1
|
Joodi SA, Khattab MM, Ibrahim WW. Repurposing of cabergoline to improve cognitive decline in D-galactose-injected ovariectomized rats: Modulation of AKT/mTOR, GLT-1/P38-MAPK, and ERK1/2 signaling pathways. Toxicol Appl Pharmacol 2025; 500:117391. [PMID: 40349788 DOI: 10.1016/j.taap.2025.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/18/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Dopamine is involved in many physiological functions including reward phenomenon, motor, learning, and memory functions. Dopamine receptor agonists have been shown to reduce amyloid (Aβ) deposition, enhance memory, and improve cortical plasticity in experimental studies and Alzheimer's disease (AD) patients; however, the molecular mechanisms involved haven't been investigated yet. The target of this investigation was to elucidate the modulatory effects of cabergoline (CAB), a dopamine receptor agonist, against AD. Ovariectomized rats were injected with D-galactose (150 mg/kg/day, i.p) for ten weeks to exacerbate AD. CAB administration (1 mg/kg/day, i.p) for 28 days, beginning from the 7th week of D-galactose administration, attenuated the associated histopathological alterations and enhanced the spatial and recognition memory in Morris water maze and Novel object recognition tests, respectively. CAB decreased the hippocampal concentrations of Aβ42, p-tau, and β-secretase, while upregulating α-secretase. Moreover, CAB diminished nuclear factor-kappa β (NF-κβ), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and myeloperoxidase, while elevating brain-derived neurotrophic factor and phospho-cAMP response element binding protein. Further, CAB reduced the hippocampal phosphorylated forms of protein kinase B (AKT) and mammalian target of rapamycin (mTOR) contrary to elevating Beclin-1, resulting in autophagy induction, which participates in accelerating Aβ42 and p-tau aggregates clearance. Moreover, CAB increased the hippocampal glutamate transporter-1 (GLT-1) protein expression, promoting glutamate uptake that possibly reduced Ca2+ overload and consequently decreased the phosphorylated forms of P38-MAPK and ERK1/2. In conclusion, CAB improved cognitive decline of D-gal/OVX animals, restored hippocampal architecture, exerted neuroprotection, and enhanced autophagic machinery via modulating AKT/mTOR, GLT-1/P38-MAPK, and ERK1/2 pathways.
Collapse
Affiliation(s)
- Sheer A Joodi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
2
|
Zhu Z, Hu B, Zhu D, Li X, Chen D, Wu N, Rao Q, Zhang Z, Wang H, Zhu Y. Bromocriptine sensitivity in bromocriptine-induced drug-resistant prolactinomas is restored by inhibiting FGF19/FGFR4/PRL. J Endocrinol Invest 2025; 48:67-80. [PMID: 38926262 DOI: 10.1007/s40618-024-02408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE At present, various treatment strategies are available for pituitary adenomas, including medications, surgery and radiation. The guidelines indicate that pharmacological treatments, such as bromocriptine (BRC) and cabergoline (CAB), are important treatments for prolactinomas, but drug resistance is an urgent problem that needs to be addressed. Therefore, exploring the mechanism of drug resistance in prolactinomas is beneficial for clinical treatment. METHODS In our research, BRC-induced drug-resistant cells were established. Previous RNA sequencing data and an online database were used for preliminary screening of resistance-related genes. Cell survival was determined by Cell Counting Kit-8 (CCK-8) assay, colony formation assays and flow cytometry. Quantitative real-time polymerase chain reaction (qRT‒PCR), western blotting, immunohistochemistry, immunofluorescence and Co-immunoprecipitation (Co-IP) were used to assess the molecular changes and regulation. The therapeutic efficacy of BRC and FGFR4 inhibitor fisogatinib (FISO) combination was evaluated in drug-resistant cells and xenograft tumors in nude mice. RESULTS Consistent with the preliminary results of RNA sequencing and database screening, fibroblast growth factor 19 (FGF19) expression was elevated in drug-resistant cells and tumor samples. With FGF19 silencing, drug-resistant cells exhibited increased sensitivity to BRC and decreased intracellular phosphorylated fibroblast growth factor receptor 4 (FGFR4) levels. After confirming that FGF19 binds to FGFR4 in prolactinoma cells, we found that FGF19/FGFR4 regulated prolactin (PRL) synthesis through the ERK1/2 and JNK signaling pathways. Regarding the effect of targeting FGF19/FGFR4 on BRC efficacy, FISO and BRC synergistically inhibited the growth of tumor cells, promoted apoptosis and reduced PRL levels. CONCLUSION Overall, our study revealed FGF19/FGFR4 as a new mechanism involved in the drug resistance of prolactinomas, and combination therapy targeting the pathway could be helpful for the treatment of BRC-induced drug-resistant prolactinomas.
