1
|
Huang X, Yan H, Xu Z, Yang B, Luo P, He Q. The inducible role of autophagy in cell death: emerging evidence and future perspectives. Cell Commun Signal 2025; 23:151. [PMID: 40140912 PMCID: PMC11948861 DOI: 10.1186/s12964-025-02135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Autophagy is a lysosome-dependent degradation pathway for recycling intracellular materials and removing damaged organelles, and it is usually considered a prosurvival process in response to stress stimuli. However, increasing evidence suggests that autophagy can also drive cell death in a context-dependent manner. The bulk degradation of cell contents and the accumulation of autophagosomes are recognized as the mechanisms of cell death induced by autophagy alone. However, autophagy can also drive other forms of regulated cell death (RCD) whose mechanisms are not related to excessive autophagic vacuolization. Notably, few reviews address studies on the transformation from autophagy to RCD, and the underlying molecular mechanisms are still vague. AIM OF REVIEW This review aims to summarize the existing studies on autophagy-mediated RCD, to elucidate the mechanism by which autophagy initiates RCD, and to comprehensively understand the role of autophagy in determining cell fate. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the prodeath effect of autophagy, which is distinct from the generally perceived cytoprotective role, and its mechanisms are mainly associated with the selective degradation of proteins or organelles essential for cell survival and the direct involvement of the autophagy machinery in cell death. Additionally, this review highlights the need for better manipulation of autophagy activation or inhibition in different pathological contexts, depending on clinical purpose.
Collapse
Affiliation(s)
- Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Fan G, Liu J, Liu M, Huang Y. Piceatannol-3'-O-β-D-glucopyranoside inhibits neuroexcitotoxicity and ferroptosis through NMDAR/NRF2/BACH1/ACSL4 pathway in acute ischemic stroke. Free Radic Biol Med 2025; 227:667-679. [PMID: 39675532 DOI: 10.1016/j.freeradbiomed.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Neuronal protection is a well-established method of acute ischemic stroke (AIS) treatment. The pharmacodynamic effect of Piceatannol-3'-O-β-D-glucopyranoside (Chinese name: Hartigan, QZZG) on AIS has been reported, but the molecular mechanism of this effect remains unknown. PURPOSE The purpose of this study is to elucidate the pharmacodynamic effects and mechanisms of QZZG in the treatment of AIS. METHODS A combined network pharmacology and metabolomics approach was used to predict the key targets and pathways of QZZG in the treatment of AIS and to elucidate the mechanism of QZZG through experimental validation. RESULTS In this study, QZZG improved histopathologic features and reduced infarct volume and neurologic deficit scores. Integrated network pharmacology and metabolomics revealed that QZZG may protect neurons by regulating glutamate and its receptors, and that glutamate is closely related to NMDAR1, NRF2, and Caspase-3. Pathway analysis results suggested that NMDAR-mediated Ca2+ inward flow is one of the critical pathways. In terms of neuroexcitotoxicity QZZG inhibited glutamate content, reduced Ca2+ inward flow, protected mitochondrial function, and reduced ROS, as well as being able to effectively inhibit the expression of NMDAR1, Caspase-3, Bax, and promote the expression of Bcl-2, NMDAR2A. In terms of ferroptosis QZZG promoted NRF2, HO-1, GPX4 and nuclear-NRF2, inhibited the expression of BACH1 and ACSL4, and suppressed Fe2+ accumulation and lipid peroxidation. Silencing of BACH1 resulted in elevated expression of NRF2 and decreased expression of ACSL4, which inhibited the sensitivity of neurons to ferroptosis. QZZG was able to further increase NRF2 expression under conditions of silencing BACH1. QZZG induced NRF2 and inhibited BACH1, ACSL4 was inhibited by ML385, and inhibition of NRF2 induced the expression of BACH1 and ACSL4, QZZG protects neurons in an NRF2-dependent manner. CONCLUSION In summary, QZZG inhibited neuroexcitotoxicity and ferroptosis by regulating the NMDAR/NRF2/BACH1/ACSL4 pathway. The study provided a relatively novel perspective on the mechanism of traditional Chinese medicine (TCM) treatment of the disease.
Collapse
Affiliation(s)
- Genhao Fan
- The Second Affiliated Hospital of Tianjin University of Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin 300250, China; Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jia Liu
- The Second Affiliated Hospital of Tianjin University of Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin 300250, China
| | - Menglin Liu
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuhong Huang
- The Second Affiliated Hospital of Tianjin University of Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin 300250, China.
| |
Collapse
|
3
|
Kagi T, Tan M, Suzuki W, Otani K, Suzuki S, Hirata Y, Noguchi T, Matsuzawa A. Benzalkonium chloride initiates proinflammatory responses via NLRP3 inflammasome activation. J Toxicol Sci 2025; 50:11-21. [PMID: 39779228 DOI: 10.2131/jts.50.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A representative surfactant, benzalkonium chloride (BAC) is used as a disinfectant, but sometimes causes serious side effects, including lung disorders such as interstitial pneumonia. However, its pathogenic mechanisms remain unexplained. In this study, we identified a novel mechanism by which BAC initiates inflammatory responses that may be responsible for its side effects. We firstly investigated whether BAC initiates inflammation, and found that BAC promotes the secretion of the pro-inflammatory cytokine interleukin-1β (IL-1β) but not tumor necrosis factor-α (TNF-α) in macrophages. Interestingly, the IL-1β secretion triggered by the surfactants was completely blocked by the K-ATP channel blocker glibenclamide or the calcium chelating agent 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM. Moreover, genetic experiments revealed that BAC-dependent IL-1β secretion is mediated by the NLRP3 inflammasome. These results suggest that derangement of ion fluxes associated with the interfacial effects of BAC triggers NLRP3 inflammasome activation and subsequent inflammation. Thus, the NLRP3-dependent mechanisms triggered by BAC may explain the pathogenesis of surfactant-caused adverse effects.
