1
|
Liu F, Ding Y, Xu Z, Hao X, Pan T, Miles G, Wang S, Wu YH, Liu J, Bado IL, Zhang W, Wu L, Gao Y, Yu L, Edwards DG, Chan HL, Aguirre S, Dieffenbach MW, Chen E, Shen Y, Hoffman D, Becerra Dominguez L, Rivas CH, Chen X, Wang H, Gugala Z, Satcher RL, Zhang XHF. Single-cell profiling of bone metastasis ecosystems from multiple cancer types reveals convergent and divergent mechanisms of bone colonization. CELL GENOMICS 2025:100888. [PMID: 40412393 DOI: 10.1016/j.xgen.2025.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 02/26/2025] [Accepted: 04/29/2025] [Indexed: 05/27/2025]
Abstract
Bone is a common site for metastasis of solid cancers. The diversity of histological and molecular characteristics of bone metastases (BMs) remains poorly studied. Here, we performed single-cell RNA sequencing on 42 BMs from eight cancer types, identifying three distinct ecosystem archetypes, each characterized by an enrichment of specific immune cells: macrophages/osteoclasts, regulatory/exhausted T cells, or monocytes. We validated these archetypes by immunostaining on tissue sections and bioinformatic analysis of bulk RNA sequencing/microarray data from 158 BMs across more than 10 cancer types. Interestingly, we found only a modest correlation between the BM archetypes and the tissues of origin; BMs from the same cancer type often fell into different archetypes, while BMs from different cancer types sometimes converged on the same archetype. Additional analyses revealed parallel immunosuppression and bone remodeling mechanisms, some of which were experimentally validated. Overall, we discovered unappreciated heterogeneity of BMs across different cancers.
Collapse
Affiliation(s)
- Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yunfeng Ding
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zhan Xu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tianhong Pan
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - George Miles
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Siyue Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jun Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Igor L Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ling Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Liqun Yu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - David G Edwards
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hilda L Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sergio Aguirre
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael Warren Dieffenbach
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | - Elina Chen
- College of Natural Sciences, University of Texas at Austin, 110 Inner Campus Drive, Austin, TX 78706, USA
| | - Yichao Shen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dane Hoffman
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Luis Becerra Dominguez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Charlotte Helena Rivas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiang Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zbigniew Gugala
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert L Satcher
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Nasme F, Behera J, Tyagi P, Debnath N, Falcone JC, Tyagi N. The potential link between the development of Alzheimer's disease and osteoporosis. Biogerontology 2025; 26:43. [PMID: 39832071 DOI: 10.1007/s10522-024-10181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) and osteoporosis (OP) pose distinct but interconnected health challenges, both significantly impacting the aging population. AD, a neurodegenerative disorder characterized by memory impairment and cognitive decline, is primarily associated with the accumulation of abnormally folded amyloid beta (Aβ) peptides and neurofibrillary tangles in the brain. OP, a skeletal disorder marked by low bone mineral density, involves dysregulation of bone remodeling and is associated with an increased risk of fractures. Recent studies have revealed an intriguing link between AD and OP, highlighting shared pathological features indicative of common regulatory pathophysiological pathways. In this article, we elucidate the signaling mechanisms that regulate the pathology of AD and OP and offer insights into the intricate network of factors contributing to these conditions. We also examine the role of bone-derived factors in the progression of AD, underscoring the plausibility of bidirectional communication between the brain and the skeletal system. The presence of amyloid plaques in the brain of individuals with AD is akin to the accumulation of brain Aβ in vascular dementia, pointing towards the need for further investigation of shared molecular mechanisms. Moreover, we discuss the role of bone-derived microRNAs that may regulate the pathological progression of AD, providing a novel perspective on the role of skeletal factors in neurodegenerative diseases. The insights presented here should help researchers engaged in exploring innovative therapeutic approaches targeting both neurodegenerative and skeletal disorders in aging populations.
Collapse
Affiliation(s)
- Fariha Nasme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Jyotirmaya Behera
- Division of Immunology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Prisha Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu, Jammu & Kashmir, 181143, India
| | - Jeff C Falcone
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
3
|
Yamamoto de Almeida L, Dietrich C, Duverger O, Lee JS. Acute hyperlipidemia has transient effects on large-scale bone regeneration in male mice. Sci Rep 2024; 14:25610. [PMID: 39463386 PMCID: PMC11514207 DOI: 10.1038/s41598-024-76992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Excessive dietary fat intake increases plasma lipid levels and has been associated with reduced bone mineral density (BMD) and increased risk of osteoporotic fracture, especially in older postmenopausal women. The objective of this study was to investigate whether there are sex-related differences in lipid metabolism that could have an impact on large-scale bone regeneration. Because ribs provide a unique exception as the only bones capable of completely regenerating large-scale defects, we used a rib resection mouse model in which human features are recapitulated. After 10 days of exposure to a low-fat diet or high-fat diet (HFD), we performed large-scale rib resection surgeries on male and female mice (6-7 weeks old) with deletion of the low-density lipoprotein (LDL) receptor (Ldlr-/-) and age- and sex-matched wild-type (WT) mice were used as controls. Plasma analysis showed that short-term exposure to HFD significantly increases total cholesterol, LDL cholesterol, and triglycerides levels in Ldlr-/- mice but not in WT, with no differences between males and females. However, under HFD, callus bone volume was significantly reduced exclusively in male Ldlr-/- mice when compared to WT, although these differences were no longer apparent by 21 days after resection. Regardless of diet or genotype, BMD of regenerated ribs did not differ significantly between groups, although male mice typically had lower average BMD values. Together, these results suggest that short-term hyperlipidemia has transient effects on large-scale bone regeneration exclusively in male mice.
Collapse
Affiliation(s)
- Luciana Yamamoto de Almeida
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Catharine Dietrich
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Xu L, Li H, Liu B, Han X, Sun H. Systemic Inflammatory Regulators Associated with Osteoporosis: A Bidirectional Mendelian Randomization Study. Calcif Tissue Int 2024; 114:490-501. [PMID: 38528199 DOI: 10.1007/s00223-024-01200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
To elucidate the precise upstream and downstream regulatory mechanisms of inflammatory factors in osteoporosis (OP) progression and to establish a causal relationship between inflammatory factors and OP. We conducted bidirectional Mendelian randomization (MR) analyses using data for 41 cytokines obtained from three independent cohorts comprising 8293 Finnish individuals. Estimated bone mineral density (eBMD) data were derived from 426,824 UK Biobank White British individuals (55% female) and fracture data from 416,795 UK Biobank participants of European ancestry. The inverse variance-weighted method was the primary MR analysis approach. We employed other methods as complementary approaches for mutual corroboration. To test for pleiotropy and heterogeneity, we used the MR-Egger regression, MR-pleiotropy residual sum and outlier global test, and the Cochrane Q test. Macrophage inflammatory protein (MIP)-1α and interleukin (IL)-12p70 expression associated negatively and causally with eBMD (β = -0.017 [MIP-1α], β = -0.011 [IL-12p70]). Conversely, tumor necrosis factor-related apoptosis-inducing ligand was associated with a decreased risk of fractures (Odds Ratio: 0.980). Additionally, OP influenced the expression of multiple inflammatory factors, including growth-regulated oncogene-α, interferon-gamma, IL-6, beta nerve growth factor, and IL-2. Finally, we discovered complex bidirectional causal relationships between IL-8, IL-10, and OP. Specific inflammatory factors may contribute to OP development or may be causally affected by OP. We identified a bidirectional causal relationship between certain inflammatory factors and OP. These findings provide new perspectives for early prediction and targeted treatment of OP. Larger cohort studies are necessary in the future to further validate these findings.