Collapse
Affiliation(s)
- Z Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - B Hu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - D Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - X Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - D Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - N Wu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Q Rao
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Z Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - H Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| | - Y Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
- Department of Histology and Embryology, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
3
|
Xu W, Tian S, Mao G, Li Y, Qian H, Tao W. Sini San ameliorates lipid metabolism in hyperprolactinemia rat with liver-depression. Curr Res Food Sci 2024; 9:100853. [PMID: 39328388 PMCID: PMC11424950 DOI: 10.1016/j.crfs.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Sini San (SNS) is used to treat liver depression and is applied in both food and herbal medicine. Hyperprolactinemia (HPRL) is a common endocrine disorder, and patients with HPRL are usually associated with depressive symptoms. However, whether SNS is effective in treating HPRL combined with liver depression and its underlying mechanisms are unknown. We applied network pharmacology and molecular docking to predict the mechanism of SNS for the treatment of liver-depressed HPRL. Therapeutic effects were validated in animal models and cells. Metabolomics was also used to evaluate the effect of SNS on liver-depressed HPRL. Network pharmacology and molecular docking analysis showed that AKT1, TNF and IL6 were the key targets, and SNS improved depressive behaviors, regulated sex hormone levels, and improved ovarian morphology. Combined network pharmacology and metabolomics analyses showed that SNS could act by regulating lipid metabolism. In addition, SNS significantly reduced the release of prolactin (PRL) in rat pituitary tumor MMQ cells. Overall, SNS can significantly treat HPRL liver depression at both animal and cellular levels, and effectively alleviate the related symptoms by regulating lipid metabolism. AKT1, TNF and IL6 may be key targets.
Collapse
Affiliation(s)
- Weidong Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Shasha Tian
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Guanqun Mao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yu Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Hua Qian
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Wenhua Tao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
4
|
Liu C, Xue Q, Zhang Y, Zhang D, Li Y. Anti-hypertensive effect and potential mechanism of gastrodia-uncaria granules based on network pharmacology and experimental validation. J Clin Hypertens (Greenwich) 2024; 26:1024-1038. [PMID: 38990083 PMCID: PMC11488320 DOI: 10.1111/jch.14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Hypertension has become a major contributor to the morbidity and mortality of cardiovascular diseases worldwide. Despite the evidence of the anti-hypertensive effect of gastrodia-uncaria granules (GUG) in hypertensive patients, little is known about its potential therapeutic targets as well as the underlying mechanism. GUG components were sourced from TCMSP and HERB, with bioactive ingredients screened. Hypertension-related targets were gathered from DisGeNET, OMIM, GeneCards, CTD, and GEO. The STRING database constructed a protein-protein interaction network, visualized by Cytoscape 3.7.1. Core targets were analyzed via GO and KEGG using R package ClusterProfiler. Molecular docking with AutodockVina 1.2.2 revealed favorable binding affinities. In vivo studies on hypertensive mice and rats validated network pharmacology findings. GUG yielded 228 active ingredients and 1190 targets, intersecting with 373 hypertension-related genes. PPI network analysis identified five core genes: AKT1, TNF-α, GAPDH, IL-6, and ALB. Top enriched GO terms and KEGG pathways associated with the anti-hypertensive properties of GUG were documented. Molecular docking indicated stable binding of core components to targets. In vivo study showed that GUG could improve vascular relaxation, alleviate vascular remodeling, and lower blood pressure in hypertensive animal models possibly through inhibiting inflammatory factors such as AKT1, mTOR, and CCND1. Integrated network pharmacology and in vivo experiment showed that GUG may exert anti-hypertensive effects by inhibiting inflammation response, which provides some clues for understanding the effect and mechanisms of GUG in the treatment of hypertension.