Collapse
Affiliation(s)
- Tomohiro Kagi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Maoko Tan
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Wakana Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Kohei Otani
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Sara Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
4
|
Sies H, Mailloux RJ, Jakob U. Fundamentals of redox regulation in biology. Nat Rev Mol Cell Biol 2024; 25:701-719. [PMID: 38689066 PMCID: PMC11921270 DOI: 10.1038/s41580-024-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Oxidation-reduction (redox) reactions are central to the existence of life. Reactive species of oxygen, nitrogen and sulfur mediate redox control of a wide range of essential cellular processes. Yet, excessive levels of oxidants are associated with ageing and many diseases, including cardiological and neurodegenerative diseases, and cancer. Hence, maintaining the fine-tuned steady-state balance of reactive species production and removal is essential. Here, we discuss new insights into the dynamic maintenance of redox homeostasis (that is, redox homeodynamics) and the principles underlying biological redox organization, termed the 'redox code'. We survey how redox changes result in stress responses by hormesis mechanisms, and how the lifelong cumulative exposure to environmental agents, termed the 'exposome', is communicated to cells through redox signals. Better understanding of the molecular and cellular basis of redox biology will guide novel redox medicine approaches aimed at preventing and treating diseases associated with disturbed redox regulation.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Yokosawa T, Miyagawa S, Suzuki W, Nada Y, Hirata Y, Noguchi T, Matsuzawa A. The E3 Ubiquitin Protein Ligase LINCR Amplifies the TLR-Mediated Signals through Direct Degradation of MKP1. Cells 2024; 13:687. [PMID: 38667302 PMCID: PMC11048823 DOI: 10.3390/cells13080687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Toll-like receptors (TLRs) induce innate immune responses through activation of intracellular signaling pathways, such as MAP kinase and NF-κB signaling pathways, and play an important role in host defense against bacterial or viral infections. Meanwhile, excessive activation of TLR signaling leads to a variety of inflammatory disorders, including autoimmune diseases. TLR signaling is therefore strictly controlled to balance optimal immune response and inflammation. However, its balancing mechanisms are not fully understood. In this study, we identified the E3 ubiquitin ligase LINCR/ NEURL3 as a critical regulator of TLR signaling. In LINCR-deficient cells, the sustained activation of JNK and p38 MAPKs induced by the agonists for TLR3, TLR4, and TLR5, was clearly attenuated. Consistent with these observations, TLR-induced production of a series of inflammatory cytokines was significantly attenuated, suggesting that LINCR positively regulates innate immune responses by promoting the activation of JNK and p38. Interestingly, our further mechanistic study identified MAPK phosphatase-1 (MKP1), a negative regulator of MAP kinases, as a ubiquitination target of LINCR. Thus, our results demonstrate that TLRs fine-tune the activation of MAP kinase pathways by balancing LINCR (the positive regulator) and MKP1 (the negative regulator), which may contribute to the induction of optimal immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
6
|
Hamano S, Noguchi T, Asai Y, Ito R, Komatsu R, Sato T, Inoue A, Maruyama T, Kudo TA, Hirata Y, Shindo S, Uchida Y, Hwang GW, Matsuzawa A. Aggregability of the SQSTM1/p62-based aggresome-like induced structures determines the sensitivity to parthanatos. Cell Death Discov 2024; 10:74. [PMID: 38346947 PMCID: PMC10861449 DOI: 10.1038/s41420-024-01838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) triggers a noncanonical form of programmed cell death (PCD) called parthanatos, yet the mechanisms of its induction are not fully understood. We have recently demonstrated that the aggresome-like induced structures (ALIS) composed of the autophagy receptor SQSTM1/p62 and K48-linked polyubiquitinated proteins (p62-based ALIS) mediate parthanatos. In this study, we identified the D1 dopamine receptor agonist YM435 as a unique parthanatos inhibitor that acts as the disaggregating agent for the p62-based ALIS. We found that YM435 structurally reduces aggregability of the ALIS, and then increases its hydrophilicity and liquidity, which prevents parthanatos. Moreover, dopamine and L-DOPA, a dopamine precursor, also prevented parthanatos by reducing the aggregability of the ALIS. Together, these observations suggest that aggregability of the p62-based ALIS determines the sensitivity to parthanatos, and the pharmacological properties of YM435 that reduces the aggregability may be suitable for therapeutic drugs for parthanatos-related diseases such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuhei Hamano
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Yukino Asai
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryo Ito
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryuto Komatsu
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tetsu Sato
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Aya Inoue
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tomoe Maruyama
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tada-Aki Kudo
- Division of Oral Physiology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sawako Shindo
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Environmental Toxicology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yasuo Uchida
- Department of Molecular Systems Pharmaceutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gi-Wook Hwang
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
7
|
Takanezawa Y, Ishikawa K, Nakayama S, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Conversion of methylmercury into inorganic mercury via organomercurial lyase (MerB) activates autophagy and aggresome formation. Sci Rep 2023; 13:19958. [PMID: 37968352 PMCID: PMC10651920 DOI: 10.1038/s41598-023-47110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
Methylmercury (MeHg) is converted to inorganic mercury (iHg) in several organs; however, its impact on tissues and cells remains poorly understood. Previously, we established a bacterial organomercury lyase (MerB)-expressing mammalian cell line to overcome the low cell permeability of iHg and investigate its effects. Here, we elucidated the cytotoxic effects of the resultant iHg on autophagy and deciphered their relationship. Treatment of MerB-expressing cells with MeHg significantly increases the mRNA and protein levels of LC3B and p62, which are involved in autophagosome formation and substrate recognition, respectively. Autophagic flux assays using the autophagy inhibitor chloroquine (CQ) revealed that MeHg treatment activates autophagy in MerB-expressing cells but not in wild-type cells. Additionally, MeHg treatment induces the accumulation of ubiquitinated proteins and p62, specifically in MerB-expressing cells. Confocal microscopy revealed that large ubiquitinated protein aggregates (aggresomes) associated with p62 are formed transiently in the perinuclear region of MerB-expressing cells upon MeHg exposure. Meanwhile, inhibition of autophagic flux decreases the MeHg-induced cell viability of MerB-expressing cells. Overall, our results imply that cells regulate aggresome formation and autophagy activation by activating LC3B and p62 to prevent cytotoxicity caused by iHg. These findings provide insights into the role of autophagy against iHg-mediated toxicity.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kouhei Ishikawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shunsuke Nakayama
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
8
|
Noguchi T, Sekiguchi Y, Shimada T, Suzuki W, Yokosawa T, Itoh T, Yamada M, Suzuki M, Kurokawa R, Hirata Y, Matsuzawa A. LLPS of SQSTM1/p62 and NBR1 as outcomes of lysosomal stress response limits cancer cell metastasis. Proc Natl Acad Sci U S A 2023; 120:e2311282120. [PMID: 37847732 PMCID: PMC10614216 DOI: 10.1073/pnas.2311282120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023] Open
Abstract
Liquid droplet has emerged as a flexible intracellular compartment that modulates various cellular processes. Here, we uncover an antimetastatic mechanism governed by the liquid droplets formed through liquid-liquid phase separation (LLPS) of SQSTM1/p62 and neighbor of BRCA1 gene 1 (NBR1). Some of the tyrosine kinase inhibitors (TKIs) initiated lysosomal stress response that promotes the LLPS of p62 and NBR1, resulting in the spreading of p62/NBR1 liquid droplets. Interestingly, in the p62/NBR1 liquid droplet, degradation of RAS-related C3 botulinum toxin substrate 1 was accelerated by cellular inhibitor of apoptosis protein 1, which limits cancer cell motility. Moreover, the antimetastatic activity of the TKIs was completely overridden in p62/NBR1 double knockout cells both in vitro and in vivo. Thus, our results demonstrate a function of the p62/NBR1 liquid droplet as a critical determinant of cancer cell behavior, which may provide insight into both the clinical and biological significance of LLPS.
Collapse
Affiliation(s)
- Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Yuto Sekiguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Tatsuya Shimada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Wakana Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Tamaki Itoh
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Midori Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Reon Kurokawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| |
Collapse
|
9
|
Yamada Y, Noguchi T, Suzuki M, Yamada M, Hirata Y, Matsuzawa A. Reactive sulfur species disaggregate the SQSTM1/p62-based aggresome-like induced structures via the HSP70 induction and prevent parthanatos. J Biol Chem 2023; 299:104710. [PMID: 37060999 DOI: 10.1016/j.jbc.2023.104710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/17/2023] Open
Abstract
Reactive sulfur species (RSS) have emerged as key regulators of protein quality control. However, the mechanisms by which RSS contribute to cellular processes are not fully understood. In this study, we identified a novel function of RSS in preventing parthanatos, a non-apoptotic form of cell death that is induced by poly (ADP-ribose) polymerase-1 (PARP-1) and mediated by the aggresome-like induced structures (ALIS) composed of SQSTM1/p62. We found that sodium tetrasulfide (Na2S4), a donor of RSS, strongly suppressed oxidative stress-dependent ALIS formation and subsequent parthanatos. On the other hand, the inhibitors of the RSS-producing enzymes, such as 3-mercaptopyruvate sulfurtransferase (3-MST) and cystathionine γ-lyase (CSE), clearly enhanced ALIS formation and parthanatos. Interestingly, we found that Na2S4 activated heat shock factor 1 (HSF1) by promoting its dissociation from heat shock protein 90 (HSP90), leading to accelerated transcription of HSP70. Considering that the genetic deletion of HSP70 allowed the enhanced ALIS formation, these findings suggest that RSS prevent parthanatos by specifically suppressing ALIS formation through induction of HSP70. Taken together, our results demonstrate a novel mechanism by which RSS prevent cell death, as well as a novel physiological role of RSS in contributing to protein quality control through HSP70 induction, which may lead to better understanding of the bioactivity of RSS.