Collapse
Affiliation(s)
- Lei Xu
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, 030000, China
| | - Hui Li
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, 030000, China
| | - Bin Liu
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, 030000, China
| | - Xiaoqiang Han
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Haibiao Sun
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
5
|
Zheng H, Liu Y, Deng Y, Li Y, Liu S, Yang Y, Qiu Y, Li B, Sheng W, Liu J, Peng C, Wang W, Yu H. Recent advances of NFATc1 in rheumatoid arthritis-related bone destruction: mechanisms and potential therapeutic targets. Mol Med 2024; 30:20. [PMID: 38310228 PMCID: PMC10838448 DOI: 10.1186/s10020-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by inflammation of the synovial tissue and joint bone destruction, often leading to significant disability. The main pathological manifestation of joint deformity in RA patients is bone destruction, which occurs due to the differentiation and proliferation of osteoclasts. The transcription factor nuclear factor-activated T cell 1 (NFATc1) plays a crucial role in this process. The regulation of NFATc1 in osteoclast differentiation is influenced by three main factors. Firstly, NFATc1 is activated through the upstream nuclear factor kappa-B ligand (RANKL)/RANK signaling pathway. Secondly, the Ca2+-related co-stimulatory signaling pathway amplifies NFATc1 activity. Finally, negative regulation of NFATc1 occurs through the action of cytokines such as B-cell Lymphoma 6 (Bcl-6), interferon regulatory factor 8 (IRF8), MAF basic leucine zipper transcription factor B (MafB), and LIM homeobox 2 (Lhx2). These three phases collectively govern NFATc1 transcription and subsequently affect the expression of downstream target genes including TRAF6 and NF-κB. Ultimately, this intricate regulatory network mediates osteoclast differentiation, fusion, and the degradation of both organic and inorganic components of the bone matrix. This review provides a comprehensive summary of recent advances in understanding the mechanism of NFATc1 in the context of RA-related bone destruction and discusses potential therapeutic agents that target NFATc1, with the aim of offering valuable insights for future research in the field of RA. To assess their potential as therapeutic agents for RA, we conducted a drug-like analysis of potential drugs with precise structures.
Collapse
Affiliation(s)
- Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuexuan Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yunzhe Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shiqi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jinzhi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
6
|
Bin Karim K, Giribabu N, Bin Salleh N. Marantodes pumilum (Kacip Fatimah) Aqueous Extract Enhances Osteoblast and Suppresses Osteoclast Activities in Cancellous Bone of a Rat Model of Postmenopause. Appl Biochem Biotechnol 2024; 196:821-840. [PMID: 37219787 DOI: 10.1007/s12010-023-04515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Evidence pointed towards the benefits of Marantodes pumilum in treating osteoporosis after menopause; however, the detailed mechanisms still have not been explored. Therefore, this study aims to identify the molecular mechanisms underlying M. pumilum's bone-protective effect via the involvement of RANK/RANKL/OPG and Wnt/β-catenin signaling pathways. Ovariectomized adult female rats were given M. pumilum leaf aqueous extract (MPLA) (50 and 100 mg/kg/day) and estrogen (positive control) orally for twenty-eight consecutive days. Following the treatment, rats were sacrificed, and femur bones were harvested. Blood was withdrawn for analysis of serum Ca2+, PO43-, and bone alkaline phosphatase (BALP) levels. The bone microarchitectural changes were observed by H&E and PAS staining and distribution and expression of RANK/RANKL/OPG and Wnt3a/β-catenin and its downstream proteins were determined by immunohistochemistry, immunofluorescence, Western blot, and real-time PCR. MPLA treatment increased serum Ca2+ and PO43- levels and reduced serum BALP levels (p < 0.05). Besides, deterioration in cancellous bone microarchitecture and the loss of bone glycogen and collagen content were mitigated by MPLA treatment. Levels of RANKL, Traf6, and NF-kB but not RANK in bone were decreased; however, levels of OPG, Wnt3a, LRP-5, Frizzled, Dvl, β-catenin, RUNX, and Bmp-2 in bone were increased following treatment with MPLA. In conclusion, MPLA helps to protect against bone deterioration in estrogen deficiency state and thus, this herb could potentially be used to ameliorate osteoporosis in women after menopause.
Collapse
Affiliation(s)
- Kamarulzaman Bin Karim
- Department of Physiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Natural Products and Drug Discovery (CENAR), Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Naguib Bin Salleh
- Department of Physiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Natural Products and Drug Discovery (CENAR), Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Jeong C, Lee CH, Lee Y, Seo J, Wang W, Park KH, Oh E, Cho Y, Park C, Son YJ, Yoon Park JH, Kang H, Lee KW. Ulmus macrocarpa Hance trunk bark extracts inhibit RANKL-induced osteoclast differentiation and prevent ovariectomy-induced osteoporosis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117285. [PMID: 37839769 DOI: 10.1016/j.jep.2023.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulmus macrocarpa Hance (UmH) bark has been traditionally utilized for medicinal purposes. The bark extract of this plant has diverse health benefits, and its potential role in enhancing bone health is of distinct interest, particularly when considering the substantial health and economic implications of bone-related pathologies, such as osteoporosis. Despite the compelling theoretical implications of UmH bark in fortifying bone health, no definitive evidence at the in vivo level is currently available, thus highlighting the innovative and as-yet-unexplored potential of this field of study. AIM OF THE STUDY Primarily, our study aims to conduct a meticulous analysis of the disparity in the concentration of active compounds in the UmH root bark (Umrb) and trunk bark (Umtb) extracts and confirm UmH bark's efficacy in enhancing bone health in vivo, illuminating the cellular mechanisms involved. MATERIALS AND METHODS The Umrb and Umtb extracts were subjected to component analysis using high-performance liquid chromatography and then assessed for their inhibitory effects on osteoclast differentiation through the TRAP assay. An ovariectomized (OVX) mouse model replicates postmenopausal conditions commonly associated with osteoporosis. Micro-CT was used to analyze bone structure parameters, and enzyme-linked immunosorbent assay and staining were used to assess bone formation markers and osteoclast activity. Furthermore, this study investigated the impact of the extract on the expression of pivotal proteins and genes involved in bone formation and resorption using mouse bone marrow-derived macrophages (BMMs). RESULTS The findings of our study reveal a significant discrepancy in the concentration of active constituents between Umrb and Umtb, establishing Umtb as a superior source for promoting bone health. I addition, a standardized pilot-scale procedure was conducted for credibility. The bone health benefits of Umtb were verified using an OVX model. This validation involved the assessment of various parameters, including BMD, BV/TV, and BS/TV, using micro-CT imaging. Additionally, the activation of osteoblasts was evaluated by Umtb by measuring specific factors such as ALP, OCN, OPG in blood samples and through IHC staining. In the same investigations, diminished levels of osteoclast differentiation factors, such as TRAP, NFATc1, were also observed. The observed patterns exhibited consistency in vitro BMM investigations. CONCLUSIONS Through verification at both in vitro levels using BMMs and in vivo levels using the OVX-induced mouse model, our research demonstrates that Umtb is a more effective means of improving bone health in comparison to Umrb. These findings pave the way for developing health-functional foods or botanical drugs targeting osteoporosis and other bone-related disorders and enhance the prospects for future research extensions, including clinical studies, in extract applications.