Collapse
Affiliation(s)
- Chu‐Hao Liu
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Qi‐Qi Xue
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Yi‐Qing Zhang
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Dong‐Yan Zhang
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Yan Li
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Xu L, Ning R, Du X, Zhang Y, Gu C, Wang B, Bian L, Sun Q, Sun Y, Ren J. Bone Morphogenetic Protein Signaling Agonist SB4 (BMPSB4) Inhibits Corticotroph Pituitary Neuroendocrine Tumors by Activation of Autophagy via a BMP4/SMADs-Dependent Pathway. ACS Pharmacol Transl Sci 2024; 7:1951-1970. [PMID: 39022361 PMCID: PMC11249644 DOI: 10.1021/acsptsci.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Corticotroph pituitary neuroendocrine tumors (PitNETs), associated with Cushing's disease (CD), have limited treatment options other than surgical resection. Bone morphogenetic protein 4 (BMP4), a potential therapeutic target, is decreased in patients with CD. Previous studies have identified BMPSB4 as a potent agonist of the BMP4 signaling pathway. Here, we investigated the effect of BMPSB4 on the corticotroph PitNET cell line AtT20/D16v-F2 and explored the underlying mechanisms and therapeutic potential. We verified the low expression patterns of BMP4 and downstream p-SMAD1/5/9 in CD samples at the transcriptional and protein levels. In addition, BMPSB4 activated SMAD1/5/9 in a time- and concentration-dependent manner, with concomitant inhibitory effects on AtT20/D16v-F2 cells. Further RNA sequencing, transmission electron microscopy (TEM), and transfection with the mRFP-EGFP-LC3 adenoviral vector revealed that BMPSB4 induced cellular autophagy, which was the basis for the inhibitory effect of BMPSB4. Moreover, we demonstrated that autophagy induced by BMPSB4 was achieved through the SMADs-dependent pathway. In vivo, BMPSB4 inhibited tumor growth and significantly reduced adrenocorticotrophin (ACTH) and corticosterone (CORT) secretion, thereby alleviating the CD phenotype. In conclusion, this study identified BMPSB4 as an effective therapeutic agent for CD. BMPSB4 activates autophagy through a SMADs-dependent pathway, which in turn promotes autophagy-mediated cell death. Our work further elucidates the mechanism of the BMP4 signaling pathway in CD and suggests broad prospects for the development and application of BMPSB4 in CD therapy.
Collapse
Affiliation(s)
- Longyu Xu
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Ruonan Ning
- Department
of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Xueqing Du
- Department
of Respiratory and Critical Care Medicine of Ruijin Hospital, Department
of Immunology and Microbiology, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yuxin Zhang
- Department
of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Changwei Gu
- Department
of Neurosurgery, Ruijin Hospital, Luwan
Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P. R. China
| | - Baofeng Wang
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Liuguan Bian
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Qingfang Sun
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
- Department
of Neurosurgery, Ruijin Hospital, Luwan
Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P. R. China
| | - Yuhao Sun
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Jie Ren
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| |
Collapse
|
6
|
Han L, Lu SN, Nishimura T, Kobayashi K. Regulatory roles of dopamine D2 receptor in milk protein production and apoptosis in mammary epithelial cells. Exp Cell Res 2024; 439:114090. [PMID: 38740167 DOI: 10.1016/j.yexcr.2024.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Dopamine D2 receptors (D2Rs) play crucial roles in regulating diverse physiological functions of the central nervous system and peripheral organs. D2Rs are also expressed in mammary glands. However, which cell types express D2Rs and whether they are involved in milk production remains unclear. The present findings revealed that D2Rs are expressed in the apical regions of the lateral membranes of mammary epithelial cells (MECs) in lactating mice. We also investigated the effects of the D2R agonist bromocriptine and/or antagonist domperidone on intracellular cAMP levels, milk protein production, and apoptosis in a lactation culture model of MECs that produce major milk components like lactating MECs in vivo. We found that bromocriptine decreased intracellular cAMP levels, whereas domperidone dose-dependently neutralized this effect. Bromocriptine also inhibited casein and lactoferrin production and suppressed activities of STAT5 and glucocorticoid receptors (GRs). Domperidone neutralized the inhibition of casein production as well as STAT5 and GR inactivation induced by bromocriptine. Furthermore, D2R activation by bromocriptine induced apoptosis and inactivated ERK, a signaling molecule responsible for promoting cell proliferation and survival. Domperidone attenuated ERK inactivation and apoptosis induced by bromocriptine. These findings suggest that D2Rs play regulatory roles in milk protein production and apoptosis in MECs.
