additionally, in vivo inhibition of miR‐188‐5p suppressed the HF parameters, pro‐fibrotic and pro‐inflammatory genes, and fibrosis. Collectively, our results uncover the pro‐fibrotic role of miR‐188‐5p. Furthermore, we demonstrated that miR‐188‐5p inhibition decreases the severity of HF by reducing the activation and proliferation of HSCs through PTEN/AKT pathway.
Collapse
Affiliation(s)
- Farooq Riaz
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Ezra Kombo Osoro
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Lina Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Rong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Luyun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yimeng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yingli He
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojuan Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Muhammad Sadiq
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Xudong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Xue J, Xiao T, Wei S, Sun J, Zou Z, Shi M, Sun Q, Dai X, Wu L, Li J, Xia H, Tang H, Zhang A, Liu Q. miR-21-regulated M2 polarization of macrophage is involved in arsenicosis-induced hepatic fibrosis through the activation of hepatic stellate cells. J Cell Physiol 2021; 236:6025-6041. [PMID: 33481270 DOI: 10.1002/jcp.30288] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Arsenicosis induced by chronic exposure to arsenic is recognized as one of the main damaging effects on public health. Exposure to arsenic can cause hepatic fibrosis, but the molecular mechanisms by which this occurs are complex and elusive. It is not known if miRNAs are involved in arsenic-induced liver fibrosis. We found that in the livers of mice exposed to arsenite, there were elevated levels of microRNA-21 (miR-21), phosphorylated mammalian target of rapamycin (p-mTOR), and arginase 1 (Arg1); low levels of phosphatase and tensin homolog (PTEN); and more extensive liver fibrosis. For cultured cells, arsenite-induced miR-21, p-mTOR, and Arg1; decreased PTEN; and promoted M2 polarization of macrophages derived from THP-1 monocytes (THP-M), which caused secretion of fibrogenic cytokines, including transforming growth factor-β1. Coculture of arsenite-treated, THP-M with LX-2 cells induced α-SMA and collagen I in the LX-2 cells and resulted in the activation of these cells. Downregulation of miR-21 in THP-M inhibited arsenite-induced M2 polarization and activation of LX-2 cells, but cotransfection with PTEN siRNA or a miR-21 inhibitor reversed this inhibition. Moreover, knockout of miR-21 in mice attenuated liver fibrosis and M2 polarization compared with WT mice exposed to arsenite. Additionally, LN, PCIII, and HA levels were higher in patients with higher hair arsenic levels, and levels of miR-21 were higher than controls and positively correlated with PCIII, LN, and HA levels. Thus, arsenite induces the M2 polarization of macrophages via miR-21 regulation of PTEN, which is involved in the activation of hepatic stellate cells and hepatic fibrosis. The results establish a previously unknown mechanism for arsenicosis-induced fibrosis.
Collapse
Affiliation(s)
- Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qian Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangyu Dai
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Profiling circulating microRNAs in patients with cirrhosis and acute-on-chronic liver failure. JHEP Rep 2021; 3:100233. [PMID: 33665588 PMCID: PMC7902550 DOI: 10.1016/j.jhepr.2021.100233] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/02/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background & Aims MicroRNAs (miRNAs) circulate in several body fluids and can be useful biomarkers. The aim of this study was to identify blood-circulating miRNAs associated with cirrhosis progression and acute-on-chronic liver failure (ACLF). Methods Using high-throughput screening of 754 miRNAs, serum samples from 45 patients with compensated cirrhosis, decompensated cirrhosis, or ACLF were compared with those from healthy individuals (n = 15). miRNA levels were correlated with clinical parameters, organ failure, and disease progression and outcome. Dysregulated miRNAs were evaluated in portal and hepatic vein samples (n = 33), liver tissues (n = 17), and peripheral blood mononuclear cells (PBMCs) (n = 16). Results miRNA screening analysis revealed that circulating miRNAs are dysregulated in cirrhosis progression, with 51 miRNAs being differentially expressed among all groups of patients. Unsupervised clustering and principal component analysis indicated that the main differences in miRNA expression occurred at decompensation, showing similar levels in patients with decompensated cirrhosis and those with ACLF. Of 43 selected miRNAs examined for differences among groups, 10 were differentially expressed according to disease progression. Moreover, 20 circulating miRNAs were correlated with model for end-stage liver disease and Child-Pugh scores. Notably, 11 dysregulated miRNAs were associated with kidney or liver failure, encephalopathy, bacterial infection, and poor outcomes. The most severely dysregulated miRNAs (i.e. miR-146a-5p, miR-26a-5p, and miR-191-5p) were further evaluated in portal and hepatic vein blood and liver tissue, but showed no differences. However, PBMCs from patients with cirrhosis showed significant downregulation of miR-26 and miR-146a, suggesting a extrahepatic origin of some circulating miRNAs. Conclusions This study is a repository of circulating miRNA data following cirrhosis progression and ACLF. Circulating miRNAs were profoundly dysregulated during the progression of chronic liver disease, were associated with failure of several organs and could have prognostic utility. Lay summary Circulating miRNAs are small molecules in the blood that can be used to identify or predict a clinical condition. Our study aimed to identify miRNAs for use as biomarkers in patients with cirrhosis or acute-on-chronic liver failure. Several miRNAs were found to be dysregulated during the progression of disease, and some were also related to organ failure and disease-related outcomes. Circulating miRNAs are dysregulated with cirrhosis progression and in patients with ACLF. Patient decompensation is associated with important changes in the levels of circulating miRNAs. A total of 11 circulating miRNAs were identified as associated with organ failure and 7 with poor outcome. The miRNAs most dysregulated during cirrhosis progression were miR-146a, miR-26a, and miR-191. miR-146a was dysregulated in PBMCs of patients with decompensated cirrhosis vs. compensated cirrhosis.