Collapse
Affiliation(s)
- Chanhyeok Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yongjin Lee
- Department of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Jiwon Seo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Weihong Wang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, NS-80, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Oceanography, Seoul National University, NS-80, Seoul, 08826, Republic of Korea.
| | - Kyu-Hyung Park
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, NS-80, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Eunseok Oh
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, NS-80, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Oceanography, Seoul National University, NS-80, Seoul, 08826, Republic of Korea.
| | - Youbin Cho
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, NS-80, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Chanyoon Park
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea; Laboratory of Marine Drugs, School of Earth and Environmental Sciences, NS-80, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Heonjoong Kang
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea; Laboratory of Marine Drugs, School of Earth and Environmental Sciences, NS-80, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Oceanography, Seoul National University, NS-80, Seoul, 08826, Republic of Korea; Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, NS-80, Seoul, 08826, Republic of Korea.
| | - Ki Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea; Department of Agricultural Biotechnology and Center for Food and Bio Convergence, Seoul National. University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Chen Y, Mehmood K, Chang YF, Tang Z, Li Y, Zhang H. The molecular mechanisms of glycosaminoglycan biosynthesis regulating chondrogenesis and endochondral ossification. Life Sci 2023; 335:122243. [PMID: 37949211 DOI: 10.1016/j.lfs.2023.122243] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Disorders of chondrocyte differentiation and endochondral osteogenesis are major underlying factors in skeletal developmental disorders, including tibial dysplasia (TD), osteoarthritis (OA), chondrodysplasia (ACH), and multiple epiphyseal dysplasia (MED). Understanding the cellular and molecular pathogenesis of these disorders is crucial for addressing orthopedic diseases resulting from impaired glycosaminoglycan synthesis. Glycosaminoglycan is a broad term that refers to the glycan component of proteoglycan macromolecules. It is an essential component of the cartilage extracellular matrix and plays a vital role in various biological processes, including gene transcription, signal transduction, and chondrocyte differentiation. Recent studies have demonstrated that glycosaminoglycan biosynthesis plays a regulatory role in chondrocyte differentiation and endochondral osteogenesis by modulating various growth factors and signaling molecules. For instance, glycosaminoglycan is involved in mediating pathways such as Wnt, TGF-β, FGF, Ihh-PTHrP, and O-GlcNAc glycosylation, interacting with transcription factors SOX9, BMPs, TGF-β, and Runx2 to regulate chondrocyte differentiation and endochondral osteogenesis. To propose innovative approaches for addressing orthopedic diseases caused by impaired glycosaminoglycan biosynthesis, we conducted a comprehensive review of the molecular mechanisms underlying chondrocyte glycosaminoglycan biosynthesis, which regulates chondrocyte differentiation and endochondral osteogenesis. Our analysis considers the role of genes, glycoproteins, and associated signaling pathways during chondrogenesis and endochondral ossification.
Collapse
Affiliation(s)
- Yongjian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Yung-Fu Chang
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Hou J, Liu J, Huang Z, Wang Y, Yao H, Hu Z, Shi C, Xu J, Wang Q. Structure and function of the membrane microdomains in osteoclasts. Bone Res 2023; 11:61. [PMID: 37989999 PMCID: PMC10663511 DOI: 10.1038/s41413-023-00294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/23/2023] Open
Abstract
The cell membrane structure is closely related to the occurrence and progression of many metabolic bone diseases observed in the clinic and is an important target to the development of therapeutic strategies for these diseases. Strong experimental evidence supports the existence of membrane microdomains in osteoclasts (OCs). However, the potential membrane microdomains and the crucial mechanisms underlying their roles in OCs have not been fully characterized. Membrane microdomain components, such as scaffolding proteins and the actin cytoskeleton, as well as the roles of individual membrane proteins, need to be elucidated. In this review, we discuss the compositions and critical functions of membrane microdomains that determine the biological behavior of OCs through the three main stages of the OC life cycle.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixian Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbing Yao
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Chengge Shi
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
10
|
Cabău G, Gaal O, Badii M, Nica V, Mirea AM, Hotea I, HINT-consortium, Pamfil C, Popp RA, Netea MG, Rednic S, Crișan TO, Joosten LA. Hyperuricemia remodels the serum proteome toward a higher inflammatory state. iScience 2023; 26:107909. [PMID: 37810213 PMCID: PMC10550725 DOI: 10.1016/j.isci.2023.107909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Gout is an autoinflammatory disease triggered by a complex innate immune response to MSU crystals and inflammatory triggers. While hyperuricemia is an obligatory risk factor for the development of gout, the majority of individuals with hyperuricemia never develop gout but have an increased risk of developing cardiometabolic disorders. Current management of gout aims at MSU crystal dissolution by lowering serum urate. We apply a targeted proteomic analysis, using Olink inflammation panel, to a large group of individuals with gout, asymptomatic hyperuricemia, and normouricemic controls, and we show a urate-driven inflammatory signature. We add in vivo evidence of persistent immune activation linked to urate exposure and describe immune pathways involved in the pathogenesis of gout. Our results support a pro-inflammatory effect of asymptomatic hyperuricemia and pave the way for new research into targetable mechanisms in gout and cardiometabolic complications of asymptomatic hyperuricemia.
Collapse
Affiliation(s)
- Georgiana Cabău
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Orsolya Gaal
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Medeea Badii
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Valentin Nica
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Ioana Hotea
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - HINT-consortium
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Cristina Pamfil
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu A. Popp
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tania O. Crișan
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Leo A.B. Joosten
- Department of Medical Genetics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
11
|
Mitchell A, Malmgren L, Bartosch P, McGuigan FE, Akesson KE. Pro-Inflammatory Proteins Associated with Frailty and Its Progression-A Longitudinal Study in Community-Dwelling Women. J Bone Miner Res 2023; 38:1076-1091. [PMID: 37254268 DOI: 10.1002/jbmr.4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
The complex pathophysiology underlying biological aging creates challenges for identifying biomarkers associated with frailty. This longitudinal, nontargeted proteomics study aimed to identify proteins associated with frailty, particularly the change from nonfrail to frail. The population-based Osteoporosis Prospective Risk Assessment cohort includes women all of whom are 75 years old at inclusion (n = 1044) and reassessed at 80 years (n = 715) and 85 years (n = 382). A deficits in health frailty index (FI) and 92 plasma proteins (Olink CVD-II panel) were available at all ages. The identical age facilitated differentiating chronological and biological aging. Bidirectional analyses, performed cross-sectionally and longitudinally, used regression models controlled for false discovery rate (FDR), across 5- and 10-year time windows and longitudinal mixed models. Frailty outcomes were frailty index, frailty status (frail defined as FI ≥ 0.25), change in frailty index, and change in frailty status, together with protein expression or change in protein expression. Elevated levels of 32 proteins were positively associated with the FI, cross-sectionally at all ages (range: β-coefficients 0.22-2.06; FDR 0.021-0.024), of which 18 were also associated with frailty status (range: odds ratios 1.40-5.77; FDR 0.022-0.016). Based on the accrued data, eight core proteins (CD4, FGF23, Gal-9, PAR-1, REN, TNFRSF10A TNFRSF11A, and TNFRSF10B) are proposed. A one-unit change in the FI was additively associated with increased protein expression over 5 and 10 years (range: β-coefficients 0.52-1.59; p < 0.001). Increments in baseline FI consistently associated with a change in protein expression over time (5 years, β-range 0.05-1.35; 10 years, β-range 0.51-1.48; all p < 0.001). A one-unit increase in protein expression was also associated with an increased probability of being frail (FI ≥ 0.25) (β-range: 0.14-0.61). Mirroring the multisystem deterioration that typifies frailty, the proteins and their associated biological pathways reflect pathologies, including the renal system, skeletal homeostasis, and TRAIL-activated apoptotic signaling. The core proteins are compelling candidates for understanding the development and progression of frailty with advancing age, including the intrinsic musculoskeletal component. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Adam Mitchell
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - Linnea Malmgren
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Geriatrics, Skåne University Hospital, Malmö, Sweden
| | - Patrik Bartosch
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - Fiona Elizabeth McGuigan
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - Kristina E Akesson
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
12
|
Zhou L, Qin B, Yassine DM, Luo M, Liu X, Wang F, Wang Y. Structure and function of the highly homologous deubiquitinases ubiquitin specific peptidase 25 and 28: Insights into their pathophysiological and therapeutic roles. Biochem Pharmacol 2023; 213:115624. [PMID: 37245535 DOI: 10.1016/j.bcp.2023.115624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Deubiquitination is the reverse process of ubiquitination, an important protein post-translational modification. Deubiquitination is assisted by deubiquitinating enzymes (DUBs), which catalyze the hydrolysis and removal of ubiquitin chains from targeted proteins and play an important role in regulating protein stability, cell signaling transduction, and programmed cell death. Ubiquitin-specific peptidases 25 and 28 (USP25 and USP28), important members of the USP subfamily of DUBs, are highly homologous, strictly regulated, and closely associated with various diseases, such as cancer and neurodegenerative diseases. Recently, the development of inhibitors targeting USP25 and USP28 for disease treatment has garnered extreme attention. Several non-selective and selective inhibitors have shown potential inhibitory effects. However, the specificity, potency, and action mechanism of these inhibitors remain to be further improved and clarified. Herein, we summarize the structure, regulation, emerging physiological roles, and target inhibition of USP25 and USP28 to provide a basis for the development of highly potent and specific inhibitors for the treatment of diseases, such as colorectal cancer, breast cancer and so on.