Collapse
Affiliation(s)
- Liang Han
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Shan-Ni Lu
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| |
Collapse
|
7
|
Makvand M, Mirtorabi SD, Campbell A, Zali A, Ahangari G. Exploring neuroadaptive cellular pathways in chronic morphine exposure: An in-vitro analysis of cabergoline and Mdivi-1 co-treatment effects on the autophagy-apoptosis axis. J Cell Biochem 2024; 125:e30558. [PMID: 38577900 DOI: 10.1002/jcb.30558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
The complex impacts of prolonged morphine exposure continue to be a significant focus in the expanding area of addiction studies. This research investigates the effectiveness of a combined treatment using Cabergoline and Mdivi-1 to counteract the neuroadaptive changes caused by in vitro morphine treatment. The impact of Methadone, Cabergoline, and a combination of Cabergoline and Mdivi-1 on the cellular and molecular responses associated with Morphine-induced changes was studied in human Neuroblastoma (SK-N-MC) and Glioblastoma (U87-MG) cell lines that were exposed to prolong Morphine treatment. Cabergoline and Mdivi-1 combined treatment effectively influenced the molecular alterations associated with neuroadaptation in chronic morphine-exposed neural cells. This combination therapy normalized autophagy and reduced oxidative stress by enhancing total-antioxidant capacity, mitigating apoptosis, restoring BDNF expression, and balancing apoptotic elements. Our research outlines morphine's dual role in modulating mitochondrial dynamics via the dysregulation of the autophagy-apoptosis axis. This emphasizes the significant involvement of DRP1 activity in neurological adaptation processes, as well as disturbances in the dopaminergic pathway during in vitro chronic exposure to morphine in neural cells. This study proposes a novel approach by recommending the potential effectiveness of combining Cabergoline and Mdivi-1 to modulate the neuroadaptations caused by morphine. Additionally, we identified BDNF and PCNA in neural cells as potential neuroprotective markers for assessing the effectiveness of drugs against opioid toxicity, emphasizing the need for further validation. The study uncovers diverse effects observed in pretreated morphine glioblastoma cells under treatment with Cabergoline and methadone. This highlights the potential for new treatments in the DRD2 pathway and underscores the importance of investigating the interplay between autophagy and apoptosis to advance research in managing cancer-related pain. The study necessitates an in-depth investigation into the relationship between autophagy and apoptosis, with a specific emphasis on protein interactions and the dynamics of cell signaling.
Collapse
Affiliation(s)
- Mina Makvand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Ahangari
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
8
|
Miao X, Fu Z, Luo X, Wang J, Yuan L, Zhao S, Feng Y, Huang S, Xiao S. A study on the correlations of PRL levels with anxiety, depression, sleep, and self-efficacy in patients with prolactinoma. Front Endocrinol (Lausanne) 2024; 15:1369729. [PMID: 38572480 PMCID: PMC10989272 DOI: 10.3389/fendo.2024.1369729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Purpose The purpose of this study was to explore the factors influencing PRL levels in patients with prolactinoma and to investigate the correlations between anxiety, depression, sleep, self-efficacy, and PRL levels. Methods This retrospective study included 176 patients with prolactinoma who received outpatient treatment at the Affiliated Hospital of Zunyi Medical University from May 2017 to August 2022. The general information questionnaire, Hospital Anxiety and Depression Scale (HADS), Athens Insomnia Scale (AIS), and General Self-Efficacy Scale (GSES) were used for data collection. A generalized estimating equation (GEE) model was used to analyze the factors influencing PRL levels in patients with prolactinoma. GEE single-effect analysis was used to compare PRL levels at different time points between anxiety group and nonanxiety group, between insomnia group and normal group, and between low, medium, and high self-efficacy groups. Results The median baseline PRL level and the PRL levels at 1, 3, 6, and 12 months of follow-up were 268.50 ng/ml, 122.25 ng/ml, 21.20 ng/ml, 19.65 ng/ml, and 16.10 ng/ml, respectively. Among patients with prolactinoma, 59.10% had anxiety (HADS-A score = 7.35 ± 3.34) and 28.98% had depression (HADS-D score = 5.23 ± 3.87), 9.10% had sleep disorders (AIS score = 6.10 ± 4.31) and 54.55% had low self-efficacy (GSES score = 2.13 ± 0.83). Educational level, tumor size, number of visits, sleep quality, anxiety level, and self-efficacy level were found to be factors influencing PRL levels in patients with prolactinoma (P<0.05). Higher PRL levels were observed in the anxiety group compared to the non-anxiety group (P<0.001), in the insomnia group compared to the normal group (P<0.05), and in the low self-efficacy group compared to the medium and high self-efficacy groups (P<0.05). Conclusion PRL levels in patients with prolactinoma are related to education level, tumor size, number of visits, anxiety, self-efficacy, and sleep but not depression. PRL levels were higher in patients with anxiety, low self-efficacy, and sleep disorders.
