1
|
Bold N, Buyanbat K, Enkhtuya A, Myagmar N, Batbayar G, Sandag Z, Damdinbazar D, Oyunbat N, Boldbaatar T, Enkhbaatar A, Baatarjav G, Nanzaddorj T, Oyunsuren T, Davaakhuu G. High-Frequency Mutations in TP53, AXIN1, CTNNB1, and KRAS, and Polymorphisms in JAK1 Genes Among Mongolian HCC Patients. Cancer Rep (Hoboken) 2025; 8:e70227. [PMID: 40344393 PMCID: PMC12062512 DOI: 10.1002/cnr2.70227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Mongolia has the highest incidence of liver cancer worldwide, largely driven by a high prevalence of hepatitis virus infections. Mutations in oncogenes and tumor suppressor genes provide valuable insights into the molecular mechanisms of hepatocellular carcinoma (HCC). AIMS This study aimed to investigate the prevalence of mutations in key oncogenes and tumor suppressor genes in Mongolian HCC patients and to explore their molecular mechanisms, particularly in relation to hepatitis virus infections. METHODS AND RESULTS We analyzed 55 tumor tissue samples from Mongolian HCC patients (2019-2021), identifying mutations in TP53, CTNNB1, AXIN1, KRAS, and JAK1 through sequencing. Western blotting was used to assess β-catenin and p53 protein levels. Our findings showed p53 overexpression in tumors with TP53 mutations (F270I and S362S), while mutations such as R213* and a short-sequence deletion upstream of intron 7 produced premature stop codons, resulting in truncated p53 and loss of tumor suppressor function. β-catenin accumulation was observed in tumors with CTNNB1 mutations (D32N/Y, S33C/Y, S34V, S37P, T41A, and S45P). CCND1 expression, a key target of the Wnt/β-catenin pathway, was significantly upregulated in tumors harboring CTNNB1 and AXIN1 mutations (p = 0.02213). Statistical analysis revealed a positive correlation between β-catenin and CCND1 expression levels (r = 0.42703). Hepatitis virus infections were significantly associated with these mutations (p < 0.01), suggesting a link between viral infection and genetic alterations in HCC development. Compared to TCGA data, our cohort displayed a significantly higher mutation frequency (p < 0.001 and p < 0.05), indicating potential regional genetic and environmental influences. CONCLUSION This study provides insights into the molecular mechanisms of HCC in Mongolia, highlighting distinct mutational patterns in TP53, CTNNB1, AXIN1, and KRAS. The association between hepatitis virus infections and these mutations underscores their potential oncogenic impact and may inform future therapeutic strategies for HCC in this population.
Collapse
Affiliation(s)
- Nomin Bold
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Khurelsukh Buyanbat
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Ariya Enkhtuya
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Nomin Myagmar
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Gerelsuren Batbayar
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Zolzaya Sandag
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Dolgion Damdinbazar
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Nomuun Oyunbat
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Tuul Boldbaatar
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | | | | | - Taivan Nanzaddorj
- Department of General SurgerySecond State Central HospitalUlaanbaatarMongolia
| | - Tsendsuren Oyunsuren
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| | - Gantulga Davaakhuu
- Laboratory of Molecular BiologyInstitute of Biology, Mongolian Academy of SciencesUlaanbaatarMongolia
| |
Collapse
|
2
|
Wang LQ, Li SH, Zhang WQ. Identification of a vital transcription factor of the alanine aminotransferase in the brown planthopper and its upstream regulatory pathways. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 175:104212. [PMID: 39547539 DOI: 10.1016/j.ibmb.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
The brown planthopper (Nilaparvata lugens) is an important insect pest of rice, and can rapidly adapt to insect-resistant rice varieties. In our previous studies, alanine aminotransferase in N. lugens (NlALT) was found to play an important role in the adaptation of the brown planthopper to resistant rice IR36. Here, we further identified CCAAT/enhancer binding protein (NlC/EBP) as a vital transcription factor of NlALT. Nlp38b in the MAPKs pathway regulated the expression of NlALT by influencing the phosphorylation level of NlC/EBP. In addition, we found that NlGRL101, a G protein-coupled receptor (GPCR), was significantly higher expressed in the N. lugens population adapted to IR36 (P-IR36). After knockdown of NlGRL101 through RNAi in P-IR36 population, lower expressions of Nlp38b and NlC/EBP, along with reduced phosphorylation levels of Nlp38b and NlC/EBP were observed; moreover, NlALT activity and honeydew amount were decreased by 15.68% and 76.08%, respectively. These results indicated that insect-resistant rice IR36 induced expression of NlGRL101, which enhanced expression of NlALT through Nlp38b and NlC/EBP. These findings are helpful for better understanding of insect adaptation to resistant crop varieties.