Collapse
Affiliation(s)
- Lihui Zhou
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Biying Qin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Demna Mohamed Yassine
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Maoguo Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoling Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
13
|
Paramasivam S, Perumal SS. Methanolic extract of O.umbellata L. exhibits anti-osteoporotic effect via promoting osteoblast proliferation in MG-63 cells and inhibiting osteoclastogenesis in RANKL-stimulated RAW 264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023:116641. [PMID: 37236379 DOI: 10.1016/j.jep.2023.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oldenlandia umbellataL., belonging to the Rubiaceae family, is an annual plant possessing anti-inflammatory and antipyretic, anti-nociceptive, anti-bacterial, anti-helminthic, antioxidant and hepatoprotective activities and used in traditional medicine to treat inflammation and respiratory diseases. AIM OF THE STUDY The present study aims to evaluate the anti-osteoporotic effect of Methanolic extract of O.umbellata in MG-63 cells and RANKL-stimulated RAW 264.7 cells. MATERIALS AND METHODS The methanolic extract from the aerial parts of O.umbellata was subjected to metabolite profiling. The anti-osteoporotic effect of MOU was assessed in MG-63 cells and RANKL-stimulated RAW 264.7 cells. In MG-63 cells, the proliferative effect of MOU was evaluated using MTT assay, ALP assay, Alizarin red staining, ELISA and western blot. Similarly, the anti-osteoclastogenic effect of MOU was assessed in RANKL-stimulated RAW 264.7 cells via MTT, TRAP staining and western blot. RESULTS LC-MS metabolite profiling showed the presence of 59 phytoconstituents including scandoside, scandoside methyl ester, deacetylasperuloside, asperulosidic acid, and cedrelopsin in MOU. In MG-63 cells, MOU has increased the proliferation of osteoblast cells and ALP activity, thereby increasing bone mineralization. ELISA results showed increased levels of osteogenic markers such as osteocalcin and osteopontin in the culture media. Western blot analysis showed inhibition of GSK3β protein expression and increased the expression levels of β-catenin, Runx-2, col 1 and osterix, promoting osteoblast differentiation. In RANKL-stimulated RAW 264.7 cells, MOU did not elicit any significant cytotoxicity; instead, it suppressed the osteoclastogenesis reducing the osteoclast number. MOU has reduced TRAP activity in a dose-dependent manner. MOU inhibited the TRAF6, NFATc1, c-Jun, C-fos and cathepsin K expression, thereby inhibiting osteoclast formation. CONCLUSION In conclusion, MOU promoted osteoblast differentiation via inhibiting GSK3β and activating Wnt/β catenin signalling and its transcription factors, including β catenin, Runx2 and Osterix. Similarly, MOU inhibited osteoclast formation by inhibiting the expression of TRAF6, NFATc1, c-Jun, C-fos and cathepsin K in RANK-RANKL signalling. Finally, it can be emphasised that O.umbellata is a potential source of therapeutic leads for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Sivasakthi Paramasivam
- Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Senthamil Selvan Perumal
- Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
14
|
Toosendanin inhibits osteoclast formation and alleviate postmenopausal osteoporosis by regulating the p38 signaling pathway. Int Immunopharmacol 2023; 116:109745. [PMID: 36702075 DOI: 10.1016/j.intimp.2023.109745] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/25/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Disruption of the balance between osteoclasts and osteoblasts could lead to bone diseases including osteoporosis. It's well known that RANKL-RANK signaling plays a vital role in activating osteoclasts. Herein, we explored the therapeutic effects of toosendanin (TSN) in osteoporosis, showing that TSN attenuated RANKL-stimulated osteoclastogenesis and osteoclast-specific gene expression in vitro. Bioinformatics predicted that TSN could interfere p38 subunits and regulate the MAPK cascade, and we further verified and demonstrated that TSN significantly inhibited RANKL-induced p38 signaling through western blot. In ovariectomized mouse model, TSN effectively inhibited the formation of TRAP-positive osteoclasts and exhibited protective effect against bone loss. Altogether, these data indicate that TSN targeted p38 activation to inhibit osteoclastogenesis, suggesting the possible therapeutic use of TSN in osteoporosis in the future.
Collapse
|
15
|
Liang B, Burley G, Lin S, Shi YC. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell Mol Biol Lett 2022; 27:72. [PMID: 36058940 PMCID: PMC9441049 DOI: 10.1186/s11658-022-00371-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractOsteoporotic fractures lead to increased disability and mortality in the elderly population. With the rapid increase in the aging population around the globe, more effective treatments for osteoporosis and osteoporotic fractures are urgently required. The underlying molecular mechanisms of osteoporosis are believed to be due to the increased activity of osteoclasts, decreased activity of osteoblasts, or both, which leads to an imbalance in the bone remodeling process with accelerated bone resorption and attenuated bone formation. Currently, the available clinical treatments for osteoporosis have mostly focused on factors influencing bone remodeling; however, they have their own limitations and side effects. Recently, cytokine immunotherapy, gene therapy, and stem cell therapy have become new approaches for the treatment of various diseases. This article reviews the latest research on bone remodeling mechanisms, as well as how this underpins current and potential novel treatments for osteoporosis.
Collapse
|
16
|
Xu Q, Li D, Chen J, Yang J, Yan J, Xia Y, Zhang F, Wang X, Cao H. Crosstalk between the gut microbiota and postmenopausal osteoporosis: Mechanisms and applications. Int Immunopharmacol 2022; 110:108998. [PMID: 35785728 DOI: 10.1016/j.intimp.2022.108998] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022]
Abstract
Postmenopausal osteoporosis (PMO) results from a reduction in bone mass and microarchitectural deterioration in bone tissue due to estrogen deficiency, which may increase the incidence of fragility fractures. The number of people suffering from PMO has increased over the years because of the rapidly aging population worldwide. However, several pharmacological agents for the treatment of PMO have many safety risks and impose a heavy financial burden to patients and society. In recent years, the "gut-bone" axis has been proposed as a new approach in the prevention and treatment of PMO. This paper reviews the relationship between the gut microbiota and PMO, which mainly includes the underlying mechanisms between hormones, immunity, nutrient metabolism, metabolites of the gut microbiota and intestinal permeability, and explores the possible role of the gut microbiota in these processes. Finally, we discuss the therapeutic effects of diet, prebiotics, probiotics, and fecal microbiota transplantation on the gut microbiota.