Collapse
Affiliation(s)
- Xiaoju Miao
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Ward of the Neurosurgery Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhongmin Fu
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Ward of the Neurosurgery Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xian Luo
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Ward of the Neurosurgery Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Wang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Ward of the Neurosurgery Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lili Yuan
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Ward of the Neurosurgery Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shunjun Zhao
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The First Ward of the Neurosurgery Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Feng
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shiming Huang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shunwu Xiao
- The First Ward of the Neurosurgery Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Zhou Y, Zhang A, Fang C, Yuan L, Shao A, Xu Y, Zhou D. Oxidative stress in pituitary neuroendocrine tumors: Affecting the tumor microenvironment and becoming a new target for pituitary neuroendocrine tumor therapy. CNS Neurosci Ther 2023; 29:2744-2759. [PMID: 37341156 PMCID: PMC10493678 DOI: 10.1111/cns.14315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Pituitary adenomas (PAs), or pituitary neuroendocrine tumors (PitNETs), are commonly found in the anterior pituitary gland. Although the majority of PitNETs are benign and stable, several tumors have malignant characteristics. The tumor microenvironment (TME) plays an important role in the process of tumorigenesis and is composed of several types of cells. Various cells in the TME are significantly affected by oxidative stress. It has been reported that immunotherapeutic strategies have good effects in several cancers. However, the clinical potential of immunotherapies in PitNETs has not yet been fully discussed. Oxidative stress can regulate PitNET cells and immune cells in the TME, thus affecting the immune status of the TME of PitNETs. Therefore, modulation of oxidative stress-regulated immune cells using a combination of several agents and the immune system to suppress PitNETs is a promising therapeutic direction. In this review, we systematically analyzed the oxidative stress process within PitNET cells and various immune cells to elucidate the potential value of immunotherapy.
Collapse
Affiliation(s)
- Yuhang Zhou
- The First Clinical Medical CollegeHeilongjiang University of Chinese MedicineHarbinChina
- Health Management CenterTongde Hospital of Zhejiang ProvinceHangzhouChina
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ling Yuan
- School of Public Health, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Danyang Zhou
- Health Management CenterTongde Hospital of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
10
|
Derwich A, Sykutera M, Bromińska B, Rubiś B, Ruchała M, Sawicka-Gutaj N. The Role of Activation of PI3K/AKT/mTOR and RAF/MEK/ERK Pathways in Aggressive Pituitary Adenomas-New Potential Therapeutic Approach-A Systematic Review. Int J Mol Sci 2023; 24:10952. [PMID: 37446128 PMCID: PMC10341524 DOI: 10.3390/ijms241310952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary tumors (PT) are mostly benign, although occasionally they demonstrate aggressive behavior, invasion of surrounding tissues, rapid growth, resistance to conventional treatments, and multiple recurrences. The pathogenesis of PT is still not fully understood, and the factors responsible for its invasiveness, aggressiveness, and potential for metastasis are unknown. RAF/MEK/ERK and mTOR signaling are significant pathways in the regulation of cell growth, proliferation, and survival, its importance in tumorigenesis has been highlighted. The aim of our review is to determine the role of the activation of PI3K/AKT/mTOR and RAF/MEK/ERK pathways in the pathogenesis of pituitary tumors. Additionally, we evaluate their potential in a new therapeutic approach to provide alternative therapies and improved outcomes for patients with aggressive pituitary tumors that do not respond to standard treatment. We perform a systematic literature search using the PubMed, Embase, and Scopus databases (search date was 2012-2023). Out of the 529 screened studies, 13 met the inclusion criteria, 7 related to the PI3K/AKT/mTOR pathway, and 7 to the RAF/MEK/ERK pathway (one study was used in both analyses). Understanding the specific factors involved in PT tumorigenesis provides opportunities for targeted therapies. We also review the possible new targeted therapies and the use of mTOR inhibitors and TKI in PT management. Although the RAF/MEK/ERK and PI3K/AKT/mTOR pathways play a pivotal role in the complex signaling network along with many interactions, further research is urgently needed to clarify the exact functions and the underlying mechanisms of these signaling pathways in the pathogenesis of pituitary adenomas and their role in its invasiveness and aggressive clinical outcome.
