1
|
Ouyang JPT, Shukla S, Bensalah M, Parker R. DM1 repeat-expanded RNAs confer RNA toxicity as individual nuclear-retained RNAs. Cell Rep 2025; 44:115582. [PMID: 40238630 DOI: 10.1016/j.celrep.2025.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Repeat expansions of short nucleotide sequences underlie over 40 neuromuscular diseases, including myotonic dystrophy type 1 (DM1). The DM1 CUG repeat RNA is thought to accumulate in RNA nuclear foci that sequester RNA-binding proteins, including muscleblind-like splicing regulator 1 (MBNL1). To understand the composition and formation of such nuclear foci, we employed quantitative imaging in a patient-derived myotube model. We find that most "foci" are comprised of single RNAs and that these single RNA species contribute to the sequestration of MBNL1 protein. Rare foci can contain upwards of 25 distinct RNA species, but these foci form from transcriptional bursting and dissociate with time. Last, we find that multimeric CUG repeat RNA foci are dependent upon MBNL proteins. Altogether, these observations argue that the persistence of nuclear-retained CUG RNAs, independent of higher-order RNA assemblies, titrates MBNL1 and contributes to disease progression.
Collapse
Affiliation(s)
- John Paul Tsu Ouyang
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA
| | - Siddharth Shukla
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Mona Bensalah
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
2
|
Kim JW, Bae JH, Go GY, Lee JR, Jeong Y, Kim JY, Kim TH, Kim YK, Han JW, Oh JE, Hahn MJ, Kang JS, Bae GU. Epsti1 Regulates the Inflammatory Stage of Early Muscle Regeneration through STAT1-VCP Interaction. Int J Biol Sci 2024; 20:3530-3543. [PMID: 38993551 PMCID: PMC11234217 DOI: 10.7150/ijbs.94675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
During muscle regeneration, interferon-gamma (IFN-γ) coordinates inflammatory responses critical for activation of quiescent muscle stem cells upon injury via the Janus kinase (JAK) - signal transducer and activator of transcription 1 (STAT1) pathway. Dysregulation of JAK-STAT1 signaling results in impaired muscle regeneration, leading to muscle dysfunction or muscle atrophy. Until now, the underlying molecular mechanism of how JAK-STAT1 signaling resolves during muscle regeneration remains largely elusive. Here, we demonstrate that epithelial-stromal interaction 1 (Epsti1), an interferon response gene, has a crucial role in regulating the IFN-γ-JAK-STAT1 signaling at early stage of muscle regeneration. Epsti1-deficient mice exhibit impaired muscle regeneration with elevated inflammation response. In addition, Epsti1-deficient myoblasts display aberrant interferon responses. Epsti1 interacts with valosin-containing protein (VCP) and mediates the proteasomal degradation of IFN-γ-activated STAT1, likely contributing to dampening STAT1-mediated inflammation. In line with the notion, mice lacking Epsti1 exhibit exacerbated muscle atrophy accompanied by increased inflammatory response in cancer cachexia model. Our study suggests a crucial function of Epsti1 in the resolution of IFN-γ-JAK-STAT1 signaling through interaction with VCP which provides insights into the unexplored mechanism of crosstalk between inflammatory response and muscle regeneration.