Collapse
Affiliation(s)
- Yutaro Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Midori Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Sendai, Japan.
| |
Collapse
|
10
|
Fan G, Liu M, Liu J, Huang Y. The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate accumulation. Front Mol Neurosci 2023; 16:1113081. [PMID: 37033381 PMCID: PMC10076579 DOI: 10.3389/fnmol.2023.1113081] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Glutamate plays an important role in excitotoxicity and ferroptosis. Excitotoxicity occurs through over-stimulation of glutamate receptors, specifically NMDAR, while in the non-receptor-mediated pathway, high glutamate concentrations reduce cystine uptake by inhibiting the System Xc-, leading to intracellular glutathione depletion and resulting in ROS accumulation, which contributes to increased lipid peroxidation, mitochondrial damage, and ultimately ferroptosis. Oxidative stress appears to crosstalk between excitotoxicity and ferroptosis, and it is essential to maintain glutamate homeostasis and inhibit oxidative stress responses in vivo. As researchers work to develop natural compounds to further investigate the complex mechanisms and regulatory functions of ferroptosis and excitotoxicity, new avenues will be available for the effective treatment of ischaemic stroke. Therefore, this paper provides a review of the molecular mechanisms and treatment of glutamate-mediated excitotoxicity and ferroptosis.
Collapse
Affiliation(s)
- Genhao Fan
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Huang,
| |
Collapse
|
11
|
The Distinct Roles of LKB1 and AMPK in p53-Dependent Apoptosis Induced by Cisplatin. Int J Mol Sci 2022; 23:ijms231710064. [PMID: 36077459 PMCID: PMC9456506 DOI: 10.3390/ijms231710064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Liver kinase B1 (LKB1) is a serine/threonine protein kinase that acts as a key tumor suppressor protein by activating its downstream kinases, such as AMP-activated protein kinase (AMPK). However, the regulatory actions of LKB1 and AMPK on DNA damage response (DDR) remain to be explored. In this study, we investigated the function of LKB1 in DDR induced by cisplatin, a representative DNA-damaging agent, and found that LKB1 stabilizes and activates p53 through the c-Jun N-terminal kinase (JNK) pathway, which promotes cisplatin-induced apoptosis in human fibrosarcoma cell line HT1080. On the other hand, we found that AMPKα1 and α2 double knockout (DKO) cells showed enhanced stabilization of p53 and increased susceptibility to apoptosis induced by cisplatin, suggesting that AMPK negatively regulates cisplatin-induced apoptosis. Moreover, the additional stabilization of p53 and subsequent apoptosis in AMPK DKO cells were clearly canceled by the treatment with the antioxidants, raising the possibility that AMPK suppresses the p53 activation mediated by oxidative stress. Thus, our findings unexpectedly demonstrate the reciprocal regulation of p53 by LKB1 and AMPK in DDR, which provides insights into the molecular mechanisms of DDR.
Collapse
|
12
|
Kong Q, Yan X, Cheng M, Jiang X, Xu L, Shen L, Yu H, Sun L. p62 Promotes the Mitochondrial Localization of p53 through Its UBA Domain and Participates in Regulating the Sensitivity of Ovarian Cancer Cells to Cisplatin. Int J Mol Sci 2022; 23:ijms23063290. [PMID: 35328718 PMCID: PMC8949157 DOI: 10.3390/ijms23063290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Chemotherapeutic drug-induced p53-dependent crosstalk among tumor cells affects the sensitivity of tumor cells to chemotherapeutic drugs, contributing to chemoresistance. Therefore, pharmacological targeting of p53 may contribute to overcoming drug resistance. The localization of p53 is closely related to its function. Thus, we assessed the effect of p62 on the coordination of p53 mitochondrial localization under chemotherapeutic drug treatment in ovarian cancer cells. We found that the combined use of the proteasome inhibitor epoxomicin and cisplatin led to the accumulation of p53 and sequestosome1(p62) in the mitochondria, downregulated mitochondrial DNA (mtDNA) transcription, inhibited mitochondrial functions, and ultimately promoted apoptosis by enhancing cisplatin sensitivity in ovarian cancer cells. Moreover, the ubiquitin-associated (UBA) domain of p62 was involved in regulating the mitochondrial localization of p53. Our findings suggest that the interaction between p62 and p53 may be a mechanism that determines the fate of tumor cells. In conclusion, p62 coordinated the mitochondrial localization of p53 through its UBA domain, inhibited mtDNA transcription, downregulated mitochondrial function, and promoted ovarian cancer cell death. Our study demonstrates the important role of p53 localization in tumor cell survival and apoptosis, and provides new insights into understanding the anti-tumor mechanism of targeting the ubiquitin–proteasome system in tumor cells.
Collapse
Affiliation(s)
- Qinghuan Kong
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Xiaoyu Yan
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Meiyu Cheng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Long Xu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Luyan Shen
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Huimei Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
- Correspondence: (H.Y.); (L.S.); Tel.: +86-0-431-8561-9485 or +86-0-431-8561-9110 (H.Y. & L.S.)
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
- Correspondence: (H.Y.); (L.S.); Tel.: +86-0-431-8561-9485 or +86-0-431-8561-9110 (H.Y. & L.S.)
| |
Collapse
|
13
|
The polypeptide antibiotic polymyxin B acts as a pro-inflammatory irritant by preferentially targeting macrophages. J Antibiot (Tokyo) 2022; 75:29-39. [PMID: 34824374 DOI: 10.1038/s41429-021-00490-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022]
Abstract
Polymyxin B (PMB) is an essential antibiotic active against multidrug-resistant bacteria, such as multidrug-resistant Pseudomonas aeruginosa (MDRP). However, the clinical use of PMB is limited, because PMB causes serious side effects, such as nephrotoxicity and neurotoxicity, probably due to its cytotoxic activity. However, cytotoxic mechanisms of PMB are poorly understood. In this study, we found that macrophages are particularly sensitive to PMB, when compared with other types of cells, including fibroblasts and proximal tubule (PT) cells. Of note, PMB-induced necrosis of macrophages allowed passive release of high mobility group box 1 (HMGB1). Moreover, upon exposure of PMB to macrophages, the innate immune system mediated by the NLR family pyrin domain containing 3 (NLRP3) inflammasome that promotes the release of pro-inflammatory cytokines such as interleukin-1β (IL-1β) was stimulated. Interestingly, PMB-induced IL-1β release occurred in the absence of the pore-forming protein gasdermin D (GSDMD), which supports the idea that PMB causes plasma membrane rupture accompanying necrosis. Emerging evidence has suggested that both HMGB1 and IL-1β released from macrophages contribute to excessive inflammation that promote pathogenesis of various diseases, including nephrotoxicity and neurotoxicity. Therefore, these biochemical properties of PMB in macrophages may be associated with the induction of the adverse organ toxicity, which provides novel insights into the mechanisms of PMB-related side effects.