Collapse
Affiliation(s)
- Aleksandra Derwich
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Monika Sykutera
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Barbara Bromińska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| |
Collapse
|
11
|
Li Z, Chen L, Zhang D, Huang X, Yang J, Li W, Wang C, Meng X, Huang G. Intranasal 15d-PGJ2 inhibits the growth of rat lactotroph pituitary neuroendocrine tumors by inducing PPARγ-dependent apoptotic and autophagic cell death. Front Neurosci 2023; 17:1109675. [PMID: 37250410 PMCID: PMC10213263 DOI: 10.3389/fnins.2023.1109675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
PPARγ agonists have been reported to induce cell death in pituitary neuroendocrine tumor (PitNET) cell cultures. However, the therapeutic effects of PPARγ agonists in vivo remain unclear. In the present study, we found that intranasal 15d-PGJ2, an endogenous PPARγ agonist, resulted in growth suppression of Fischer 344 rat lactotroph PitNETs induced by subcutaneous implantation with a mini-osmotic pump containing estradiol. Intranasal 15d-PGJ2 reduced the volume and weight of the pituitary gland and the level of serum prolactin (PRL) in rat lactotroph PitNETs. 15d-PGJ2 treatment attenuated pathological changes and significantly decreased the ratio of PRL/pituitary-specific transcription factor 1 (Pit-1) and estrogen receptor α (ERα)/Pit-1 double-positive cells. Moreover, 15d-PGJ2 treatment induced apoptosis in the pituitary gland characterized by an increased ratio of TUNEL-positive cells, cleavage of caspase-3, and elevated activity of caspase-3. 15d-PGJ2 treatment decreased the levels of cytokines, including TNF-α, IL-1β, and IL-6. Furthermore, 15d-PGJ2 treatment markedly increased the protein expression of PPARγ and blocked autophagic flux, as evidenced by the accumulation of LC3-II and SQSTM1/p62 and the decrease in LAMP-1 expression. Importantly, all these effects mediated by 15d-PGJ2 were abolished by cotreatment with the PPARγ antagonist GW9662. In conclusion, intranasal 15d-PGJ2 suppressed the growth of rat lactotroph PitNETs by inducing PPARγ-dependent apoptotic and autophagic cell death. Therefore, 15d-PGJ2 may be a potential new drug for lactotroph PitNETs.