Collapse
Affiliation(s)
- Jee Won Kim
- Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, South Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, South Korea
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, South Korea
| | - Ju-Hyeon Bae
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Ga-Yeon Go
- Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, South Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, South Korea
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, South Korea
| | - Jae-Rin Lee
- Cell and Gene Therapy Products Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, South Korea
| | - Yideul Jeong
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon 16419, South Korea
| | - Jun-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, South Korea
| | - Tae Hyun Kim
- Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, South Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, South Korea
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, South Korea
| | - Yong Kee Kim
- Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, South Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, South Korea
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, South Korea
| | - Jeung-Whan Han
- Research Center for Epigenome Regulation, School of Pharmacy, Department of Biochemistry and Molecular Biology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ji-Eun Oh
- Department of Biomedical Laboratory Science, Far East University, 76-32 Daehakgil, Gamgok-myeon, Eumseong-gun, Chungbuk-do, 27601, Korea
| | - Myong-Joon Hahn
- Research Center for Epigenome Regulation, School of Pharmacy, Department of Biochemistry and Molecular Biology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon 16419, South Korea
| | - Gyu-Un Bae
- Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, South Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, South Korea
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, South Korea
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon 16419, South Korea
| |
Collapse
|
3
|
Nakamori M. Expanded‐repeat‐RNA‐mediated disease mechanisms in myotonic dystrophy. NEUROLOGY AND CLINICAL NEUROSCIENCE 2024; 12:16-23. [DOI: 10.1111/ncn3.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/05/2022] [Indexed: 01/04/2025]
Abstract
AbstractMyotonic dystrophy (DM) is the most common muscular dystrophy in adults, affecting skeletal muscle as well as cardiac and smooth muscle. Furthermore, involvement of the central nervous system, endocrine organs, and eyes is often seen, with debilitating consequences. The condition is an autosomal‐dominant inherited genetic disease caused by abnormal genomic expansion of tandem repeats. Myotonic dystrophy type 1 (DM1) results from expansion of a CTG repeat in the 3′‐untranslated region of the gene encoding dystrophia myotonica‐protein kinase (DMPK), whereas myotonic dystrophy type 2 (DM2) is caused by expansion of a CCTG repeat in the first intron of the gene encoding CCHC‐type zinc finger nucleic acid‐binding protein (CNBP). Both types of DM exhibit abnormal mRNA transcribed from the mutated gene containing expanded repeats, which exert toxic gain‐of‐function effects on various proteins involved in cellular processes such as alternative splicing, signaling pathways, and cellular senescence. The present review discusses the expanded‐repeat‐RNA‐mediated molecular pathomechanisms in DM.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
4
|
El Boujnouni N, van der Bent ML, Willemse M, ’t Hoen PA, Brock R, Wansink DG. Block or degrade? Balancing on- and off-target effects of antisense strategies against transcripts with expanded triplet repeats in DM1. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:622-636. [PMID: 37200862 PMCID: PMC10185704 DOI: 10.1016/j.omtn.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/13/2023] [Indexed: 05/20/2023]
Abstract
Antisense oligonucleotide (ASO) therapies for myotonic dystrophy type 1 (DM1) are based on elimination of transcripts containing an expanded repeat or inhibition of sequestration of RNA-binding proteins. This activity is achievable by both degradation of expanded transcripts and steric hindrance, although it is unknown which approach is superior. We compared blocking ASOs with RNase H-recruiting gapmers of equivalent chemistries. Two DMPK target sequences were selected: the triplet repeat and a unique sequence upstream thereof. We assessed ASO effects on transcript levels, ribonucleoprotein foci and disease-associated missplicing, and performed RNA sequencing to investigate on- and off-target effects. Both gapmers and the repeat blocker led to significant DMPK knockdown and a reduction in (CUG)exp foci. However, the repeat blocker was more effective in MBNL1 protein displacement and had superior efficiency in splicing correction at the tested dose of 100 nM. By comparison, on a transcriptome level, the blocking ASO had the fewest off-target effects. In particular, the off-target profile of the repeat gapmer asks for cautious consideration in further therapeutic development. Altogether, our study demonstrates the importance of evaluating both on-target and downstream effects of ASOs in a DM1 context, and provides guiding principles for safe and effective targeting of toxic transcripts.
Collapse
Affiliation(s)
- Najoua El Boujnouni
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - M. Leontien van der Bent
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Marieke Willemse
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Peter A.C. ’t Hoen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 293, Bahrain
- Corresponding author Roland Brock, Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| | - Derick G. Wansink
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Corresponding author Derick G. Wansink, Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Giannelli R, Canale P, Del Carratore R, Falleni A, Bernardeschi M, Forini F, Biagi E, Curzio O, Bongioanni P. Ultrastructural and Molecular Investigation on Peripheral Leukocytes in Alzheimer's Disease Patients. Int J Mol Sci 2023; 24:ijms24097909. [PMID: 37175616 PMCID: PMC10178539 DOI: 10.3390/ijms24097909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Thriving literature underlines white blood cell involvement in the inflammatory processes of Alzheimer's Disease (AD). Among leukocytes, lymphocytes have been considered sentinels of neuroinflammation for years, but recent findings highlighted the pivotal role of neutrophils. Since neutrophils that infiltrate the brain through the brain vascular vessels may affect the immune function of microglia in the brain, a close investigation of the interaction between these cells is important in understanding neuroinflammatory phenomena and the immunological aftermaths that follow. This study aimed to observe how peripheral leukocyte features change at different stages of AD to identify potential molecular markers when the first features of pathological neurodegeneration arise. For this purpose, the examined patients were divided into Mild Cognitive Impairment (MCI) and severely impaired patients (DAT) based on their Cognitive Dementia Rating (CDR). The evaluation of the neutrophil-to-lymphocytes ratio and the morphology and function of leukocytes showed a close relationship between the ultrastructural and the molecular features in AD progression and suggested putative markers for the early stages of the disease.