Collapse
Affiliation(s)
- Qin Xu
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Dan Li
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Nursing Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Ju Yang
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jiai Yan
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yanping Xia
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Feng Zhang
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xuesong Wang
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hong Cao
- Nutrition Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
17
|
Wu L, Wang R, Zhou Y, Zhao D, Chen F, Wu X, Chen X, Chen S, Li J, Zhu J. Natural Killer Cells Infiltration in the Joints Exacerbates Collagen-Induced Arthritis. Front Immunol 2022; 13:860761. [PMID: 35432322 PMCID: PMC9005809 DOI: 10.3389/fimmu.2022.860761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The role of natural killer (NK) cells in rheumatoid arthritis remains controversial. We aimed to assess the role of NK cells in the pathogenesis of rheumatoid arthritis. Materials and Methods The percentage of NK cells in the peripheral blood, spleen, lymph nodes and inflamed paws from collagen-induced arthritis mice were examined through the disease progression. Correlation between the proportion of NK cells and subsets with arthritis score, histopathological changes, and bone destruction were evaluated. Adoptive cell transfer was performed to determine the effect of NKp46+NK cells on arthritis development, and the role of receptor NKp46 was explored with NKp46 knockout mice. Results The percentage of NK cells in peripheral blood decreased at the late stage of the disease and negatively correlated with arthritis score. NK cells increased in the inflamed paws during arthritis development and were positively associated with arthritis score, histopathological change, and bone destruction. Adoptive transfer of NKp46+NK cells before disease onset resulted in increased NK cells infiltration in the joints, higher incidence of arthritis, more severe clinical symptoms, and more pronounced joint inflammation and bone damage. NKp46 deficiency had no significant influence on the incidence and severity of arthritis in collagen-induced arthritis mice. Conclusions NK cell infiltration in the joints positively correlates with arthritis progression, inflammation, and bone destruction. The pathogenic role of NK cells in rheumatoid arthritis may be independent of the receptor NKp46.
Collapse
Affiliation(s)
- Lisheng Wu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ran Wang
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi Zhou
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Di Zhao
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Feilong Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xianghui Wu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoguang Chen
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shixian Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juan Li
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junqing Zhu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Niu Y, Yang H, Yu Z, Gao C, Ji S, Yan J, Han L, Huo Q, Xu M, Liu Y. Intervention with the Bone-Associated Tumor Vicious Cycle through Dual-Protein Therapeutics for Treatment of Skeletal-Related Events and Bone Metastases. ACS NANO 2022; 16:2209-2223. [PMID: 35077154 DOI: 10.1021/acsnano.1c08269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bone metastasis is a common metastasis site such as lung cancer, prostate cancer, and other malignant tumors. The occurrence of bone metastases of lung cancer is often accompanied by bone loss, fracture, and other skeletal-related events (SREs) caused by tumor proliferation and osteoclast activation. Furthermore, along with the differentiation and maturation of osteoclasts in the bone microenvironment, it will further promote the occurrence and development of bone metastasis. Protein drugs are one of the most promising therapeutic pharmaceuticals, but in vivo delivery of protein therapeutics still confronts great challenges. In order to more effectively conquer bone metastases and alleviate SREs, herein, we constructed biomineralized metal-organic framework (MOF) nanoparticles carrying protein toxins with both bone-seeking and CD44-receptor-targeting abilities. More importantly, through combination with Receptor Activator of Nuclear Factor-κ B Ligand (RANKL) antibody, in vivo results demonstrated that these two protein agents not only enhanced the detraction effects of protein toxin agents as ribosome-inactivating protein (RIP) on bone metastatic tumor cells but also exhibited synergistic intervention of the crosstalk between bone cells and tumor cells and reduced SREs such as bone loss. Collectively, we expect that this strategy can provide an effective and safe option in regulating bone-tumor microenvironments to overcome bone metastasis and SREs.
Collapse
Affiliation(s)
- Yimin Niu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Hongbin Yang
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Zhenyan Yu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Cuicui Gao
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Shuaishuai Ji
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Jie Yan
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Lei Han
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Qiang Huo
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Ming Xu
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Yang Liu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
19
|
Shen J, Fu B, Wu Y, Yang Y, Lin X, Lin H, Liu H, Huang W. USP25 Expression in Peripheral Blood Mononuclear Cells Is Associated With Bone Mineral Density in Women. Front Cell Dev Biol 2022; 9:811611. [PMID: 35141233 PMCID: PMC8819182 DOI: 10.3389/fcell.2021.811611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is the most common metabolic bone disease in postmenopausal women. As precursors of osteoclasts, peripheral blood mononuclear cells are accessible and considered suitable models for studying osteoporosis pathology. Ubiquitination is a crucial protein degradation system in bone metabolism. The aim of this study was to identify potential ubiquitination-related genes in PBMCs that are related to osteoporosis pathogenesis. Therefore, we performed an integrated analysis of osteoporosis-related microarray datasets. With the obtained ubiquitination-related gene set, weighted gene coexpression network analysis was performed. The results showed that genes in the turquoise module were correlated with menopause, and 48 genes were identified as hub genes. A differential expression analysis revealed 43 differentially expressed genes between pre- and postmenopausal samples. After integrating the information on differentially expressed menopause-related genes, we found that several members of the ubiquitin-specific protease (USP) family (USP1, USP7, USP9X, USP16, and USP25) were highly expressed in samples from postmenopausal female and that, USP25 expression was significantly higher in low-BMD samples than in high-BMD samples among samples from premenopausal subjects (p = 0.0013) and among all samples (p = 0.013). Finally, we verified the protein expression of USP25 in PBMCs by performing Western blot analysis, which yielded results consistent with the aforementioned results. Moreover, by assessing GTEx datasets, we found that USP25 expression was highly correlated with TRAF6 expression in whole blood (p < 0.001). We also tested the protein expression levels of TRAF6 in PBMCs and found that it was positively correlated with USP25 expression (p = 0.036). Our results reveal that the ubiquitin-specific protease family may play important roles in menopause and that USP25 is related to osteoporosis pathogenesis.