Collapse
|
12
|
Xu Q, Yu ZX, Xie YL, Bai L, Liang SR, Ji QH, Zhou J. MicroRNA-137 inhibits pituitary prolactinoma proliferation by targeting AKT2. J Endocrinol Invest 2022; 46:1145-1154. [PMID: 36427136 DOI: 10.1007/s40618-022-01964-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Prolactinoma is the most common type of pituitary adenoma. Most prolactinoma need medical treatment, but some of them are aggressive and require surgery. In previous decades, some miRNAs have been manifested as oncogenes or tumor suppressors. Consequently, miRNAs' abnormal expression involves tumorigenesis, invasion, and metastasis of different types of tumors, including pituitary tumors. The current study aim to explore the aggressiveness-associated miRNAs in prolactinoma and underlying molecular mechanisms based on the bioinformatic analysis and fundamental experiment studies. METHODS GSE46294 miRNA expression profile from the Gene Expression Omnibus (GEO) database was downloaded. Differentially expressed miRNAs (DEMs) were filtered from this data. Subsequently, the target genes of downregulated miRNAs were analyzed by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. RT-qPCR, western blot, and CCK-8 assays were used to validate the effect of miR-137 on the proliferation of MMQ cells through AKT2. Finally, the binding site of rat miR-137 to AKT2 were predicted by Targetscan and Bibiserv database, and verified by double luciferase reporter assay. RESULTS Twenty-four changed DEMs (fourteen upregulated and ten downregulated) were identified. Target genes of downregulated DEMs were classified into three groups by GO terms. KEGG pathway enrichment analysis revealed these target genes enriched in the PI3K-Akt pathway. We also confirmed that miR-137 can target AKT2 and inhibit the proliferation of MMQ cells induced by AKT2. CONCLUSION MiR-137 suppressed prolactinomas' aggressive behavior by targeting AKT2.
Collapse
Affiliation(s)
- Q Xu
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Z X Yu
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Y L Xie
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi'an, 710032, China
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - L Bai
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi'an, 710032, China
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - S R Liang
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Q H Ji
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - J Zhou
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
13
|
McCorry MC, Reardon KF, Black M, Williams C, Babakhanova G, Halpern JM, Sarkar S, Swami NS, Mirica KA, Boermeester S, Underhill A. Sensor technologies for quality control in engineered tissue manufacturing. Biofabrication 2022; 15:10.1088/1758-5090/ac94a1. [PMID: 36150372 PMCID: PMC10283157 DOI: 10.1088/1758-5090/ac94a1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
The use of engineered cells, tissues, and organs has the opportunity to change the way injuries and diseases are treated. Commercialization of these groundbreaking technologies has been limited in part by the complex and costly nature of their manufacture. Process-related variability and even small changes in the manufacturing process of a living product will impact its quality. Without real-time integrated detection, the magnitude and mechanism of that impact are largely unknown. Real-time and non-destructive sensor technologies are key for in-process insight and ensuring a consistent product throughout commercial scale-up and/or scale-out. The application of a measurement technology into a manufacturing process requires cell and tissue developers to understand the best way to apply a sensor to their process, and for sensor manufacturers to understand the design requirements and end-user needs. Furthermore, sensors to monitor component cells' health and phenotype need to be compatible with novel integrated and automated manufacturing equipment. This review summarizes commercially relevant sensor technologies that can detect meaningful quality attributes during the manufacturing of regenerative medicine products, the gaps within each technology, and sensor considerations for manufacturing.
Collapse
Affiliation(s)
- Mary Clare McCorry
- Advanced Regenerative Manufacturing Institute, Manchester, NH 03101, United States of America
| | - Kenneth F Reardon
- Chemical and Biological Engineering and Biomedical Engineering, Colorado State University, Fort Collins, CO 80521, United States of America
| | - Marcie Black
- Advanced Silicon Group, Lowell, MA 01854, United States of America
| | - Chrysanthi Williams
- Access Biomedical Solutions, Trinity, Florida 34655, United States of America
| | - Greta Babakhanova
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Jeffrey M Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, United States of America
- Materials Science and Engineering Program, University of New Hampshire, Durham, NH 03824, United States of America
| | - Sumona Sarkar
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Nathan S Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| | - Katherine A Mirica
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States of America
| | - Sarah Boermeester
- Advanced Regenerative Manufacturing Institute, Manchester, NH 03101, United States of America
| | - Abbie Underhill
- Scientific Bioprocessing Inc., Pittsburgh, PA 15238, United States of America
| |
Collapse
|
14
|