Collapse
Affiliation(s)
- Roberta Giannelli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Paola Canale
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Department of Experimental and Clinical Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Alessandra Falleni
- Department of Experimental and Clinical Medicine, University of Pisa, 56126 Pisa, Italy
| | - Margherita Bernardeschi
- Italian Institute of Technology, Center for Materials Interfaces, Smart Bio-Interfaces, 56025 Pontedera, Italy
| | - Francesca Forini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Elisa Biagi
- BMS Multispecialistic Biobank-Biobank Unit, AOUP-Pisa University Hospital, 56126 Pisa, Italy
| | - Olivia Curzio
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Paolo Bongioanni
- Severe Acquired Brain Injuries Dpt Section, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| |
Collapse
|
6
|
Costa A, Cruz AC, Martins F, Rebelo S. Protein Phosphorylation Alterations in Myotonic Dystrophy Type 1: A Systematic Review. Int J Mol Sci 2023; 24:ijms24043091. [PMID: 36834509 PMCID: PMC9965115 DOI: 10.3390/ijms24043091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Among the most common muscular dystrophies in adults is Myotonic Dystrophy type 1 (DM1), an autosomal dominant disorder characterized by myotonia, muscle wasting and weakness, and multisystemic dysfunctions. This disorder is caused by an abnormal expansion of the CTG triplet at the DMPK gene that, when transcribed to expanded mRNA, can lead to RNA toxic gain of function, alternative splicing impairments, and dysfunction of different signaling pathways, many regulated by protein phosphorylation. In order to deeply characterize the protein phosphorylation alterations in DM1, a systematic review was conducted through PubMed and Web of Science databases. From a total of 962 articles screened, 41 were included for qualitative analysis, where we retrieved information about total and phosphorylated levels of protein kinases, protein phosphatases, and phosphoproteins in DM1 human samples and animal and cell models. Twenty-nine kinases, 3 phosphatases, and 17 phosphoproteins were reported altered in DM1. Signaling pathways that regulate cell functions such as glucose metabolism, cell cycle, myogenesis, and apoptosis were impaired, as seen by significant alterations to pathways such as AKT/mTOR, MEK/ERK, PKC/CUGBP1, AMPK, and others in DM1 samples. This explains the complexity of DM1 and its different manifestations and symptoms, such as increased insulin resistance and cancer risk. Further studies can be done to complement and explore in detail specific pathways and how their regulation is altered in DM1, to find what key phosphorylation alterations are responsible for these manifestations, and ultimately to find therapeutic targets for future treatments.
Collapse
|
7
|
Franck S, Couvreu De Deckersberg E, Bubenik JL, Markouli C, Barbé L, Allemeersch J, Hilven P, Duqué G, Swanson MS, Gheldof A, Spits C, Sermon KD. Myotonic dystrophy type 1 embryonic stem cells show decreased myogenic potential, increased CpG methylation at the DMPK locus and RNA mis-splicing. Biol Open 2022; 11:273965. [PMID: 35019138 PMCID: PMC8764412 DOI: 10.1242/bio.058978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle tissue is severely affected in myotonic dystrophy type 1 (DM1) patients, characterised by muscle weakness, myotonia and muscle immaturity in the most severe congenital form of the disease. Previously, it was not known at what stage during myogenesis the DM1 phenotype appears. In this study we differentiated healthy and DM1 human embryonic stem cells to myoblasts and myotubes and compared their differentiation potential using a comprehensive multi-omics approach. We found myogenesis in DM1 cells to be abnormal with altered myotube generation compared to healthy cells. We did not find differentially expressed genes between DM1 and non-DM1 cell lines within the same developmental stage. However, during differentiation we observed an aberrant inflammatory response and increased CpG methylation upstream of the CTG repeat at the myoblast level and RNA mis-splicing at the myotube stage. We show that early myogenesis modelled in hESC reiterates the early developmental manifestation of DM1. Summary: Early developmental abnormalities in myotonic dystrophy type 1 are reiterated in vitro in myotubes differentiated from human embryonic stem cells that carry the mutation.