Collapse
|
14
|
GSK-3 mediates nuclear translocation of p62/SQSTM1 in MPTP-induced mouse model of Parkinson's disease. Neurosci Lett 2021; 763:136177. [PMID: 34400288 DOI: 10.1016/j.neulet.2021.136177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
p62/SQSTM1 is a multifunctional, cytoplasmic protein with fundamental roles in autophagy and antioxidant responses. Here we showed that p62 translocated from the cytoplasm to the nucleus in nigral dopaminergic neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid (MPTP)-induced mouse model of Parkinson's disease (PD). We found that p62 was physically associated with glycogen synthase kinase (GSK)-3β, a serine/threonine protein kinase implicated in dopaminergic neurodegeneration in PD, and that MPTP treatment promoted dissociation of the complex in mice. Conditional knockout of GSK-3 prevented nuclear translocation of p62, suggesting that this translocation was detrimental to dopaminergic neurons. p62 knockout mice were used to investigate the role of p62 in MPTP-induced neuronal death. Knockout of p62 aggravated neuronal injury induced by MPTP intoxication, suggesting that p62 plays an important role in dopaminergic cell survival in stress conditions. Together, our data demonstrate that GSK-3 mediates nuclear translocation of p62 during MPTP-induced parkinsonian neurodegeneration. These findings shed new light on the role of the cytoplasmic-nuclear shuttling of p62 and the mechanism underlying GSK-3-depedent neuronal death in PD pathogenesis.
Collapse
|
15
|
Hirata Y. trans-Fatty Acids as an Enhancer of Inflammation and Cell Death: Molecular Basis for Their Pathological Actions. Biol Pharm Bull 2021; 44:1349-1356. [PMID: 34602541 DOI: 10.1248/bpb.b21-00449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
trans-Fatty acids (TFAs) are food-derived fatty acids that possess one or more trans double bonds between carbon atoms. Compelling epidemiological and clinical evidence has demonstrated the association of TFA consumption with various diseases, such as cardiovascular diseases, and neurodegenerative diseases. However, the underlying etiology is poorly understood since the mechanisms of action of TFAs remain to be clarified. Previous studies have shown that single treatment with TFAs induce inflammation and cell death, but to a much lesser extent than saturated fatty acids (SFAs) that are well established as a risk factor for diseases linked with inflammation and cell death, which cannot explain the particularly higher association of TFAs with atherosclerosis than SFAs. In our series of studies, we have established the role of TFAs as an enhancer of inflammation and cell death. We found that pretreatment with TFAs strongly promoted apoptosis induced by either extracellular ATP, one of the damage-associated molecular patterns (DAMPs) leaked from damaged cells, or DNA damaging-agents, including doxorubicin and cisplatin, thorough enhancing activation of the stress-responsive mitogen-activated protein (MAP) kinase p38/c-jun N-terminal kinase (JNK) pathways; pretreatment with SFAs or cis isomers of TFAs had only minor or no effect, suggesting the uniqueness of the pro-apoptotic role of TFAs among fatty acids. Our findings will provide an insight into understanding of the pathogenesis mechanisms, and open up a new avenue for developing prevention strategies and therapies for TFA-related diseases.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
16
|
Shimada T, Kudoh Y, Noguchi T, Kagi T, Suzuki M, Tsuchida M, Komatsu H, Takahashi M, Hirata Y, Matsuzawa A. The E3 Ubiquitin-Protein Ligase RNF4 Promotes TNF-α-Induced Cell Death Triggered by RIPK1. Int J Mol Sci 2021; 22:5796. [PMID: 34071450 PMCID: PMC8199362 DOI: 10.3390/ijms22115796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) is a key component of the tumor necrosis factor (TNF) receptor signaling complex that regulates both pro- and anti-apoptotic signaling. The reciprocal functions of RIPK1 in TNF signaling are determined by the state of the posttranslational modifications (PTMs) of RIPK1. However, the underlying mechanisms associated with the PTMs of RIPK1 are unclear. In this study, we found that RING finger protein 4 (RNF4), a RING finger E3 ubiquitin ligase, is required for the RIPK1 autophosphorylation and subsequent cell death. It has been reported that RNF4 negatively regulates TNF-α-induced activation of the nuclear factor-κB (NF-κB) through downregulation of transforming growth factor β-activated kinase 1 (TAK1) activity, indicating the possibility that RNF4-mediated TAK1 suppression results in enhanced sensitivity to cell death. However, interestingly, RNF4 was needed to induce RIPK1-mediated cell death even in the absence of TAK1, suggesting that RNF4 can promote RIPK1-mediated cell death without suppressing the TAK1 activity. Thus, these observations reveal the existence of a novel mechanism whereby RNF4 promotes the autophosphorylation of RIPK1, which provides a novel insight into the molecular basis for the PTMs of RIPK1.
Collapse
Affiliation(s)
| | | | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (T.S.); (Y.K.); (T.K.); (M.S.); (M.T.); (H.K.); (M.T.); (Y.H.)
| | | | | | | | | | | | | | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (T.S.); (Y.K.); (T.K.); (M.S.); (M.T.); (H.K.); (M.T.); (Y.H.)