Collapse
Affiliation(s)
- Jianlin Shen
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Bowen Fu
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanjiao Wu
- Department of Orthopedics, Shunde Hospital of Southern Medical University, Guangzhou, China
| | - Yang Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoning Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Haibin Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
- *Correspondence: Haibin Lin, ; Huan Liu, ; Wenhua Huang,
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- *Correspondence: Haibin Lin, ; Huan Liu, ; Wenhua Huang,
| | - Wenhua Huang
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- *Correspondence: Haibin Lin, ; Huan Liu, ; Wenhua Huang,
| |
Collapse
|
20
|
Li Y, Yang C, Jia K, Wang J, Wang J, Ming R, Xu T, Su X, Jing Y, Miao Y, Liu C, Lin N. Fengshi Qutong capsule ameliorates bone destruction of experimental rheumatoid arthritis by inhibiting osteoclastogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114602. [PMID: 34492323 DOI: 10.1016/j.jep.2021.114602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bone destruction plays a key role in damaging the joint function of rheumatoid arthritis (RA). Fengshi Qutong capsule (FSQTC) consisting of 19 traditional Chinese medicines has been used for treating RA in China for many years. Preliminary studies show that FSQTC has analgesic activity and inhibits synovial angiogenesis of collagen-induced arthritis (CIA), but its role on bone destruction of RA is still unclear. AIM OF THE STUDY To explore the effect of FSQTC on bone destruction of RA and the possible mechanism of osteoclastogenesis in vivo and in vitro. MATERIALS AND METHODS LC-MS system was used to detect the quality control components of FSQTC. The anti-arthritic effect of FSQTC on CIA rats was evaluated by arthritis score, arthritis incidence and histopathology evaluation of inflamed joints. The effect of treatment with FSQTC on bone destruction of joint tissues was determined with X-ray and micro-CT quantification, and on bone resorption marker CTX-I and formation marker osteocalcin in sera were detected by ELISA. Then, osteoclast differentiation and mature were evaluated by TRAP staining, actin ring immunofluorescence and bone resorption assay both in joints and RANKL-induced RAW264.7 cells. In addition, RANKL, OPG, IL-1β and TNFα in sera were evaluated by ELISA. The molecular mechanisms of the inhibitions were elucidated by analyzing the protein and gene expression of osteoclastic markers CTSK, MMP-9 and β3-Integrin, transcriptional factors c-Fos and NFATc1, as well as phosphorylation of ERK1/2, JNK and P38 in joints and in RANKL-induced RAW264.7 cells using western blot and/or qPCR. RESULTS In this study, 12 major quality control components were identified. Our data showed that FSQTC significantly increased bone mineral density, volume fraction, trabecular thickness, and decreased trabecular separation of inflamed joints both at periarticular and extra-articular locations in CIA rats. FSQTC also diminished the level of CTX-I and simultaneously increased osteocalcin in sera of CIA rats. The effects were accompanied by reductions of osteoclast differentiation, bone resorption, and expression of osteoclastic markers (CTSK, MMP-9 and β3-Integrin) in joints. Interestingly, FSQTC treatment could reduce the protein level of RANKL, increase the expression of OPG, and decrease the ratio of RANKL to OPG in inflamed joints and sera of CIA rats. In addition, FSQTC inhibited the levels of pro-inflammatory cytokines implicated in bone resorption, such as IL-1β and TNFα in sera. When RAW264.7 cells were treated with RANKL, FSQTC inhibited the formation of TRAP + multinucleated cells, actin ring and the bone-resorbing activity in dose-dependent manners. Furthermore, FSQTC reduced the RANKL-induced expression of osteoclastic genes and proteins and transcriptional factors (c-Fos and NFATc1), as well as phosphorylation of mitogen-activated protein kinases (MAPKs). CONCLUSION FSQTC may inhibit bone destruction of RA by its anti-osteoclastogenic activity both in vivo and in vitro.
Collapse
Affiliation(s)
- Yiqun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chao Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Kexin Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ruirui Ming
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tengteng Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Jing
- Tonghua Golden-Horse Pharmaceutical Industry Co.,Ltd, Beijing, 100028, China
| | - Yandong Miao
- Tonghua Golden-Horse Pharmaceutical Industry Co.,Ltd, Beijing, 100028, China
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
21
|
Sun D, Peng Y, Ge S, Fu Q. USP1 Inhibits NF-κB/NLRP3 Induced Pyroptosis through TRAF6 in Osteoblastic MC3T3-E1 Cells. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2022; 22:536-545. [PMID: 36458391 PMCID: PMC9716302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Deubiquitinase Ubiquitin Specific Protease 1 (USP1) is essential for bone formation, but how USP1 regulates bone formation in response to oxidative stress remains unclear. In this study, we aim to investigate the biological function of USP1 in osteoblastic MC3T3-E1 cells. METHODS Hydrogen peroxide (H2O2) as an oxidative reagent was used to trigger osteoblastic MC3T3-E1 cellular damage. Flow cytometry was used to evaluate ROS production, apoptosis, and pyroptosis. Real-time PCR and western bolt assay were used to detect the mRNA and protein levels of USP1. Moreover, coimmunoprecipitation was used to validate the relationship between USP1 and TRAF6. RESULTS We demonstrated that USP1 was significantly decreased in MC3T3-E1 cells after H2O2 treatment. Overexpressing USP1 restored H2O2-decreased alkaline phosphatase activity and reactive oxygen species production. USP1 overexpression inhibited cytokine release and NLP3 inflammasome activation, which was mediated by NF-κB. Overexpressing USP1 prevented NF-κB translocation. USP1 formed a complex with TRAF6, inhibiting TRAF6 ubiquitination. CONCLUSION USP1 exhibits protective role in MC3T3-E1 cells by suppressing NF-κB-NLRP3 mediated pyroptosis in response to H2O2. The involvement of USP1 and TRAF6 in NLRP3 inflammasome signaling suggests a future therapeutic potential to improve clinical symptoms in osteoporosis.
Collapse
Affiliation(s)
- Dengshuo Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, China
| | - Yi Peng
- Department of Orthopedics, Zhongshan Hospital, Fudan University, China
| | - Shengyang Ge
- Department of Urology, Huashan Hospital, Fudan University, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, China,Corresponding author: Dr. Qiang Fu, Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, 85 Wujin Road, Shanghai 200080, China E-mail: • ORCID: 0000-0002-5168-4604
| |
Collapse
|
22
|
Zhu X, Yuan H, Ningjuan O, Trotman CA, Van Dyke TE, Chen JJ, Shen G. 6-Shogaol promotes bone resorption and accelerates orthodontic tooth movement through the JNK-NFATc1 signaling axis. J Bone Miner Metab 2021; 39:962-973. [PMID: 34191125 PMCID: PMC8595588 DOI: 10.1007/s00774-021-01245-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Corticotomy is widely used in clinical practice to accelerate tooth movement and shorten the duration of orthodontic treatment. It is effective, but an invasive surgery is needed to induce alveolar bone osteopenia that enable rapid tooth movement. In this study, we discovered the potential of 6-shogaol as a more patient-friendly non-invasive alternative to induce transient osteopenia and accelerate tooth movement. MATERIALS AND METHODS The effects of 6-shogaol on the bone marrow macrophages (BMM) proliferation and osteoclast differentiation, and bone resorption were determined in vitro. Sprague-Dawley rats were distributed into three groups: CON, IPinj or Localinj and euthanized at day 28. Micro-CT, histology, immunohistological, and TUNEL analysis were performed to evaluate the tooth movement acceleration effect of 6-shogaol. RESULTS In vitro, 6-shogaol promotes osteoclast differentiation and functional demineralization of alveolar bone. RANKL-induced mRNA expression of osteoclastic-specific genes was significantly higher in the presence of 6-shogaol. A dose-dependent increase in the area of TRAP-positive cells was observed with 6-shogaol treatment. F-actin ring formation and increased bone resorption confirmed that osteoclasts treated with 6-shogaol were mature and functional. 6-shogaol stimulated JNK activation and NFATc1 expression during osteoclast differentiation. In vivo, 6-shogaol promotes alveolar bone transient osteopenia and accelerates orthodontic tooth movement. Alveolar bone mass was reduced, more osteoclasts were observed in bone resorption lacunae on the compression side, and the expression of RANKL and sclerostin were higher than the control group. In conclusion, our results suggest that 6-shogoal accelerates tooth movement by inducing osteopenia by a mechanism similar to surgically induced bone injury.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Hao Yuan
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ouyang Ningjuan
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Carroll Ann Trotman
- Department of Orthodontics, Tufts University School of Dental Medicine, Boston, MA, USA
| | | | - Jake Jinkun Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| | - Guofang Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Portes J, Bullón B, Quiles JL, Battino M, Bullón P. Diabetes Mellitus and Periodontitis Share Intracellular Disorders as the Main Meeting Point. Cells 2021; 10:cells10092411. [PMID: 34572060 PMCID: PMC8467361 DOI: 10.3390/cells10092411] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes and periodontitis are two of the most prevalent diseases worldwide that negatively impact the quality of life of the individual suffering from them. They are part of the chronic inflammatory disease group or, as recently mentioned, non-communicable diseases, with inflammation being the meeting point among them. Inflammation hitherto includes vascular and tissue changes, but new technologies provide data at the intracellular level that could explain how the cells respond to the aggression more clearly. This review aims to emphasize the molecular pathophysiological mechanisms in patients with type 2 diabetes mellitus and periodontitis, which are marked by different impaired central regulators including mitochondrial dysfunction, impaired immune system and autophagy pathways, oxidative stress, and the crosstalk between adenosine monophosphate-activated protein kinase (AMPK) and the renin-angiotensin system (RAS). All of them are the shared background behind both diseases that could explain its relationship. These should be taken in consideration if we would like to improve the treatment outcomes. Currently, the main treatment strategies in diabetes try to reduce glycemia index as the most important aspect, and in periodontitis try to reduce the presence of oral bacteria. We propose to add to the therapeutic guidelines the handling of all the intracellular disorders to try to obtain better treatment success.