Collapse
Key Words
- ACLF, acute-on-chronic liver failure
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Biomarkers
- CXCL10, C-X-C motif chemokine ligand 10
- Chronic liver disease
- EF CLIF, European Foundation for the Study of Chronic Liver Failure
- FoxO, forkhead box O
- INR, International Normalised Ratio
- LDH, lactate dehydrogenase
- Liver decompensation
- MAPK, mitogen-activated protein kinase
- MELD, model for end-stage liver disease
- NASH, non-alcoholic steatohepatitis
- Non-coding RNAs
- PBMCs, peripheral blood mononuclear cells
- PCA, principal component analysis
- TGF, transforming growth factor
- TIPS, transjugular intrahepatic portosystemic shunt
- qPCR, quantitative PCR
Collapse
|
22
|
|
23
|
Huang C, Xing X, Xiang X, Fan X, Men R, Ye T, Yang L. MicroRNAs in autoimmune liver diseases: from diagnosis to potential therapeutic targets. Biomed Pharmacother 2020; 130:110558. [PMID: 32781357 DOI: 10.1016/j.biopha.2020.110558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 02/08/2023] Open
Abstract
Autoimmune liver diseases (AILDs) are a group of liver disorders composed of autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) characterized by chronic hepatic and biliary inflammation. Although several genetic factors, such as HLA alleles, TNFA, and CTLA-4, have been reported in the pathogenesis of AILDs, many details remain unknown. In recent years, microRNAs (miRNAs) have emerged as crucial components in the diagnosis and therapeutic applications of various autoimmune diseases, including systemic lupus erythematosus (SLE), glomerulonephritis, and AILDs. MiRNAs comprise a class of small, noncoding molecules of 19--25 nucleotides that modulate multiple genes by suppressing or degrading target mRNAs. Altered miRNA profiles have been identified in serum, immune cells, and live tissues from AILD patients. Elevated serum miR-21 and miR-122 levels in AIH patients as well as decreased miR-200c levels in PSC patients indicate their diagnostic utility. Highly expressed miR-122 and miR-378f as well as downregulated miR-4311 and miR-4714-3p in serum samples from refractory PBC patients suggest their potential to evaluate treatment efficacy. Moreover, miRNAs have been reported to participate in AILD development. Increased miR-506 levels may impair bile secretion in PBC by inhibiting Cl-/HCO3-anion exchanger 2 (AE2) and type III inositol 1,4,5-trisphosphate receptor-3 (InsP3R3). Additionally, different miRNA mimics or antagonists, such as atagomiR-155 and miR-223 mimics, have been widely applied in experimental AILD murine models with great efficacy. Here, we provide an overview of miRNAs in AILDs, aiming to summarize their potential roles in diagnosis and therapeutic interventions, and we discuss the challenges and future applications of miRNAs in clinical practice.