| |
Collapse
|
17
|
Hirata Y, Takahashi M, Yamada Y, Matsui R, Inoue A, Ashida R, Noguchi T, Matsuzawa A. trans-Fatty acids promote p53-dependent apoptosis triggered by cisplatin-induced DNA interstrand crosslinks via the Nox-RIP1-ASK1-MAPK pathway. Sci Rep 2021; 11:10350. [PMID: 33990641 PMCID: PMC8121903 DOI: 10.1038/s41598-021-89506-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/27/2021] [Indexed: 12/31/2022] Open
Abstract
trans-Fatty acids (TFAs) are food-derived fatty acids associated with various diseases including cardiovascular diseases. However, the underlying etiology is poorly understood. Here, we show a pro-apoptotic mechanism of TFAs such as elaidic acid (EA), in response to DNA interstrand crosslinks (ICLs) induced by cisplatin (CDDP). We previously reported that TFAs promote apoptosis induced by doxorubicin (Dox), a double strand break (DSB)-inducing agent, via a non-canonical apoptotic pathway independent of tumor suppressor p53 and apoptosis signal-regulating kinase (ASK1), a reactive oxygen species (ROS)-responsive kinase. However, here we found that in the case of CDDP-induced apoptosis, EA-mediated pro-apoptotic action was reversed by knockout of either p53 or ASK1, despite no increase in p53 apoptotic activity. Upon CDDP treatment, EA predominantly enhanced ROS generation, ASK1-p38/c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathway activation, and ultimately cell death, all of which were suppressed either by co-treatment of the NADPH oxidase (Nox) inhibitor Apocynin, or by knocking out its regulatory protein, receptor-interacting protein 1 (RIP1). These results demonstrate that in response to CDDP ICLs, TFAs promote p53-dependent apoptosis through the enhancement of the Nox-RIP1-ASK1-MAPK pathway activation, providing insight into the diverse pathogenetic mechanisms of TFAs according to the types of DNA damage.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Miki Takahashi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Yuto Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Ryosuke Matsui
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Aya Inoue
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Ryo Ashida
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
18
|
Croce KR, Yamamoto A. Dissolving the Complex Role Aggregation Plays in Neurodegenerative Disease. Mov Disord 2021; 36:1061-1069. [PMID: 33755257 DOI: 10.1002/mds.28522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/10/2022] Open
Abstract
Prominent neuropathological hallmarks of many adult-onset neurodegenerative diseases include the deposition and accumulation of misfolded proteins or conformers; however, their role in pathogenesis has remained unclear. This is in part due to the deceptive simplicity of the question and our limited understanding of how protein homeostasis is maintained in the compartmentalized cells of the central nervous system, especially in the context of the adult brain. Building on studies from simple cell-based systems and invertebrate animals, we recently identified a protein central to the specific and selective turnover of aggregated proteins in the adult brain, the autophagy-linked FYVE protein (Alfy)/Wdfy3. Depletion of Alfy levels in a mouse model of Huntington's disease showed that it accelerated the accumulation of the aggregated mutant huntingtin protein, as well as the onset of behavioral deficits. Although the motor dysfunction was accelerated in the model, this was in the absence of increasing overt cell loss, implicating protein aggregates as a modifier of circuit dysfunction rather than driving degeneration per se. We discuss these findings in the context of what is known about protein accumulation and how we can use proteins such as Alfy to determine if protein accumulation is a shared pathogenic event across different adult-onset diseases. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Katherine R Croce
- Doctoral Program in Pathobiology, Columbia University, New York, New York, USA
| | - Ai Yamamoto
- Departments of Neurology, Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
19
|
Gefitinib initiates sterile inflammation by promoting IL-1β and HMGB1 release via two distinct mechanisms. Cell Death Dis 2021; 12:49. [PMID: 33414419 PMCID: PMC7791030 DOI: 10.1038/s41419-020-03335-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
Anticancer drug gefitinib causes inflammation-based side effects, such as interstitial pneumonitis. However, its mechanisms remain unknown. Here, we provide evidence that gefitinib elicits pro-inflammatory responses by promoting mature-interleukin-1β (IL-1β) and high-mobility group box 1 (HMGB1) release. Mitochondrial reactive oxygen species (mtROS) driven by gefitinib stimulated the formation of the NLRP3 (NACHT, LRR and PYD-containing protein 3) inflammasome, leading to mature-IL-1β release. Notably, gefitinib also stimulated HMGB1 release, which is, however, not mediated by the NLRP3 inflammasome. On the other hand, gefitinib-driven mtROS promoted the accumulation of γH2AX, a hallmark of DNA damage, leading to the activation of poly (ADP-ribose) polymerase-1 (PARP-1) and subsequent active release of HMGB1. Together our results reveal the potential ability of gefitinib to initiate sterile inflammation via two distinct mechanisms, and identified IL-1β and HMGB1 as key determinants of gefitinib-induced inflammation that may provide insights into gefitinib-induced interstitial pneumonitis.
Collapse
|
20
|
Berkamp S, Mostafavi S, Sachse C. Structure and function of p62/SQSTM1 in the emerging framework of phase separation. FEBS J 2020; 288:6927-6941. [PMID: 33332721 DOI: 10.1111/febs.15672] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022]
Abstract
p62/SQSTM1 is a multiprotein interaction hub forming cellular punctate structures known as p62 bodies. p62 is centrally involved in the degradation of ubiquitinated cargo through autophagy, as well as in a wide range of signaling activities as part of the cellular response to nutrient sensing, oxidative stress, infection, immunity, and inflammation. Structural work has shown that p62 forms flexible filamentous assemblies composed of an N-terminal PB1-domain scaffold and a C-terminal binding platform, including folded recognition domains and structurally disordered binding motifs. In the cell, these filaments are part of cellular p62 bodies that display properties of liquid-liquid-phase separation. Here, we review the accumulated structural and functional work of p62 and integrate them with the emerging framework of filamentous biomolecular condensates.
Collapse
Affiliation(s)
- Sabrina Berkamp
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Germany
| | - Siavash Mostafavi
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Germany.,Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
21
|
Suzuki M, Asai Y, Kagi T, Noguchi T, Yamada M, Hirata Y, Matsuzawa A. TAK1 Mediates ROS Generation Triggered by the Specific Cephalosporins through Noncanonical Mechanisms. Int J Mol Sci 2020; 21:ijms21249497. [PMID: 33327477 PMCID: PMC7764951 DOI: 10.3390/ijms21249497] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
It is known that a wide variety of antibacterial agents stimulate generation of reactive oxygen species (ROS) in mammalian cells. However, its mechanisms are largely unknown. In this study, we unexpectedly found that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is involved in the generation of mitochondrial ROS (mtROS) initiated by cefotaxime (CTX), one of specific antibacterial cephalosporins that can trigger oxidative stress-induced cell death. TAK1-deficient macrophages were found to be sensitive to oxidative stress-induced cell death stimulated by H2O2. Curiously, however, TAK1-deficient macrophages exhibited strong resistance to oxidative stress-induced cell death stimulated by CTX. Microscopic analysis revealed that CTX-induced ROS generation was overridden by knockout or inhibition of TAK1, suggesting that the kinase activity of TAK1 is required for CTX-induced ROS generation. Interestingly, pharmacological blockade of the TAK1 downstream pathways, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, did not affect the CTX-induced ROS generation. In addition, we observed that CTX promotes translocation of TAK1 to mitochondria. Together, these observations suggest that mitochondrial TAK1 mediates the CTX-induced mtROS generation through noncanonical mechanisms. Thus, our data demonstrate a novel and atypical function of TAK1 that mediates mtROS generation triggered by the specific cephalosporins.
Collapse
Affiliation(s)
| | | | | | - Takuya Noguchi
- Correspondence: (T.N.); (A.M.); Tel.: +81-22-795-6828 (T.N.); +81-22-795-6827 (A.M.); Fax: +81-22-795-6826 (T.N. & A.M.)
| | | | | | - Atsushi Matsuzawa
- Correspondence: (T.N.); (A.M.); Tel.: +81-22-795-6828 (T.N.); +81-22-795-6827 (A.M.); Fax: +81-22-795-6826 (T.N. & A.M.)