Collapse
Affiliation(s)
- Juliana Portes
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
| | - Beatriz Bullón
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
| | - José Luis Quiles
- Biomedical Research Center (CIBM), Department of Physiology, University Campus of Cartuja, Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, C/Isabel Torres, 21, 39011 Santander, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche. Via Tronto 10A, 60126 Torrette di Ancona, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Pedro Bullón
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
- Correspondence:
| |
Collapse
|
24
|
Kanegasaki S, Tsuchiya T. A possible way to prevent the progression of bone lesions in multiple myeloma via Src-homology-region-2-domain-containing-phosphatase-1 activation. J Cell Biochem 2021; 122:1313-1325. [PMID: 33969922 DOI: 10.1002/jcb.29949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
On the basis of our recent findings, in which multiple receptor-mediated mast cell functions are regulated via a common signaling cascade, we posit that the formation and functioning of osteoclasts are also controlled by a similar common mechanism. These cells are derived from the same granulocyte/monocyte progenitors and share multiple receptors except those that are cell-specific. In both types of cells, all known receptors reside in lipid rafts, form multiprotein complexes with recruited signaling molecules, and are internalized upon receptor engagement. Signal transduction proceeds in a chain of protein phosphorylations, where adaptor protein LAT (linker-for-activation-of-T-cells) plays a central role. The key kinase that associates LAT phosphorylation and lipid raft internalization is Syk (spleen-tyrosine-kinase) and/or an Src-family-kinase, most probably Lck (lymphocyte-specific-protein-tyrosine-kinase). Dephosphorylation of phosphorylated Syk and Lck by activated SHP-1 (Src-homology-region-2-domain-containing-phosphatase-1) terminates the signal transduction and endocytosis of receptors, resulting in inhibition of osteoclast differentiation and other functions. In malignant plasma cells (MM cells) too, SHP-1 plays a similar indispensable role in controlling signal transduction required for survival and proliferation, though BLNK (B-cell-linker-protein), a functional equivalent of LAT and SLP-76 (SH2-domain-containing-leukocyte-protein-of-76-kDa) in B cells, is used instead of LAT. In both osteoclasts and MM cells, therefore, activated SHP-1 acts negatively in receptor-mediated cellular functions. In osteoblasts, however, activated SHP-1 promotes differentiation, osteocalcin generation, and mineralization by preventing both downregulation of transcription factors, such as Ostrix and Runx2, and degradation of β-catenin required for activation of the transcription factors. SHP-1 is activated by tyrosine phosphorylation and micromolar doses (M-dose) of CCRI-ligand-induced SHP-1 activation. Small molecular compounds, such as A770041, Sorafenib, Nitedanib, and Dovitinib, relieve the autoinhibitory conformation. Activation of SHP-1 by M-dose CCRI ligands or the compounds described may prevent the progression of bone lesions in MM.
Collapse
Affiliation(s)
- Shiro Kanegasaki
- Department of Lipid Signaling, Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoko Tsuchiya
- Department of Molecular Immunology and Inflammation, Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Sun K, Zhu J, Deng Y, Xu X, Kong F, Sun X, Huan L, Ren C, Sun J, Shi J. Gamabufotalin Inhibits Osteoclastgenesis and Counteracts Estrogen-Deficient Bone Loss in Mice by Suppressing RANKL-Induced NF-κB and ERK/MAPK Pathways. Front Pharmacol 2021; 12:629968. [PMID: 33967763 PMCID: PMC8104077 DOI: 10.3389/fphar.2021.629968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022] Open
Abstract
Osteolytic bone disease is a condition of imbalanced bone homeostasis, characterized mainly by excessive bone-resorptive activity, which could predispose these populations, such as the old and postmenopausal women, to developing high risk of skeletal fragility and fracture. The nature of bone homeostasis is the coordination between the osteoblasts (OBs) and osteoclasts (OCs). Abnormal activation of osteoclasts (OCs) could compromise the bone homeostasis, constantly followed by a clutch of osteolytic diseases, including postmenopausal osteoporosis, osteoarthritis, and rheumatoid arthritis. Thus, it is imperatively urgent to explore effective medical interventions for patients. The traditional Chinese medicine (TCM) gamabufotalin (CS-6) is a newly identified natural product from Chansu and has been utilized for oncologic therapies owing to its good clinical efficacy with less adverse events. Previous study suggested that CS-6 could be a novel anti-osteoporotic agent. Nevertheless, whether CS-6 suppresses RANK-(receptor activator of nuclear factor-κ B ligand)/TRAF6 (TNF receptor-associated factor 6)-mediated downstream signaling activation in OCs, as well as the effects of CS-6 on OC differentiation in vivo, remains elusive. Therefore, in this present study, we aimed to explore the biological effects of CS-6 on osteoclastogenesis and RANKL-induced activation of related signaling pathways, and further to examine the potential therapeutic application in estrogen-deficient bone loss in the mice model. The results of in vitro experiment showed that CS-6 can inhibit RANKL-induced OC formation and the ability of bone resorption in a dose-dependent manner at both the early and late stages of osteoclastogenesis. The gene expression of OC-related key genes such as tartrate-resistant acid phosphatase (TRAP), CTSK, DC-STAMP, MMP9, and β3 integrin was evidently reduced. In addition, CS-6 could mitigate the systemic estrogen-dependent bone loss and pro-inframammary cytokines in mice in vivo. The molecular mechanism analysis suggested that CS-6 can suppress RANKL/TRAF6-induced early activation of NF-κB and ERK/MAPK signaling pathways, which consequently suppressed the transcription activity of c-Fos and NFATc1. Taken together, this present study provided ample evidence that CS-6 has the promise to become a therapeutic candidate in treating osteolytic conditions mediated by elevated OC formation and bone resorption.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Zhu
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yi Deng
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ximing Xu
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fanqi Kong
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaofei Sun
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Le Huan
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Changzhen Ren
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jingchuan Sun
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiangang Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
26
|
Rosenberg SA, Migliorati C, Romanos GE. Is medication-related osteonecrosis of the jaw associated with tumor necrosis factor-α inhibition? Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 131:422-427. [PMID: 33408034 DOI: 10.1016/j.oooo.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This article reviews the literature and evidence of the association of medication-related osteonecrosis of the jaw with tumor necrosis factor-α inhibition. METHODS A systematic review was performed using electronic databases (PubMed, MEDLINE, and Embase) using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Key terms were used in the search. No restrictions were placed on publication status. Selection criteria comprised all levels of available evidence. Articles in the English language were selected up to and including July 2020. Reference lists of relevant studies were searched for additional articles. Articles were selected on the basis of inclusion and exclusion criteria. Findings from eligible studies were extracted by one reviewer and confirmed by a second. Disagreements were settled through discussion. RESULTS The initial search of the key terms yielded 2107 articles. There were 1192 articles remaining after removal of duplicates and addition of 6 articles that were hand-selected from among reference lists of relevant studies. There were 12 eligible articles after screening. The full texts were read, and 5 articles were included on the basis of inclusion and exclusion criteria. CONCLUSIONS Further research is required to determine an association of medication-related osteonecrosis of the jaw and tumor necrosis factor-α inhibition.