Collapse
Affiliation(s)
- Chen Huang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Xing
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Xiang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Ruoting Men
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease - A practical approach for translational research. J Hepatol 2020; 73:423-440. [PMID: 32330604 DOI: 10.1016/j.jhep.2020.04.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Animal models are crucial for improving our understanding of human pathogenesis, enabling researchers to identify therapeutic targets and test novel drugs. In the current review, we provide a comprehensive summary of the most widely used experimental models of chronic liver disease, starting from early stages of fatty liver disease (non-alcoholic and alcoholic) to steatohepatitis, advanced cirrhosis and end-stage primary liver cancer. We focus on aspects such as reproducibility and practicality, discussing the advantages and weaknesses of available models for researchers who are planning to perform animal studies in the near future. Additionally, we summarise current and prospective models based on human tissue bioengineering.
Collapse
Affiliation(s)
- Yulia A Nevzorova
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, Madrid, Spain; 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoe Boyer-Diaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain
| | - Francisco Javier Cubero
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
25
|
Wang Z, Zhao Y, Zhao H, Zhou J, Feng D, Tang F, Li Y, Lv L, Chen Z, Ma X, Tian X, Yao J. Inhibition of p66Shc Oxidative Signaling via CA-Induced Upregulation of miR-203a-3p Alleviates Liver Fibrosis Progression. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:751-763. [PMID: 32781430 PMCID: PMC7417942 DOI: 10.1016/j.omtn.2020.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
We previously found that inhibition of p66Shc confers protection against hepatic stellate cell (HSC) activation during liver fibrosis. However, the effect of p66Shc on HSC proliferation, as well as the mechanism by which p66Shc is modulated, remains unknown. Here, we elucidated the effect of p66Shc on HSC proliferation and evaluated microRNA (miRNA)-p66Shc-mediated reactive oxidative species (ROS) generation in liver fibrosis. An in vivo model of carbon tetrachloride (CCl4)-induced liver fibrosis in rats and an LX-2 cell model were developed. p66Shc expression was significantly upregulated in rats with CCl4-induced liver fibrosis and in human fibrotic livers. Additionally, p66Shc knockdown in vitro attenuated mitochondrial ROS generation and HSC proliferation. Interestingly, p66Shc promoted HSC proliferation via β-catenin dephosphorylation in vitro. MicroRNA (miR)-203a-3p, which was identified by microarray and bioinformatics analyses, directly inhibited p66Shc translation and attenuated HSC proliferation in vitro. Importantly, p66Shc was found to play an indispensable role in the protective effect of miR-203a-3p. Furthermore, carnosic acid (CA), the major antioxidant compound extracted from rosemary leaves, protected against CCl4-induced liver fibrosis through the miR-203a-3p/p66Shc axis. Collectively, these results suggest that p66Shc, which is directly suppressed by miR-203a-3p, is a key regulator of liver fibrosis. This finding may lead to the development of therapeutic targets for liver fibrosis.
Collapse
Affiliation(s)
- Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Huanyu Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Dongcheng Feng
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Fan Tang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yang Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Li Lv
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Zhao Chen
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
26
|
Seal RL, Chen LL, Griffiths-Jones S, Lowe TM, Mathews MB, O'Reilly D, Pierce AJ, Stadler PF, Ulitsky I, Wolin SL, Bruford EA. A guide to naming human non-coding RNA genes. EMBO J 2020; 39:e103777. [PMID: 32090359 PMCID: PMC7073466 DOI: 10.15252/embj.2019103777] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Research on non-coding RNA (ncRNA) is a rapidly expanding field. Providing an official gene symbol and name to ncRNA genes brings order to otherwise potential chaos as it allows unambiguous communication about each gene. The HUGO Gene Nomenclature Committee (HGNC, www.genenames.org) is the only group with the authority to approve symbols for human genes. The HGNC works with specialist advisors for different classes of ncRNA to ensure that ncRNA nomenclature is accurate and informative, where possible. Here, we review each major class of ncRNA that is currently annotated in the human genome and describe how each class is assigned a standardised nomenclature.