| |
Collapse
|
22
|
Yu H, Cheng Y, Zhang G, Wang X, Gu W, Guo X. p62-dependent autophagy in airway smooth muscle cells regulates metabolic reprogramming and promotes airway remodeling. Life Sci 2020; 266:118884. [PMID: 33310038 DOI: 10.1016/j.lfs.2020.118884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
AIMS Growing evidence indicates insufficient autophagy is crucial to airway remodeling in asthma. However, it is uncertain whether p62, an autophagy major regulator, mediates the airway remodeling process. This study aimed to evaluate the role and underlying mechanism of p62 in airway remodeling in asthma. MATERIALS AND METHODS Airway remodeling was confirmed via histopathology. Western blotting and RT-PCR were used to detect the expression of autophagic and glycolytic proteins, as well as glycolytic genes. Glycolysis was measured by glucose consumption and lactate production. Cell proliferation was analyzed by CCK8 assays while and the scratch test and transwell method were used for cell migration. KEY FINDINGS We found that insufficient autophagic flux and increased p62 expression existed in chronic asthma mice. Additionally, knockdown of p62 inhibited asthmatic human bronchial smooth muscle cells (BSMCs) proliferation and migration in vitro. To elucidate the underlying mechanism of p62-mediated autophagy flux in directing BSMCs function, we demonstrated that knockdown of p62 decreased the glucose consumption and lactate production in BSMCs, whereas p62 overexpression had the opposite effect. Furthermore, we showed that p62 regulated glycolysis in BSMCs by the mTOR/c-Myc/hexokinase 2 (HK2) pathway. SIGNIFICANCE Our findings suggest that p62 is involved in BSMCs proliferation and migration via the mTOR/c-Myc/HK2-mediated glycolysis, thereby providing a new target for airway remodeling treatment.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Cheng
- Department of respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guorui Zhang
- Department of respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueting Wang
- Department of respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Gu
- Department of respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xuejun Guo
- Department of respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Newton F, Megaw R. Mechanisms of Photoreceptor Death in Retinitis Pigmentosa. Genes (Basel) 2020; 11:genes11101120. [PMID: 32987769 PMCID: PMC7598671 DOI: 10.3390/genes11101120] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited blindness and is characterised by the progressive loss of retinal photoreceptors. However, RP is a highly heterogeneous disease and, while much progress has been made in developing gene replacement and gene editing treatments for RP, it is also necessary to develop treatments that are applicable to all causative mutations. Further understanding of the mechanisms leading to photoreceptor death is essential for the development of these treatments. Recent work has therefore focused on the role of apoptotic and non-apoptotic cell death pathways in RP and the various mechanisms that trigger these pathways in degenerating photoreceptors. In particular, several recent studies have begun to elucidate the role of microglia and innate immune response in the progression of RP. Here, we discuss some of the recent progress in understanding mechanisms of rod and cone photoreceptor death in RP and summarise recent clinical trials targeting these pathways.
Collapse
Affiliation(s)
- Fay Newton
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Correspondence:
| | - Roly Megaw
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh EH3 9HA, UK
| |
Collapse
|
24
|
Tsuchida M, Yokosawa T, Noguchi T, Shimada T, Yamada M, Sekiguchi Y, Hirata Y, Matsuzawa A. Pro-apoptotic functions of TRAF2 in p53-mediated apoptosis induced by cisplatin. J Toxicol Sci 2020; 45:219-226. [PMID: 32238696 DOI: 10.2131/jts.45.219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tumor necrosis factor receptor-associated factor 2 (TRAF2) is an essential component of tumor necrosis factor-α (TNF-α) signaling that regulates nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, and compelling evidence has demonstrated that TRAF2 suppresses TNF-α-induced cytotoxicity. On the other hand, it has been reported that oxidative stress-induced cytotoxicity is potentiated by TRAF2, indicating that TRAF2 both positively and negatively regulates stress-induced cytotoxicity in a context-specific manner. However, the causal role of TRAF2 in DNA damage response (DDR) remains to be explored. In this study, we assessed the function of TRAF2 in DDR induced by cisplatin, a representative DNA-damaging agent, and found that TRAF2 exerts pro-apoptotic activity through p53-dependent mechanisms at least in human fibrosarcoma cell line HT1080. TRAF2 deficient cells exhibit significant resistance to cell death induced by cisplatin, accompanied by the reduction of both p53 protein level and caspase-3 activation. Moreover, cisplatin-induced JNK activation was attenuated in TRAF2-deficient cells, and pharmacological inhibition of JNK signaling suppressed p53 stabilization. These results suggest that TRAF2 promotes p53-dependent apoptosis by activating the JNK signaling cascade in HT1080 cells. Thus, our data demonstrate a novel function of TRAF2 in cisplatin-induced DDR as a pro-apoptotic protein.
Collapse
Affiliation(s)
- Mei Tsuchida
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Tatsuya Shimada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yuto Sekiguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
25
|
Kong Q, Liang Y, He Q, You Y, Wu L, Liang L, Liang J. Autophagy inhibits TLR4-mediated invasiveness of oral cancer cells via the NF-κB pathway. Oral Dis 2020; 26:1165-1174. [PMID: 32291890 DOI: 10.1111/odi.13355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Toll-like receptor 4 (TLR4) is abnormally expressed in oral cancer tissues and promotes cancer cell invasion. The purpose of this study was to clarify the mechanism by which autophagy regulates oral cancer invasion through the TLR4-NF-κB pathway. SUBJECTS AND METHODS We examined TLR4 expression in oral cancer tissues and analysed the relationship between its expression and clinicopathological features. The invasion and migration of LPS-stimulated oral cancer cells with up- or downregulation of TLR4 expression was detected in addition to NF-κB signalling and autophagy levels. Furthermore, the role of autophagy in regulating TLR4-mediated cell invasiveness was explored by silencing the expression of key autophagy genes ATG7 and p62. RESULTS We found that TLR4 overexpression was closely related to cervical lymphatic metastasis and poor survival. TLR4 activated the NF-κB pathway to promote the invasiveness of OSCC cells, and autophagy partly inhibited invasiveness by suppressing the NF-κB pathway. We observed that p62 translocated from the cytoplasm to the nucleus when autophagy was activated by LPS. Finally, silencing p62 further promoted LPS-mediated cell invasiveness. CONCLUSION Toll-like receptor 4 significantly enhanced the invasiveness of OSCC cells. Autophagy may regulate cell invasiveness through the NF-κB pathway by modulating both the cytoplasmic and nuclear levels of p62.
Collapse
Affiliation(s)
- Qianying Kong
- Zhuhai Stomatology Hospital, Zhuhai, Guangdong, China
| | - Yancan Liang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qifen He
- Department of Oral and Maxillofacial Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yingying You
- Department of Oral and Maxillofacial Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lifen Wu
- Department of Oral and Maxillofacial Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lizhong Liang
- Department of Oral and Maxillofacial Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jun Liang
- Department of Oral and Maxillofacial Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
26
|
Emanuele S, Lauricella M, D’Anneo A, Carlisi D, De Blasio A, Di Liberto D, Giuliano M. p62: Friend or Foe? Evidences for OncoJanus and NeuroJanus Roles. Int J Mol Sci 2020; 21:ijms21145029. [PMID: 32708719 PMCID: PMC7404084 DOI: 10.3390/ijms21145029] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
p62 is a versatile protein involved in the delicate balance between cell death and survival, which is fundamental for cell fate decision in the context of both cancer and neurodegenerative diseases. As an autophagy adaptor, p62 recognizes polyubiquitin chains and interacts with LC3, thereby targeting the selected cargo to the autophagosome with consequent autophagic degradation. Beside this function, p62 behaves as an interactive hub in multiple signalling including those mediated by Nrf2, NF-κB, caspase-8, and mTORC1. The protein is thus crucial for the control of oxidative stress, inflammation and cell survival, apoptosis, and metabolic reprogramming, respectively. As a multifunctional protein, p62 falls into the category of those factors that can exert opposite roles in the cells. Chronic p62 accumulation was found in many types of tumors as well as in stress granules present in different forms of neurodegenerative diseases. However, the protein seems to have a Janus behaviour since it may also serve protective functions against tumorigenesis or neurodegeneration. This review describes the diversified roles of p62 through its multiple domains and interactors and specifically focuses on its oncoJanus and neuroJanus roles.
Collapse
Affiliation(s)
- Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (M.L.); (D.C.); (D.D.L.)