Collapse
Affiliation(s)
- Stacy A Rosenberg
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cesar Migliorati
- College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Georgios E Romanos
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
27
|
Osteoclast Multinucleation: Review of Current Literature. Int J Mol Sci 2020; 21:ijms21165685. [PMID: 32784443 PMCID: PMC7461040 DOI: 10.3390/ijms21165685] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Multinucleation is a hallmark of osteoclast maturation. The unique and dynamic multinucleation process not only increases cell size but causes functional alterations through reconstruction of the cytoskeleton, creating the actin ring and ruffled border that enable bone resorption. Our understanding of the molecular mechanisms underlying osteoclast multinucleation has advanced considerably in this century, especially since the identification of DC-STAMP and OC-STAMP as “master fusogens”. Regarding the molecules and pathways surrounding these STAMPs, however, only limited progress has been made due to the absence of their ligands. Various molecules and mechanisms other than the STAMPs are involved in osteoclast multinucleation. In addition, several preclinical studies have explored chemicals that may be able to target osteoclast multinucleation, which could enable us to control pathogenic bone metabolism more precisely. In this review, we will focus on recent discoveries regarding the STAMPs and other molecules involved in osteoclast multinucleation.
Collapse
|
28
|
Lu J, Ye C, Huang Y, Huang D, Tang L, Hou W, Kuang Z, Chen Y, Xiao S, Yishake M, He R. Corilagin suppresses RANKL-induced osteoclastogenesis and inhibits oestrogen deficiency-induced bone loss via the NF-κB and PI3K/AKT signalling pathways. J Cell Mol Med 2020; 24:10444-10457. [PMID: 32681612 PMCID: PMC7521306 DOI: 10.1111/jcmm.15657] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Over‐activated osteoclastogenesis, which is initiated by inflammation, has been implicated in osteoporosis. Corilagin, a natural compound extracted from various medicinal herbaceous plants, such as Cinnamomum cassia, has antioxidant and anti‐inflammatory activities. We found that Corilagin suppressed osteoclast differentiation in a dose‐dependent manner, significantly decreased osteoclast‐related gene expression and impaired bone resorption by osteoclasts. Moreover, phosphorylation of members of the nuclear factor‐kappaB (NF‐κB) and PI3K/AKT signalling pathways was reduced by Corilagin. In a murine model of osteoporosis, Corilagin inhibited osteoclast functions in vivo and restored oestrogen deficiency‐induced bone loss. In conclusion, our findings suggested that Corilagin inhibited osteoclastogenesis by down‐regulating the NF‐κB and PI3K/AKT signalling pathways, thus showing its potential possibility for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jinwei Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yanyong Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Department of Orthopedic Surgery, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Donghui Huang
- Department of Orthopedic Surgery, Hangzhou Third Hospital, Hangzhou, China
| | - Lan Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Weiduo Hou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Zhihui Kuang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yazhou Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Shining Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Mumingjiang Yishake
- Orthopedics Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongxin He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Chen K, Yan Z, Wang Y, Yang Y, Cai M, Huang C, Li B, Yang M, Zhou X, Wei X, Yang C, Chen Z, Zhai X, Li M. Shikonin mitigates ovariectomy-induced bone loss and RANKL-induced osteoclastogenesis via TRAF6-mediated signaling pathways. Biomed Pharmacother 2020; 126:110067. [PMID: 32272431 DOI: 10.1016/j.biopha.2020.110067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Postmenopausal osteoporosis results from estrogen withdrawal and is characterized mainly by bone resorption. Shikonin is a bioactive constitute of Chinese traditional herb which plays a role in antimicrobial and antitumor activities. The study was designed to investigate the role of shikonin on postmenopausal osteoporosis and explore its underlying mechanisms. METHODS Immunofluorescence staining was performed to evaluate the effects of shikonin on actin ring formation. The expression levels of the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathway were determined by Western blot analysis. To determine whether shikonin influences the receptor activator of nuclear factor-κB ligand (RANKL)-induced association between receptor activator of NF-κB (RANK) and tumor necrosis factor receptor associated factor 6 (TRAF6), immunofluorescence staining and immunoprecipitation experiments were performed. During our validation model, histomorphometric examination and micro-computed tomography (CT) were conducted to assess the morphology of osteoporosis. RESULTS Shikonin prevented bone loss by inhibiting osteoclastogenesis in vitro and improving bone loss in ovariectomized mice in vivo. At the molecular level, Western blot analysis indicated that shikonin inhibited the phosphorylation of inhibitor of NF-κB (IκB), P50, P65, extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), and P38. Interaction of TRAF6 and RANK was prevented, and downstream MAPK and NF-κB signaling pathways were downregulated. CONCLUSION Osteoclastic bone resorption was reduced in the presence of shikonin in vitro and in vivo. Shikonin is a promising candidate for treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Kai Chen
- Department of Orthopedics, Changhai Hospital of Navy Medical University, Shanghai 200433, China.
| | - Zijun Yan
- Graduate Management Unit, Shanghai Changhai Hospital, Navy Medical University, Shanghai 200433, China.
| | - Yiran Wang
- Shanghai Changhai Hospital, Navy Medical University, Shanghai 200433, China.
| | - Yilin Yang
- Shanghai Changhai Hospital, Navy Medical University, Shanghai 200433, China.
| | - Mengxi Cai
- Graduate Management Unit, Shanghai Changhai Hospital, Navy Medical University, Shanghai 200433, China.
| | - Chunyou Huang
- Graduate Management Unit, Shanghai Changhai Hospital, Navy Medical University, Shanghai 200433, China.
| | - Bo Li
- Department of Orthopedics, Changhai Hospital of Navy Medical University, Shanghai 200433, China.
| | - Mingyuan Yang
- Department of Orthopedics, Changhai Hospital of Navy Medical University, Shanghai 200433, China.
| | - Xiaoyi Zhou
- Department of Orthopedics, Changhai Hospital of Navy Medical University, Shanghai 200433, China.
| | - Xianzhao Wei
- Department of Orthopedics, Changhai Hospital of Navy Medical University, Shanghai 200433, China.
| | - Changwei Yang
- Department of Orthopedics, Changhai Hospital of Navy Medical University, Shanghai 200433, China.
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital of Navy Medical University, Shanghai 200433, China.
| | - Xiao Zhai
- Department of Orthopedics, Changhai Hospital of Navy Medical University, Shanghai 200433, China.
| | - Ming Li
- Department of Orthopedics, Changhai Hospital of Navy Medical University, Shanghai 200433, China.
| |
Collapse
|