Collapse
Affiliation(s)
- Ruth L Seal
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, Shanghai, China
| | - Sam Griffiths-Jones
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dawn O'Reilly
- Computational Biology and Integrative Genomics Lab, MRC/CRUK Oxford Institute and Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew J Pierce
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Institute of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Colombia.,Santa Fe Institute, Santa Fe, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sandra L Wolin
- RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| |
Collapse
|
27
|
MiR-873, as a suppressor in cervical cancer, inhibits cells proliferation, invasion and migration via negatively regulating ULBP2. Genes Genomics 2020; 42:371-382. [PMID: 31902110 DOI: 10.1007/s13258-019-00905-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cervical cancer (CC) remains a large burden in the developing countries. The tumor inhibitory role of miR-873 has been verified in a variety of cancers, however, whether miR-873 has a suppressive effect on CC remains unclear. OBJECTIVE The purpose of this study was to investigate the functional role of miR-873 in CC, as well as explore the underlying molecular mechanism. METHODS The prognostic values of miR-873 were assessed by Kaplan-Meier methods and cox regression models using the data which were downloaded from TCGA database. The expression of miR-873 was measured by RT-qPCR. Cell counting Kit-8, clone formation, and Transwell assays were used to assess the cell viability and metastasis, appropriately. The targeting relationship between miR-873 and ULBP2 was predicted by biological software and confirmed by dual luciferase reporter assay. Rescue assays were conducted to investigate whether miR-873 affects the phenotype of CC cells via regulating ULBP2. RESULTS We observed that miR-873 was low-expressed in CC. Up-regulation of miR-873 notably restrained the proliferation, invasion and migration of C33a cells. Meanwhile, down-regulation of miR-873 in SiHa cells presented the opposite outcomes. ULBP2 was forecasted and certified as a target of miR-873. The results of rescue assays showed that overexpression of ULBP2 could restore the proliferation and motility of CC cells that inhibited by miR-873. CONCLUSION MiR-873 suppressed the CC cells proliferation, invasion and migration via negatively regulating ULBP2, suggesting that miR-873 could serve as a valuable therapeutic target for CC therapy.
Collapse
|
28
|
Simon J, Ouro A, Ala-Ibanibo L, Presa N, Delgado TC, Martínez-Chantar ML. Sphingolipids in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma: Ceramide Turnover. Int J Mol Sci 2019; 21:40. [PMID: 31861664 PMCID: PMC6982102 DOI: 10.3390/ijms21010040] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the main causes of chronic liver disease worldwide. NAFLD comprises a group of conditions characterized by the accumulation of hepatic lipids that can eventually lead to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), the fifth most common cancer type with a poor survival rate. In this context, several works have pointed out perturbations in lipid metabolism and, particularly, changes in bioactive sphingolipids, as a hallmark of NAFLD and derived HCC. In the present work, we have reviewed existing literature about sphingolipids and the development of NAFLD and NAFLD-derived HCC. During metabolic syndrome, considered a risk factor for steatosis development, an increase in ceramide and sphigosine-1-phosphate (S1P) have been reported. Likewise, other reports have highlighted that increased sphingomyelin and ceramide content is observed during steatosis and NASH. Ceramide also plays a role in liver fibrosis and cirrhosis, acting synergistically with S1P. Finally, during HCC, metabolic fluxes are redirected to reduce cellular ceramide levels whilst increasing S1P to support tumor growth.
Collapse
Affiliation(s)
- Jorge Simon
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| | - Alberto Ouro
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48980 Leioa, Bizkaia, Spain; (A.O.); (N.P.)
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain
| | - Lolia Ala-Ibanibo
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48980 Leioa, Bizkaia, Spain; (A.O.); (N.P.)
| | - Teresa Cardoso Delgado
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| | - María Luz Martínez-Chantar
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| |
Collapse
|
29
|
Lai Z, Cao Y. Plasma miR-200c-3p, miR-100-5p, and miR-1826 serve as potential diagnostic biomarkers for knee osteoarthritis: Randomized controlled trials. Medicine (Baltimore) 2019; 98:e18110. [PMID: 31860959 PMCID: PMC6940174 DOI: 10.1097/md.0000000000018110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To study the potential diagnostic value of plasma miR-200c-3p, miR-100-5p, and miR-1826 levels in knee osteoarthritis (KOA). METHODS Real-time quantitative PCR (RT-PCR) was used to measure the expression levels of serum miR-200c-3p, miR-100-5p, and miR-1826 in 150 KOA patients and 150 control controls. In addition, the levels of DNMT3A, ZEB1, MMP13, and CTNNB1 mRNAs in the synovial fluid were also measured by RT-PCR. RESULTS The expression levels of miR-100-5p, miR-200c-3p, and miR-1826 in the synovial fluid of 150 KOA patients were significantly lower than those in 54 controls (P < .001). In the synovial fluid, the miR-100-5p and DNMT3A mRNA levels, miR-100-5p and ZEB1 mRNA levels, miR-200c-3p and MMP13 mRNA levels, and miR-1826 and CTNNB1 mRNA levels were all negatively correlated (r = -0.83, -0.81, -0.83, -0.58, respectively). The AUCs of the diagnosis for KOA using the plasma levels of miR-200c-3p, miR-100-5p, and miR-1826 were 0.755, 0.845, and 0.749, respectively. CONCLUSION The plasma levels of miR-200c-3p, miR-100-5p, and miR-1826 are of potentially high value in the diagnosis of KOA.