Collapse
Affiliation(s)
- Li-Qun Wang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi-Hui Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
3
|
Zheng X, Huang H, Zhou Z, Guo W, Yang G, Chen Z, Chen D, Chen Y, Yuan G. Axin1 regulates tooth root development by inhibiting AKT1-mTORC1 activation and Shh translation in Hertwig's epithelial root sheath. Development 2024; 151:dev202899. [PMID: 39344774 DOI: 10.1242/dev.202899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Hertwig's epithelial root sheath (HERS) interacts with dental apical mesenchyme and guides development of the tooth root, which is integral to the function of the whole tooth. However, the key genes in HERS essential for root development are understudied. Here, we show that Axin1, a scaffold protein that negatively regulates canonical Wnt signaling, is strongly expressed in the HERS. Axin1 ablation in the HERS of mice leads to defective root development, but in a manner independent of canonical Wnt signaling. Further studies reveal that Axin1 in the HERS negatively regulates the AKT1-mTORC1 pathway through binding to AKT1, leading to inhibition of ribosomal biogenesis and mRNA translation. Sonic hedgehog (Shh) protein, a morphogen essential for root development, is over-synthesized by upregulated mTORC1 activity upon Axin1 inactivation. Importantly, either haploinsufficiency of the mTORC1 subunit Rptor or pharmacological inhibition of Shh signaling can rescue the root defects in Axin1 mutant mice. Collectively, our data suggest that, independently of canonical Wnt signaling, Axin1 controls ribosomal biogenesis and selective mRNA translation programs via AKT1-mTORC1 signaling during tooth root development.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Hongcan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhipeng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weihua Guo
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan 610041, China
- Department of Pediatric Dentistry, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan 610041, China
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| |
Collapse
|
4
|
Qiu L, Sun Y, Ning H, Chen G, Zhao W, Gao Y. The scaffold protein AXIN1: gene ontology, signal network, and physiological function. Cell Commun Signal 2024; 22:77. [PMID: 38291457 PMCID: PMC10826278 DOI: 10.1186/s12964-024-01482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/06/2024] [Indexed: 02/01/2024] Open
Abstract
AXIN1, has been initially identified as a prominent antagonist within the WNT/β-catenin signaling pathway, and subsequently unveiled its integral involvement across a diverse spectrum of signaling cascades. These encompass the WNT/β-catenin, Hippo, TGFβ, AMPK, mTOR, MAPK, and antioxidant signaling pathways. The versatile engagement of AXIN1 underscores its pivotal role in the modulation of developmental biological signaling, maintenance of metabolic homeostasis, and coordination of cellular stress responses. The multifaceted functionalities of AXIN1 render it as a compelling candidate for targeted intervention in the realms of degenerative pathologies, systemic metabolic disorders, cancer therapeutics, and anti-aging strategies. This review provides an intricate exploration of the mechanisms governing mammalian AXIN1 gene expression and protein turnover since its initial discovery, while also elucidating its significance in the regulation of signaling pathways, tissue development, and carcinogenesis. Furthermore, we have introduced the innovative concept of the AXIN1-Associated Phosphokinase Complex (AAPC), where the scaffold protein AXIN1 assumes a pivotal role in orchestrating site-specific phosphorylation modifications through interactions with various phosphokinases and their respective substrates.
Collapse
Affiliation(s)
- Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixuan Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haoming Ning
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
5
|
Ikeda T, Watanabe S, Mitani T. Genistein regulates adipogenesis by blocking the function of adenine nucleotide translocase-2 in the mitochondria. Biosci Biotechnol Biochem 2022; 86:260-272. [PMID: 34849563 DOI: 10.1093/bbb/zbab203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023]
Abstract
Genistein exerts antiadipogenic effects, but its target molecules remain unclear. Here, we delineated the molecular mechanism underlying the antiadipogenic effect of genistein. A pulldown assay using genistein-immobilized beads identified adenine nucleotide translocase-2 as a genistein-binding protein in adipocytes. Adenine nucleotide translocase-2 exchanges ADP/ATP through the mitochondrial inner membrane. Similar to the knockdown of adenine nucleotide translocase-2, genistein treatment decreased ADP uptake into the mitochondria and ATP synthesis. Genistein treatment and adenine nucleotide translocase-2 knockdown suppressed adipogenesis and increased phosphorylation of AMP-activated protein kinase. Adenine nucleotide translocase-2 knockdown reduced the transcriptional activity of CCAAT/enhancer-binding protein β, whereas AMP-activated protein kinase inhibition restored the suppression of adipogenesis by adenine nucleotide translocase-2 knockdown. These results indicate that genistein interacts directly with adenine nucleotide translocase-2 to suppress its function. The downregulation of adenine nucleotide translocase-2 reduces the transcriptional activity of CCAAT/enhancer-binding protein β via activation of AMP-activated protein kinase, which consequently represses adipogenesis.