- Correspondence:
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (M.L.); (D.C.); (D.D.L.)
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (M.L.); (D.C.); (D.D.L.)
| | - Anna De Blasio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| | - Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (M.L.); (D.C.); (D.D.L.)
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| |
Collapse
|
27
|
Dong K, Yan Y, Lu L, Wang Y, Li J, Zhang M, Ding J. PJ34 Protects Photoreceptors from Cell Death by Inhibiting PARP-1 Induced Parthanatos after Experimental Retinal Detachment. Curr Eye Res 2020; 46:115-121. [PMID: 32478624 DOI: 10.1080/02713683.2020.1776881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Our previous study discoveredreactive oxygen species (ROS) and apoptosis inducing factor (AIF) increased after retinal detachment. Parthanatos is a cell death form involving ROS and AIF, which is induced by poly (ADP-ribose) polymerase-1 (PARP-1). Therefore, we investigated whether PJ34 (a PARP-1 inhibitor) could inhibit parthanatos and protect the photoreceptors from cell death after retinal detachment (RD). METHODS Experimental retinal detachment modelswere created in Sprague-Dawley rats by subretinal injection of sodium hyaluronate.PJ34 orDMSO were introduced into subretinal space at RD induction, respectively. The structure of retinas and the morphology of photoreceptors were observed by hematoxylin eosin (H&E) staining and transmission electron microscope (TEM). Parthanatos related proteins (PARP-1, PAR,AIF) were detected by Western blot. The vision-dependent behavior of rat was tested by Morris water maze. RESULTS H&E staining and TEM results indicated that the structure and outer nuclear layer (ONL) thickness of retinas were preserved, and the photoreceptors death decreasedwith PJ34 treatment. Western blot showed that the expression of PARP-1, PAR and AIF were decreased withPJ34 treatment. In addition, administration of PJ34 also improved the vision-dependent behavior of rat. CONCLUSIONS These findings suggested that PJ34 is a potential therapeutic agent that attenuated photoreceptor parthanatos death in retinal detachment through inhibition of PARP-1/AIF pathway.
Collapse
Affiliation(s)
- Kai Dong
- Department of Ophthalmology, Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui, China
| | - Yuanye Yan
- Department of Ophthalmology, Eye Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Li Lu
- Department of Ophthalmology, Eye Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Yisai Wang
- Department of Ophthalmology, Eye Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Jinping Li
- Department of Ophthalmology, Eye Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Mei Zhang
- Eye Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Jie Ding
- Department of Ophthalmology, Eye Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| |
Collapse
|
28
|
Cabrera S, Rodríguez-Bobadilla C, Vázquez-Morales D, Gaxiola M, Maciel M, Selman M, Pardo A. Identification of Autophagy-related Proteins in Lungs From Hypersensitivity Pneumonitis Patients. J Histochem Cytochem 2020; 68:365-376. [PMID: 32496163 DOI: 10.1369/0022155420932103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autophagy has been involved in the pathogenesis of various lung diseases. However, it is not yet known whether autophagy plays a role in hypersensitivity pneumonitis (HP). HP is an interstitial lung disease resulting from exposure to a wide variety of antigens that provoke an exaggerated immune response in susceptible individuals. The aim of this study was to explore the localization of autophagy key proteins in lungs from HP patients and controls by immunohistochemistry and analyze their expression levels by immunoblot. Macrophages and epithelial cells were strongly positive for the autophagosome biomarker LC3B (microtubule-associated protein light chain 3 beta) in HP lungs compared with controls. A similar pattern was found for the autophagy receptor p62 and the enzyme ATG4B. Unexpectedly, nuclear p62 signal was also noticed in macrophages from HP lungs. Regarding ATG5 and ATG7 localization, we observed positive staining in neutrophils, vascular smooth muscle cells, and endothelial cells. Our findings provide for the first time evidence that proteins from the autophagy machinery are highly expressed in the lungs of HP patients and describe the specific cellular and subcellular localization of LC3B, p62, ATG4B, ATG5, and ATG7 in HP lungs.
Collapse
Affiliation(s)
- Sandra Cabrera
- Fibrosis Lab, Department of Cell Biology, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carolina Rodríguez-Bobadilla
- Fibrosis Lab, Department of Cell Biology, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dulce Vázquez-Morales
- Fibrosis Lab, Department of Cell Biology, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Gaxiola
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Mariana Maciel
- Fibrosis Lab, Department of Cell Biology, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Annie Pardo
- Fibrosis Lab, Department of Cell Biology, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
29
|
Hirata Y. [Reactive Oxygen Species (ROS) Signaling: Regulatory Mechanisms and Pathophysiological Roles]. YAKUGAKU ZASSHI 2020; 139:1235-1241. [PMID: 31582606 DOI: 10.1248/yakushi.19-00141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules generated during mitochondrial respiration and under various environmental stresses, and cause damage to DNA, proteins, and lipids, which is linked to a wide variety of pathologies. However, recent studies have revealed the physiological importance of ROS as signaling molecules, which play crucial roles in the maintenance of cellular functions and homeostasis. According to the extent and duration of ROS generation, ROS-mediated oxidation-reduction (redox) signaling (ROS signaling) is tightly regulated by various molecules and post-translational modifications (PTMs), for inducing appropriate cellular responses. Dysregulation of ROS signaling causes cellular malfunctions, which are also linked to various diseases, such as cancer, neurodegeneration and inflammatory diseases. In this review, we focus on a ROS-responsive protein kinase apoptosis signal-regulating kinase 1 (ASK1) that belongs to the mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) family, and activates the c-jun N-terminal kinase (JNK) and p38 MAP kinase pathways, which consequently induces various cellular responses, including apoptosis and inflammation. Here, we introduce a novel regulatory mechanism and the pathophysiological significance of ASK1 activation. We found that an E3 ubiquitin ligase TRIM48 orchestrates fine-tuning of ROS-induced ASK1 activation mediated by multiple types of PTMs, including ubiquitination, methylation, and phosphorylation. We also found that trans-fatty acids (TFAs) enhance ROS-dependent ASK1 activation induced by extracellular ATP, a damage-associated molecular pattern (DAMP), and thereby promotes apoptosis, which possibly contributes to the pathogenesis of TFA-related diseases including atherosclerosis. Thus, this review provides recent advances in the study of ROS signaling, especially ROS-ASK1 signaling pathway.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
30
|
trans-Fatty acids facilitate DNA damage-induced apoptosis through the mitochondrial JNK-Sab-ROS positive feedback loop. Sci Rep 2020; 10:2743. [PMID: 32066809 PMCID: PMC7026443 DOI: 10.1038/s41598-020-59636-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
trans-Fatty acids (TFAs) are unsaturated fatty acids that contain one or more carbon-carbon double bonds in trans configuration. Epidemiological evidence has linked TFA consumption with various disorders, including cardiovascular diseases. However, the underlying pathological mechanisms are largely unknown. Here, we show a novel toxic mechanism of TFAs triggered by DNA damage. We found that elaidic acid (EA) and linoelaidic acid, major TFAs produced during industrial food manufacturing (so-called as industrial TFAs), but not their corresponding cis isomers, facilitated apoptosis induced by doxorubicin. Consistently, EA enhanced UV-induced embryonic lethality in C. elegans worms. The pro-apoptotic action of EA was blocked by knocking down Sab, a c-Jun N-terminal kinase (JNK)-interacting protein localizing at mitochondrial outer membrane, which mediates mutual amplification of mitochondrial reactive oxygen species (ROS) generation and JNK activation. EA enhanced doxorubicin-induced mitochondrial ROS generation and JNK activation, both of which were suppressed by Sab knockdown and pharmacological inhibition of either mitochondrial ROS generation, JNK, or Src-homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) as a Sab-associated protein. These results demonstrate that in response to DNA damage, TFAs drive the mitochondrial JNK-Sab-ROS positive feedback loop and ultimately apoptosis, which may provide insight into the common pathogenetic mechanisms of diverse TFA-related disorders.