Collapse
Affiliation(s)
- Zhen Lai
- Department of Orthopedics, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital/Hangzhou Red Cross Hospital
| | - Yanguang Cao
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
Fernández-Tussy P, Fernández-Ramos D, Lopitz-Otsoa F, Simón J, Barbier-Torres L, Gomez-Santos B, Nuñez-Garcia M, Azkargorta M, Gutiérrez-de Juan V, Serrano-Macia M, Rodríguez-Agudo R, Iruzubieta P, Anguita J, Castro RE, Champagne D, Rincón M, Elortza F, Arslanow A, Krawczyk M, Lammert F, Kirchmeyer M, Behrmann I, Crespo J, Lu SC, Mato JM, Varela-Rey M, Aspichueta P, Delgado TC, Martínez-Chantar ML. miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease. Mol Metab 2019; 29:40-54. [PMID: 31668391 PMCID: PMC6728756 DOI: 10.1016/j.molmet.2019.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is a complex pathology in which several dysfunctions, including alterations in metabolic pathways, mitochondrial functionality and unbalanced lipid import/export, lead to lipid accumulation and progression to inflammation and fibrosis. The enzyme glycine N-methyltransferase (GNMT), the most important enzyme implicated in S-adenosylmethionine catabolism in the liver, is downregulated during NAFLD progression. We have studied the mechanism involved in GNMT downregulation by its repressor microRNA miR-873-5p and the metabolic pathways affected in NAFLD as well as the benefit of recovery GNMT expression. METHODS miR-873-5p and GNMT expression were evaluated in liver biopsies of NAFLD/NASH patients. Different in vitro and in vivo NAFLD murine models were used to assess miR-873-5p/GNMT involvement in fatty liver progression through targeting of the miR-873-5p as NAFLD therapy. RESULTS We describe a new function of GNMT as an essential regulator of Complex II activity in the electron transport chain in the mitochondria. In NAFLD, GNMT expression is controlled by miR-873-5p in the hepatocytes, leading to disruptions in mitochondrial functionality in a preclinical murine non-alcoholic steatohepatitis (NASH) model. Upregulation of miR-873-5p is shown in the liver of NAFLD/NASH patients, correlating with hepatic GNMT depletion. Importantly, NASH therapies based on anti-miR-873-5p resolve lipid accumulation, inflammation and fibrosis by enhancing fatty acid β-oxidation in the mitochondria. Therefore, miR-873-5p inhibitor emerges as a potential tool for NASH treatment. CONCLUSION GNMT participates in the regulation of metabolic pathways and mitochondrial functionality through the regulation of Complex II activity in the electron transport chain. In NAFLD, GNMT is repressed by miR-873-5p and its targeting arises as a valuable therapeutic option for treatment.
Collapse
Affiliation(s)
- Pablo Fernández-Tussy
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - David Fernández-Ramos
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Fernando Lopitz-Otsoa
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Jorge Simón
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Lucía Barbier-Torres
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Beatriz Gomez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940, Leioa, Bizkaia, Spain; Biocruces Health Research Institute, Barakaldo, Spain.
| | - Maitane Nuñez-Garcia
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940, Leioa, Bizkaia, Spain; Biocruces Health Research Institute, Barakaldo, Spain.
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, 48160, Spain.
| | - Virginia Gutiérrez-de Juan
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Marina Serrano-Macia
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Rubén Rodríguez-Agudo
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Paula Iruzubieta
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Infection, Immunity and Digestive Pathology Group, Research Institute Marqués de Valdecilla (IDIVAL), Santander, 39008, Spain.
| | - Juan Anguita
- Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Bizkaia Science and Technology Park, Derio 48160 Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain.
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Devin Champagne
- Department of Medicine, University of Vermont College of Medicine, Burlington, 05405, VT, USA.
| | - Mercedes Rincón
- Department of Medicine, University of Vermont College of Medicine, Burlington, 05405, VT, USA.
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, 48160, Spain.
| | - Anita Arslanow
- Department of Medicine II, Saarland University Medical Center, 66421, Homburg, Germany.
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, 66421, Homburg, Germany.
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, 66421, Homburg, Germany.
| | - Mélanie Kirchmeyer
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, House of Biomedicine II, 4367, Belvaux, Luxembourg.
| | - Iris Behrmann
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, House of Biomedicine II, 4367, Belvaux, Luxembourg.
| | - Javier Crespo
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Infection, Immunity and Digestive Pathology Group, Research Institute Marqués de Valdecilla (IDIVAL), Santander, 39008, Spain.