Collapse
Affiliation(s)
- Silvie Franck
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | | | - Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Christina Markouli
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, 94107 CA, United States
| | | | - Pierre Hilven
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Geoffrey Duqué
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Alexander Gheldof
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels 1090, Belgium
| | - Claudia Spits
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Karen D Sermon
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| |
Collapse
|
8
|
Saliu TP, Kumrungsee T, Miyata K, Tominaga H, Yazawa N, Hashimoto K, Kamesawa M, Yanaka N. Comparative study on molecular mechanism of diabetic myopathy in two different types of streptozotocin-induced diabetic models. Life Sci 2022; 288:120183. [PMID: 34848193 DOI: 10.1016/j.lfs.2021.120183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
AIMS Streptozotocin (STZ)-induced diabetic animal models have been widely used to study diabetic myopathy; however, non-specific cytotoxic effects of high-dose STZ have been discussed. The purpose of this study was to compare diabetic myopathy in a high-STZ model with another well-established STZ model with reduced cytotoxicity (high-fat diet (HFD) and low-dose STZ) and to identify mechanistic insights underlying diabetic myopathy in STZ models that can mimic perturbations observed in human patients with diabetic myopathy. MAIN METHODS Male C57BL6 mice were injected with a single high dose of STZ (180 mg/kg, High-STZ) or were given HFD plus low-dose STZ injection (STZ, 55 mg/kg/day, five consecutive days, HFD/STZ). We characterized diabetic myopathy by histological and immunochemical analyses and conducted gene expression analysis. KEY FINDINGS The high-STZ model showed a significant reduction in tibialis anterior myofiber size along with decreased satellite cell content and downregulation of inflammation response and collagen gene expression. Interestingly, blood corticosteroid levels were significantly increased in the high-STZ model, which was possibly related to lowered inflammation response-related gene expression. Further analyses using the HFD/STZ model showed downregulation of gene expression related to mitochondrial functions accompanied by a significant decrease in ATP levels in the muscles. SIGNIFICANCE The high-STZ model is suitable for studies regarding not only severe diabetic myopathy with excessive blood glucose but also negative impact of glucocorticoids on skeletal muscles. In contrast, the HFD/STZ model is characterized by higher immune responses and lower ATP production, which also reflects the pathologies observed in human diabetic patients.
Collapse
Affiliation(s)
- Tolulope Peter Saliu
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan.
| | - Kenshu Miyata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Hikaru Tominaga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Nao Yazawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Kotaro Hashimoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Mion Kamesawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
9
|
De Serres-Bérard T, Pierre M, Chahine M, Puymirat J. Deciphering the mechanisms underlying brain alterations and cognitive impairment in congenital myotonic dystrophy. Neurobiol Dis 2021; 160:105532. [PMID: 34655747 DOI: 10.1016/j.nbd.2021.105532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic and heterogeneous disorder caused by the expansion of CTG repeats in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene. There is a congenital form (CDM1) of the disease characterized by severe hypotonia, respiratory insufficiency as well as developmental delays and intellectual disabilities. CDM1 infants manifest important brain structure abnormalities present from birth while, in contrast, older patients with adult-onset DM1 often present neurodegenerative features and milder progressive cognitive deficits. Promising therapies targeting central molecular mechanisms contributing to the symptoms of adult-onset DM1 are currently in development, but their relevance for treating cognitive impairment in CDM1, which seems to be a partially distinct neurodevelopmental disorder, remain to be elucidated. Here, we provide an update on the clinical presentation of CDM1 and review recent in vitro and in vivo models that have provided meaningful insights on its consequences in development, with a particular focus on the brain. We discuss how enhanced toxic gain-of-function of the mutated DMPK transcripts with larger CUG repeats and the resulting dysregulation of RNA-binding proteins may affect the developing cortex in utero. Because the methylation of CpG islets flanking the trinucleotide repeats has emerged as a strong biomarker of CDM1, we highlight the need to investigate the tissue-specific impacts of these chromatin modifications in the brain. Finally, we outline promising potential therapeutic treatments for CDM1 and propose future in vitro and in vivo models with great potential to shed light on this disease.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Marion Pierre
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
10
|
Morton SU, Sefton CR, Zhang H, Dai M, Turner DL, Uhler MD, Agrawal PB. microRNA-mRNA Profile of Skeletal Muscle Differentiation and Relevance to Congenital Myotonic Dystrophy. Int J Mol Sci 2021; 22:ijms22052692. [PMID: 33799993 PMCID: PMC7962092 DOI: 10.3390/ijms22052692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
microRNAs (miRNAs) regulate messenger RNA (mRNA) abundance and translation during key developmental processes including muscle differentiation. Assessment of miRNA targets can provide insight into muscle biology and gene expression profiles altered by disease. mRNA and miRNA libraries were generated from C2C12 myoblasts during differentiation, and predicted miRNA targets were identified based on presence of miRNA binding sites and reciprocal expression. Seventeen miRNAs were differentially expressed at all time intervals (comparing days 0, 2, and 5) of differentiation. mRNA targets of differentially expressed miRNAs were enriched for functions related to calcium signaling and sarcomere formation. To evaluate this relationship in a disease state, we evaluated the miRNAs differentially expressed in human congenital myotonic dystrophy (CMD) myoblasts and compared with normal control. Seventy-four miRNAs were differentially expressed during healthy human myocyte maturation, of which only 12 were also up- or downregulated in CMD patient cells. The 62 miRNAs that were only differentially expressed in healthy cells were compared with differentiating C2C12 cells. Eighteen of the 62 were conserved in mouse and up- or down-regulated during mouse myoblast differentiation, and their C2C12 targets were enriched for functions related to muscle differentiation and contraction.