Collapse
|
31
|
Yokosawa T, Yamada M, Noguchi T, Suzuki S, Hirata Y, Matsuzawa A. Pro-caspase-3 protects cells from polymyxin B-induced cytotoxicity by preventing ROS accumulation. J Antibiot (Tokyo) 2019; 72:848-852. [PMID: 31371783 DOI: 10.1038/s41429-019-0216-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 12/21/2022]
Abstract
Polymyxin B (PMB), a last-line antibiotic used against antibiotic-resistant superbugs, causes undesirable cytotoxic side effects. However, its mechanisms remain unknown. In this study, we unexpectedly found that caspase-3, a main executor of apoptosis, plays a protective role in PMB-induced cytotoxicity. Caspase-3 knockout (KO) cells exhibited higher susceptibility to PMB-induced cytotoxicity compared with wild-type (WT) cells, accompanied by increased levels of reactive oxygen species (ROS). Interestingly, co-treatment with the antioxidant N-acetylcysteine (NAC) rescued cell viability to a similar extent as WT cells. Furthermore, PMB failed to facilitate the processing of inactive caspase-3 (pro-caspase-3) into active forms, suggesting that pro-caspase-3 nonenzymatically suppresses PMB-driven ROS accumulation and its cytotoxicity. Thus, our findings that demonstrate the potential ability of PMB to stimulate ROS generation, but which is normally masked by pro-caspase-3-dependent mechanisms, may provide novel insights into the mechanisms of PMB-induced side effects.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Saki Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
32
|
Sekiguchi Y, Yamada M, Noguchi T, Noomote C, Tsuchida M, Kudoh Y, Hirata Y, Matsuzawa A. The anti-cancer drug gefitinib accelerates Fas-mediated apoptosis by enhancing caspase-8 activation in cancer cells. J Toxicol Sci 2019; 44:435-440. [PMID: 31168030 DOI: 10.2131/jts.44.435] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Fas/CD95 plays a pivotal role in T cell-mediated cytotoxicity. Accumulating evidence has suggested that resistance to Fas-mediated apoptosis contributes to the escape of cancer cells from immune destruction, and allows to undergo proliferation and outgrowth of cancer cells. In this study, we found that the anti-cancer drug gefitinib, a tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR), has an ability to enhance Fas-mediated cytotoxicity. In the presence of nontoxic concentrations of gefitinib, Fas-induced activation of caspase-8 and subsequent apoptosis was dramatically promoted, suggesting that gefitinib increases the sensitivity to Fas-mediated apoptosis. Interestingly, the effects of gefitinib were observed in EGFR or p53 knockout (KO) cells. These observations indicate that both EGFR and p53 are dispensable for the enhancement. On the other hand, gefitinib clearly downregulated heat shock protein 70 (HSP70) as previously reported. Considering that HSP70 contributes to protection of cells against Fas-mediated apoptosis, gefitinib may increase the sensitivity to Fas-mediated apoptosis by downregulating HSP70. Thus, our findings reveal novel properties of gefitinib, which may provide insight into the alternative therapeutic approaches of gefitinib for Fas-resistant tumors.
Collapse
Affiliation(s)
- Yuto Sekiguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Chise Noomote
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Mei Tsuchida
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yuki Kudoh
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
33
|
Xu WN, Yang RZ, Zheng HL, Yu W, Zheng XF, Li B, Jiang SD, Jiang LS. PGC-1α acts as an mediator of Sirtuin2 to protect annulus fibrosus from apoptosis induced by oxidative stress through restraining mitophagy. Int J Biol Macromol 2019; 136:1007-1017. [PMID: 31238070 DOI: 10.1016/j.ijbiomac.2019.06.163] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
Abstract
Apoptosis of annulus fibrosus (AF) is observed widely in intervertebral disc degeneration (IVDD) which causes weaken of tension in the annulus of intervertebral disc. Previous studies reported that apoptosis of AF is induced mainly by oxidative stress. SIRT2 is a major regulator of mitochondria to mediate ROS production. However, the mechanism of SIRT2 in IVDD remains unclear. Here, the expression of SIRT2 was detected in AF cells exposed to tert-Butyl hydroperoxide (TBHP) by western blotting. Autophagic flux and apoptosis were assessed by western blotting, flow cytometry and immunofluorescence respectively. Safranin O staining, HE, and immunohistochemical were used to assess the IVDD after 3, 6 and 9 months of surgical procedure in vivo. The expression of SIRT2 was decreased in AF cells treated with TBHP. Repression of mitophagy alleviated the apoptosis of AF cells caused by TBHP. Overexpression of PGC-1α prevented AF cells from apoptosis and mitophagy after applying Lenti-PGC-1α to transfect AF cells. These protections of PGC-1α were reduced by FCCP. Furthermore, the expression of PGC-1α was reduced and the level of mitophagy was increased in IVDD models. In conclusion, this study indicates that the regulation of PGC-1α expression provide a new theoretical basis for the mechanism of IVDD.
Collapse
Affiliation(s)
- Wen-Ning Xu
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Run-Ze Yang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Huo-Liang Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Wei Yu
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xin-Feng Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Bo Li
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Sheng-Dan Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China.
| | - Lei-Sheng Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China.
| |
Collapse
|
34
|
Acute expression of the transcription factor Nrf2 after treatment with quinolinic acid is not induced by oxidative stress in the rat striatum. Neurotoxicology 2019; 73:120-131. [PMID: 30876764 DOI: 10.1016/j.neuro.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 11/20/2022]
Abstract
Quinolinic acid (QUIN) is an excitotoxic and pro-oxidant molecule used in the study of neurodegenerative disorders because it reproduces certain biochemical characteristics present in these diseases. The use of antioxidant molecules in the QUIN model reduces cellular damage through the nuclear factor erythroid 2-related to factor 2 (Nrf2) pathway. The Nrf2 transcription factor is considered the master regulator of antioxidant genes expression, and its activation occurs by an increase in the reactive oxygen species (ROS) levels or in the presence of electrophilic compounds. However, Nrf2 activation also occurs in an oxidative stress-independent process caused by the disruption of the Keap1-Nrf2 complex by the direct interaction of Keap1 with certain proteins, such as DPP3 and p62. The aim of this study was to evaluate the effect of QUIN on Nrf2 activation over short periods of time. QUIN administration increased Nrf2 activation at 30 min in the striatum without increasing ROS production or modifying the redox cellular state. Moreover, QUIN increased Keap1 and Nrf2 nuclear levels and increased the protein-protein interaction between Keap1 and DPP3 and Keap1 and p62 30 min after QUIN administration. Finally, we found that Nrf2 activation primarily occurs in striatal neurons. Our results show that QUIN administration in vivo stimulates Nrf2 expression and activation in the absence of oxidative stress primarily in neurons and increases the interaction of p62 and DPP3 with Keap1, which could participate in Nrf2 activation.
Collapse
|