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - José M Mato
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Marta Varela-Rey
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940, Leioa, Bizkaia, Spain; Biocruces Health Research Institute, Barakaldo, Spain.
| | - Teresa C Delgado
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - María L Martínez-Chantar
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| |
Collapse
|
31
|
Huang JW, Chen CJ, Yen CH, Chen YMA, Liu YP. Loss of Glycine N-Methyltransferase Associates with Angiopoietin-Like Protein 8 Expression in High Fat-Diet-Fed Mice. Int J Mol Sci 2019; 20:ijms20174223. [PMID: 31470507 PMCID: PMC6747252 DOI: 10.3390/ijms20174223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022] Open
Abstract
Imbalance of lipid metabolism is a main cause of metabolic syndrome leading to life-threatening metabolic diseases. Angiopoietin-like protein 8 (Angptl8) was recently identified as a liver and adipose tissue-released hormone that is one of the molecules involved in triglyceride metabolism. However, the regulatory mechanism of Angptl8 is largely unknown. A high fat diet (HFD)-fed mouse model, which showed high cholesterol, high triglyceride, and high insulin in the blood, revealed the upregulation of hepatic and plasma Angptl8 and the downregulation of hepatic glycine N-methyltransferase (GNMT). The inverse correlation of hepatic Angptl8 and GNMT expression in the livers of HFD-fed mice was also confirmed in a publicly available microarray dataset. The mechanistic study using primary hepatocytes showed that the Angptl8 expression could be induced by insulin treatment in a dose- and time-dependent manner. Inhibition of PI3K/Akt pathway by the specific inhibitors or the dominant-negative Akt blocked the insulin-induced Angptl8 expression. Moreover, knockout of GNMT promoted the Akt activation as well as the Angptl8 expression. These results suggested that GNMT might be involved in insulin-induced Angptl8 expression in HFD-mediated metabolic syndrome.
Collapse
Affiliation(s)
- Jian-Wei Huang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chao-Ju Chen
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ming Arthur Chen
- Master Program of Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Peng Liu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
32
|
Borowa-Mazgaj B, de Conti A, Tryndyak V, Steward CR, Jimenez L, Melnyk S, Seneshaw M, Mirshahi F, Rusyn I, Beland FA, Sanyal AJ, Pogribny IP. Gene Expression and DNA Methylation Alterations in the Glycine N-Methyltransferase Gene in Diet-Induced Nonalcoholic Fatty Liver Disease-Associated Carcinogenesis. Toxicol Sci 2019; 170:273-282. [PMID: 31086990 PMCID: PMC6934890 DOI: 10.1093/toxsci/kfz110] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming a major etiological risk factor for hepatocellular carcinoma (HCC) in the United States and other Western countries. In this study, we investigated the role of gene-specific promoter cytosine DNA methylation and gene expression alterations in the development of NAFLD-associated HCC in mice using (1) a diet-induced animal model of NAFLD, (2) a Stelic Animal Model of nonalcoholic steatohepatitis-derived HCC, and (3) a choline- and folate-deficient (CFD) diet (CFD model). We found that the development of NAFLD and its progression to HCC was characterized by down-regulation of glycine N-methyltransferase (Gnmt) and this was mediated by progressive Gnmt promoter cytosine DNA hypermethylation. Using a panel of genetically diverse inbred mice, we observed that Gnmt down-regulation was an early event in the pathogenesis of NAFLD and correlated with the extent of the NAFLD-like liver injury. Reduced GNMT expression was also found in human HCC tissue and liver cancer cell lines. In in vitro experiments, we demonstrated that one of the consequences of GNMT inhibition was an increase in genome methylation facilitated by an elevated level of S-adenosyl-L-methionine. Overall, our findings suggest that reduced Gnmt expression caused by promoter hypermethylation is one of the key molecular events in the development of NAFLD-derived HCC and that assessing Gnmt methylation level may be useful for disease stratification.