Collapse
Affiliation(s)
- Sarah U. Morton
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (S.U.M.); (P.B.A.)
| | | | - Huanqing Zhang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (M.D.); (D.L.T.); (M.D.U.)
| | - Manhong Dai
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (M.D.); (D.L.T.); (M.D.U.)
| | - David L. Turner
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (M.D.); (D.L.T.); (M.D.U.)
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael D. Uhler
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (M.D.); (D.L.T.); (M.D.U.)
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pankaj B. Agrawal
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Correspondence: (S.U.M.); (P.B.A.)
| |
Collapse
|
11
|
Azotla-Vilchis CN, Sanchez-Celis D, Agonizantes-Juárez LE, Suárez-Sánchez R, Hernández-Hernández JM, Peña J, Vázquez-Santillán K, Leyva-García N, Ortega A, Maldonado V, Rangel C, Magaña JJ, Cisneros B, Hernández-Hernández O. Transcriptome Analysis Reveals Altered Inflammatory Pathway in an Inducible Glial Cell Model of Myotonic Dystrophy Type 1. Biomolecules 2021; 11:biom11020159. [PMID: 33530452 PMCID: PMC7910866 DOI: 10.3390/biom11020159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most frequent inherited muscular dystrophy in adults, is caused by the CTG repeat expansion in the 3′UTR of the DMPK gene. Mutant DMPK RNA accumulates in nuclear foci altering diverse cellular functions including alternative splicing regulation. DM1 is a multisystemic condition, with debilitating central nervous system alterations. Although a defective neuroglia communication has been described as a contributor of the brain pathology in DM1, the specific cellular and molecular events potentially affected in glia cells have not been totally recognized. Thus, to study the effects of DM1 mutation on glial physiology, in this work, we have established an inducible DM1 model derived from the MIO-M1 cell line expressing 648 CUG repeats. This new model recreated the molecular hallmarks of DM1 elicited by a toxic RNA gain-of-function mechanism: accumulation of RNA foci colocalized with MBNL proteins and dysregulation of alternative splicing. By applying a microarray whole-transcriptome approach, we identified several gene changes associated with DM1 mutation in MIO-M1 cells, including the immune mediators CXCL10, CCL5, CXCL8, TNFAIP3, and TNFRSF9, as well as the microRNAs miR-222, miR-448, among others, as potential regulators. A gene ontology enrichment analyses revealed that inflammation and immune response emerged as major cellular deregulated processes in the MIO-M1 DM1 cells. Our findings indicate the involvement of an altered immune response in glia cells, opening new windows for the study of glia as potential contributor of the CNS symptoms in DM1.
Collapse
Affiliation(s)
- Cuauhtli N. Azotla-Vilchis
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.M.H.-H.); (B.C.)
| | - Daniel Sanchez-Celis
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.M.H.-H.); (B.C.)
| | - Luis E. Agonizantes-Juárez
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- Escuela Nacional de Ciencias Biologicas-Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Rocío Suárez-Sánchez
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
| | - J. Manuel Hernández-Hernández
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.M.H.-H.); (B.C.)
| | - Jorge Peña
- Computational and Integrative Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (J.P.); (C.R.)
- Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, USA
| | - Karla Vázquez-Santillán
- Epigenetics Laboratory, Instituto Nacional de Medicina Genomica, Mexico City 14610, Mexico; (K.V.-S.); (V.M.)
| | - Norberto Leyva-García
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
| | - Arturo Ortega
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Vilma Maldonado
- Epigenetics Laboratory, Instituto Nacional de Medicina Genomica, Mexico City 14610, Mexico; (K.V.-S.); (V.M.)
| | - Claudia Rangel
- Computational and Integrative Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (J.P.); (C.R.)
| | - Jonathan J. Magaña
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- School of Engineering and Sciences, Department of Bioengineering, Tecnológico de Monterrey-Campus, Mexico City 14380, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.M.H.-H.); (B.C.)
| | - Oscar Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- Correspondence: or ; Tel.: +52-55-5999-1000 (ext. 14710)
| |
Collapse
|
12
|
Abstract
Neuromuscular disorders are a heterogeneous group of conditions affecting the neuromuscular system. The aim of this article is to review the major epigenetic findings in motor neuron diseases and major hereditary muscular dystrophies. DNA methylation changes are observed in both hereditary and sporadic forms, and combining DNA methylation analysis with mutational screening holds the potential for better diagnostic and prognostic accuracy. Novel, less toxic and more selective epigenetic drugs are designed and tested in animal and cell culture models of neuromuscular disorders, and non-coding RNAs are being investigated as either disease biomarkers or targets of therapeutic approaches to restore gene expression levels. Overall, neuromuscular disorder epigenetic biomarkers have a strong potential for clinical applications in the near future.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
13
|
DNA Methylation in the Diagnosis of Monogenic Diseases. Genes (Basel) 2020; 11:genes11040355. [PMID: 32224912 PMCID: PMC7231024 DOI: 10.3390/genes11040355] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.
Collapse
|
14
|
Kong E, Kim HD, Kim J. Deleting key autophagy elongation proteins induces acquirement of tumor-associated phenotypes via ISG15. Cell Death Differ 2020; 27:2517-2530. [PMID: 32127658 DOI: 10.1038/s41418-020-0519-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a cellular catabolic process that maintains intracellular homeostasis using lysosomal degradation systems. We demonstrate that inhibiting autophagy by depleting essential autophagy elongation proteins, Atg5 or Atg7, induces ISG15 expression through STING-mediated cytosolic dsDNA response. Genome stability is impaired in ATG5- or ATG7-depleted cells, and thus, double-strand breakages of DNA increase and cytosolic dsDNA accumulates. Accumulated cytosolic dsDNA induces the STING pathway to activate type I IFN signals which induce STAT1 activity and downregulate ATF3. When depletion of ATG5 or ATG7 inhibits autophagy, ATF3 is downregulated and STAT1 is upregulated. Furthermore, inhibiting autophagy induces ISG15 expression through STAT1 activation, which promotes acquisition of tumor-associated phenotypes such as migration, invasion, and proliferation. In conclusion, it appears that via the STING-mediated cytosolic dsDNA response, the STAT1-ISG15 axis mediates the relationship between autophagy and the immune system in relation to tumor progression. Moreover, combined with autophagy control, regulating ISG15 expression could be a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- EunBin Kong
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hag Dong Kim
- HAEL Lab, TechnoComplex Building, Korea University, Seoul, 02841, Republic of Korea
| | - Joon Kim
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea. .,HAEL Lab, TechnoComplex Building, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
15
|
Lanni S, Pearson CE. Molecular genetics of congenital myotonic dystrophy. Neurobiol Dis 2019; 132:104533. [PMID: 31326502 DOI: 10.1016/j.nbd.2019.104533] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease showing strong genetic anticipation, and is caused by the expansion of a CTG repeat tract in the 3'-UTR of the DMPK gene. Congenital Myotonic Dystrophy (CDM1) represents the most severe form of the disease, with prenatal onset, symptoms distinct from adult onset DM1, and a high rate of perinatal mortality. CDM1 is usually associated with very large CTG expansions, but this correlation is not absolute and cannot explain the distinct clinical features and the strong bias for maternal transmission. This review focuses upon the molecular and epigenetic factors that modulate disease severity and might be responsible for CDM1. Changes in the epigenetic status of the DM1 locus and in gene expression have recently been observed. Increasing evidence supports a role of a CTCF binding motif as a cis-element, upstream of the DMPK CTG tract, whereby CpG methylation of this site regulates the interaction of the insulator protein CTCF as a modulating trans-factor responsible for the inheritance and expression of CDM1.
Collapse
Affiliation(s)
- Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto M5G 0A4, Ontario, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto M5G 0A4, Ontario, Canada; University of Toronto, Program of Molecular Genetics, Canada.
| |
Collapse
|