Collapse
Affiliation(s)
- Takahiro Ikeda
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Shun Watanabe
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Takakazu Mitani
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
- Division of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Kamiina, Nagano, Japan
| |
Collapse
|
6
|
Song GR, Choi YJ, Park SJ, Shin S, Lee G, Choi HJ, Lee DY, Song GY, Oh S. Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway. J Microbiol Biotechnol 2021; 31:1559-1567. [PMID: 34584036 PMCID: PMC9706038 DOI: 10.4014/jmb.2109.09002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
The root bark of Morus alba L. has cytotoxic activity against several types of cancer cells. However, little is known about its chemopreventive mechanisms and bioactive metabolites. In this study, we showed that M. alba L. root bark extracts (MRBE) suppressed β-catenin response transcription (CRT), which is aberrantly activated in various cancers, by promoting the degradation of β-catenin. In addition, MRBE repressed the expression of the β-catenin/T-cell factor (TCF)-dependent genes, cmyc and cyclin D1, thus inhibiting the proliferation of RPMI-8226 multiple myeloma (MM) cells. MRBE induced apoptosis in MM cells, as evidenced by the increase in the population of annexin VFITC- positive cells and caspase-3/7 activity. We identified ursolic acid in MRBE through LC/mass spectrum (MS) and observed that it also decreased intracellular β-catenin, c-myc, and cyclin D1 levels. Furthermore, it suppressed the proliferation of RPMI-8226 cells by stimulating cell cycle arrest and apoptosis. These findings suggest that MRBE and its active ingredient, ursolic acid, exert antiproliferative activity by promoting the degradation of β-catenin and may have significant chemopreventive potential against MM.
Collapse
Affiliation(s)
- Geu Rim Song
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
- Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea
| | - Yoon Jung Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soo Jin Park
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Subeen Shin
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
- Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea
| | - Giseong Lee
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Hui Ji Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyu-Yong Song
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
- Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
7
|
Zhang Y, Xu J, Fu H, Wei Z, Yang D, Yan R. UBE3C promotes proliferation and inhibits apoptosis by activating the β-catenin signaling via degradation of AXIN1 in gastric cancer. Carcinogenesis 2021; 42:285-293. [PMID: 32930707 DOI: 10.1093/carcin/bgaa098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 09/12/2020] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) remains one of the most frequent cancers worldwide. Previous studies have shown that E3 ubiquitin ligase E3C (UBE3C) promotes the progression of multiple types of cancer. However, little is known about the expression and molecular mechanism of UBE3C in GC. In this study, UBE3C is upregulated in clinical GC samples and RNA-seq data from The Cancer Genome Atlas, and the UBE3C upregulation is correlated with poor clinical outcomes in patients with GC. In vitro, knockdown of UBE3C suppresses proliferation and enhances apoptosis in GC cells by inhibiting β-catenin signaling pathway. In contrast, in vitro overexpression of UBE3C promotes GC cell proliferation and inhibits apoptosis through the upregulation of β-catenin signaling by promoting ubiquitination of AXIN1. In vivo, knockdown of UBE3C inhibits tumor growth in a nude mouse model. Concurrently, the UBE3C knockdown resulted in an increase of AXIN1 and a reduction of β-catenin in the nucleus and cytoplasm in the xenograft tumor tissues. Our results demonstrate that UBE3C promotes GC progression through activating the β-catenin signaling via degradation of AXIN1. Our data suggest that UBE3C exerts oncogenic effects in GC and thus provides a promising prognostic biomarker and a potential therapeutic target for GC therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiapeng Xu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ziran Wei
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Dejun Yang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ronglin Yan
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Dutta P, Kodigepalli KM, LaHaye S, Thompson JW, Rains S, Nagel C, Thatcher K, Hinton RB, Lincoln J. KPT-330 Prevents Aortic Valve Calcification via a Novel C/EBPβ Signaling Pathway. Circ Res 2021; 128:1300-1316. [PMID: 33601919 PMCID: PMC8085092 DOI: 10.1161/circresaha.120.318503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Punashi Dutta
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Karthik M. Kodigepalli
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Stephanie LaHaye
- The Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH, USA
| | - J. Will Thompson
- Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Sarah Rains
- Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Duke Proteomics and Metabolomics Shared Resource, Durham, NC, USA
| | - Casey Nagel
- Ocean Ridge Biosciences, Deerfield Beach, Florida, USA
| | - Kaitlyn Thatcher
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Robert B. Hinton
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Joy Lincoln
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Exosome-Derived Noncoding RNAs as a Promising Treatment of Bone Regeneration. Stem Cells Int 2021; 2021:6696894. [PMID: 33542737 PMCID: PMC7843188 DOI: 10.1155/2021/6696894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 02/05/2023] Open
Abstract
The reconstruction of large bone defects remains a crucial challenge in orthopedic surgery. The current treatments including autologous and allogenic bone grafting and bioactive materials have their respective drawbacks. While mesenchymal stem cell (MSC) therapy may address these limitations, growing researches have demonstrated that the effectiveness of MSC therapy depends on paracrine factors, particularly exosomes. This aroused great focus on the exosome-based cell-free therapy in the treatment of bone defects. Exosomes can transfer various cargoes, and noncoding RNAs are the most widely studied cargo through which exosomes exert their ability of osteoinduction. Here, we review the research status of the exosome-derived noncoding RNAs in bone regeneration, the potential application of exosomes, and the existing challenges.
Collapse
|