Collapse
Affiliation(s)
- Barbara Borowa-Mazgaj
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Colleen R Steward
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079.,State University of New York at Geneseo, Geneseo, New York 14454
| | - Leandro Jimenez
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Stepan Melnyk
- Core Metabolomics Laboratory, Arkansas Children's Research Institute, Little Rock, Arkansas 72202
| | - Mulugeta Seneshaw
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Faridodin Mirshahi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| |
Collapse
|
33
|
Tumor suppressor gene glycine N-methyltransferase and its potential in liver disorders and hepatocellular carcinoma. Toxicol Appl Pharmacol 2019; 378:114607. [PMID: 31170416 DOI: 10.1016/j.taap.2019.114607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Glycine N-methyltransferase is a protein with many functions. In addition to catalyzing the production of sarcosine in the one carbon metabolism pathway, it plays a role in the detoxification of environmental carcinogens such as benzo[a]pyrene, aflatoxin B1, and aristocholic acid. There is also increasing evidence suggesting a role of GNMT deficiency in liver carcinogenesis. In this review, we discuss the role of GNMT in the detoxification of xenobiotics and the mechanism of GNMT suppression during liver tumorigenesis. The protective role of GNMT in the liver allows GNMT to not only serve as a marker of liver disease, but also potentially be applied in the treatment of liver disorders and hepatocellular carcinoma. We describe the potential use of GNMT in gene therapy and we introduce the development of a GNMT promoter reporter assay that can be used to screen medicinal drugs and herbal libraries for natural compounds with anti-cancer properties.
Collapse
|
34
|
Wang J, Li ZX, Yang DD, Liu PQ, Wang ZQ, Zeng YQ, Chen W. Diquat Determines a Deregulation of lncRNA and mRNA Expression in the Liver of Postweaned Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9148535. [PMID: 31214284 PMCID: PMC6535875 DOI: 10.1155/2019/9148535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/24/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Oxidative stress is detrimental to animals and can depress the growth performance and regulate the gene expression of animals. However, it remains unclear how oxidative stress regulates the expression of long noncoding RNAs (lncRNAs) and mRNAs. Therefore, the purpose of this article was to explore the profiles of lncRNAs and mRNAs in the liver of piglets under oxidative stress. Here, we constructed a piglet oxidative stress model induced by diquat and evaluated the effects of oxidative stress on the growth performance and antioxidant enzyme activity of piglets. We also used RNA-Seq to examine the global expression of lncRNAs and mRNAs in piglets under oxidative stress. The targets of lncRNAs and mRNAs were enriched in gene ontology (GO) terms and signaling pathways. The results show that the growth performance and activities of antioxidant enzymes were decreased in piglets under oxidative stress. Moreover, eight lncRNAs (6 upregulated and 2 downregulated) and 30 mRNAs (8 upregulated and 22 downregulated) were differentially expressed in the oxidative stress group of piglets compared to the negative control group. According to biological processes in enriched GO terms, the oxoacid metabolic process, intramolecular oxidoreductase activity, and oxidation-reduction process play important roles in oxidative stress. Pathway analysis showed that the signaling pathways involved in insulin and glucose metabolism had a close relationship with oxidative stress. Further in vitro experiments showed that the expression of the upregulated gene GNMT was significantly increased in primary porcine hepatocytes after diquat stimulation. In contrast, the level of the downregulated gene GCK was significantly decreased at 12 h in primary porcine hepatocytes after diquat stimulation. Our results expand our knowledge of the lncRNAs and mRNAs transcribed in the livers of piglets under oxidative stress and provide a basis for future research on the molecular mechanisms mediating oxidative stress and tissue damage.
Collapse
Affiliation(s)
- Jin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Zhi-xin Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Dan-dan Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Pei-qi Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Zhi-qiang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Yong-qing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| |
Collapse
|
35
|
Ju B, Nie Y, Yang X, Wang X, Li F, Wang M, Wang C, Zhang H. miR-193a/b-3p relieves hepatic fibrosis and restrains proliferation and activation of hepatic stellate cells. J Cell Mol Med 2019; 23:3824-3832. [PMID: 30945448 PMCID: PMC6533489 DOI: 10.1111/jcmm.14210] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/26/2018] [Accepted: 01/16/2019] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) have been confirmed to participate in liver fibrosis progression and activation of hepatic stellate cells (HSCs). In this study, the role of miR‐193a/b‐3p in concanavalin A (ConA)‐induced liver fibrosis in mice was evaluated. According to the results, the expression of miR‐193a/b‐3p was down‐regulated in liver tissues after exposure to ConA. Lentivirus‐mediated overexpression of miR‐193a/b‐3p reduced ConA‐induced liver injury as demonstrated by decreasing ALT and AST levels. Moreover, ConA‐induced liver fibrosis was restrained by the up‐regulation of miR‐193a/b‐3 through inhibiting collagen deposition, decreasing desmin and proliferating cell nuclear antigen (PCNA) expression and lessening the content of hydroxyproline, transforming growth factor‐β1 (TGF‐β1) and activin A in liver tissues. Furthermore, miR‐193a/b‐3p mimics suppressed the proliferation of human HSCs LX‐2 via inducing the apoptosis of LX‐2 cells and lowering the levels of cell cycle‐related proteins Cyclin D1, Cyclin E1, p‐Rb and CAPRIN1. Finally, TGF‐β1 and activin A‐mediated activation of LX‐2 cells was reversed by miR‐193a/b‐3p mimics via repressing COL1A1 and α‐SMA expression, and restraining the activation of TGF‐β/Smad2/3 signalling pathway. CAPRIN1 and TGF‐β2 were demonstrated to be the direct target genes of miR‐193a/b‐3p. We conclude that miR‐193a/b‐3p overexpression attenuates liver fibrosis through suppressing the proliferation and activation of HSCs. Our data suggest that miR‐193a‐3p and miR‐193b‐3p may be new therapeutic targets for liver fibrosis.
Collapse
Affiliation(s)
- Baoling Ju
- Department of Immunology, Mudanjiang Medical College, Mudanjiang, Heilongjiang, People's Republic of China
| | - Ying Nie
- Department of Immunology, Mudanjiang Medical College, Mudanjiang, Heilongjiang, People's Republic of China
| | - Xufang Yang
- Department of Pathophysiology, Mudanjiang Medical College, Mudanjiang, Heilongjiang, People's Republic of China
| | - Xiaohua Wang
- Department of Pathogen Biology, Mudanjiang Medical College, Mudanjiang, Heilongjiang, People's Republic of China
| | - Fujuan Li
- Department of Pathogen Biology, Mudanjiang Medical College, Mudanjiang, Heilongjiang, People's Republic of China
| | - Meng Wang
- Department of Immunology, Mudanjiang Medical College, Mudanjiang, Heilongjiang, People's Republic of China
| | - Chuang Wang
- Department of Immunology, Mudanjiang Medical College, Mudanjiang, Heilongjiang, People's Republic of China
| | - Hongjun Zhang
- Department of Immunology, Mudanjiang Medical College, Mudanjiang, Heilongjiang, People's Republic of China
| |
Collapse
|
36
|
Cholangiocyte death in ductopenic cholestatic cholangiopathies: Mechanistic basis and emerging therapeutic strategies. Life Sci 2019; 218:324-339. [DOI: 10.1016/j.lfs.2018.12.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
|
37
|
Zhang Y, Liu J, Ma Y, Wang J, Zhu J, Liu J, Zhang J. Integration of high‑throughput data of microRNA and mRNA expression profiles reveals novel insights into the mechanism of liver fibrosis. Mol Med Rep 2018; 19:115-124. [PMID: 30431126 PMCID: PMC6297784 DOI: 10.3892/mmr.2018.9641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have revealed that microRNAs (miRNAs) are functional non-coding RNAs that serve roles in a variety of biological processes. However, the expression patterns and regulatory networks, as well as the miRNAs involved in liver fibrosis remain to be elucidated. In the present study, a mouse model of liver fibrosis was constructed by CCl4 intraperitoneal injection and the total RNAs were extracted from the liver of the mice. The total RNAs were then sequenced on an Illumina HiSeq 2000 platform and an integrated analysis of miRNA and mRNA expression profiles in CCl4-induced liver fibrosis was performed. Compared with normal liver samples, 56 and 15 miRNAs were found to be upregulated and downregulated in fibrotic livers, respectively. To predict the potential functions of these miRNAs, bioinformatics analysis, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, was used to assess target mRNAs. The results indicated that the mitogen-activated protein kinase, phosphoinositide 3 kinase/protein kinase B and focal adhesion signaling pathways were the most significantly enriched. In addition, a regulatory network containing five dysregulated miRNAs and 22 target mRNAs was constructed based on their inverse correlation. Furthermore, the five dysregulated miRNAs were significantly upregulated and the expression of RELB, RAP1A, PPP3CB, MAP2K4, ARRB1, MAP3K4, FGF1 and PRKCB in the network was significantly decreased in LX-2 cells following TGF-β1 treatment which suggested that they were associated with the activation of human hepatic stellate cells. The miRNA-mRNA regulatory network produced in the present study may provide novel insights into the role of miRNAs in liver fibrosis.
Collapse
Affiliation(s)
- Yitong Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Yanyun Ma
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Jingjie Wang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jie Zhu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|