Pivonello R, Pivonello C, Simeoli C, De Martino MC, Colao A. The dopaminergic control of Cushing's syndrome. J Endocrinol Invest 2022; 45:1297-1315. [PMID: 35460460 PMCID: PMC9184412 DOI: 10.1007/s40618-021-01661-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Cushing's Syndrome (CS), or chronic endogenous hypercortisolism, is a rare and serious disease due to corticotroph pituitary (Cushing's disease, CD) and extra-pituitary (ectopic CS) tumours overproducing ACTH, or cortisol-secreting adrenal tumours or lesions (adrenal CS). The first-line treatment for CS is represented by the surgical removal of the responsible tumour, but surgery might be unfeasible or ineffective and medical treatment can be required in a relevant percentage of patients with CS, especially CD and ectopic CS. Corticotroph pituitary and extra-pituitary tumours, as well as adrenal tumours and lesions responsible for CS express dopamine receptors (DRs), which have been found to mediate inhibition of hormone secretion and/or cell proliferation in experimental setting, suggesting that dopaminergic system, particularly DRs, might represent a target for the treatment of CS. Dopamine agonists (DAs), particularly cabergoline (CAB), are currently used as off-label treatment for CD, the most common form of CS, demonstrating efficacy in controlling hormone secretion and tumour growth in a relevant number of cases, with the improvement of clinical picture, and displaying good safety profile. Therefore, CAB may be considered a reasonable alternative treatment for persistent or recurrent CD after pituitary surgery failure, but occasionally also before pituitary surgery, as adjuvant treatment, or even instead of pituitary surgery as first-line treatment in case of surgery contraindications or refusal. A certain beneficial effect of CAB has been also reported in ectopic CS. However, the role of DAs in the clinical management of the different types of CS requires further evaluations.
Collapse
Affiliation(s)
- R Pivonello
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Università Federico II Di Napoli, Naples, Italy.
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy.
| | - C Pivonello
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Università Federico II Di Napoli, Naples, Italy
| | - C Simeoli
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Università Federico II Di Napoli, Naples, Italy
| | - M C De Martino
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Università Federico II Di Napoli, Naples, Italy
| | - A Colao
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Università Federico II Di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| |
Collapse
|
15
|
Abstract
Importance Recurrent spontaneous abortion (RSA) is a distressing condition experienced by approximately 1% of women trying to conceive. However, the treatment of RSA is a challenge both for clinicians and patients. Objective The aim of this review is to discuss the medical and surgical approach to the management of RSA, including those caused by anatomical, genetic, male, infectious, endocrine, and immune factors. Evidence Acquisition A literature search using MeSH terms for each topic was undertaken using PubMed, supplemented by hand searching for additional references. Retrieved articles were reviewed, synthesized, and summarized. Results Available treatments target hypothetical risk factors for RSA, although the effectiveness of many treatment options is controversial. Intervention should depend on the benefit-to-risk ratio of the proposed treatment. Conclusions and Relevance The etiology of RSA is heterogeneous, and patients often lack specific clinical manifestations, which has hindered the progress in predicting and preventing RSA to some extent. Despite intensive workup, at least 50% of couples do not have a clear underlying pathology. In addition, an evidence-based treatment is not available in most patients even if abnormal test results are present. Many new treatment directions are also still actively exploring; empirical and combined multiple treatments are still the main methods. Target Audience Obstetricians and gynecologists, family physicians. Learning Objectives After completing this activity, the learner should be better able to describe common risk factors for RSA; formulate individualized treatment plans to improve pregnancy outcomes; and propose supportive treatment recommendations for patients with unclear causes.
Collapse
|
16
|
Naz F, Malik A, Riaz M, Mahmood Q, Mehmood MH, Rasool G, Mahmood Z, Abbas M. Bromocriptine Therapy: Review of mechanism of action, safety and tolerability. Clin Exp Pharmacol Physiol 2022; 49:903-922. [DOI: 10.1111/1440-1681.13678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Faiza Naz
- Punjab University College of Pharmacy University of the Punjab Lahore Pakistan
| | - Abdul Malik
- College of Pharmacy University of Sargodha Sargodha Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences University of Sargodha Sargodha Pakistan
| | - Qaisar Mahmood
- College of Pharmacy University of Sargodha Sargodha Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Government College University Faisalabad Pakistan
| | - Ghulam Rasool
- Department of Allied Health Sciences University of Sargodha Sargodha Pakistan
| | - Zahed Mahmood
- Department of Biochemistry Government College University Faisalabad Pakistan
| | - Mazhar Abbas
- Department of Biochemistry College of Veterinary and Animal Sciences, University of Veterinary and Animal Sciences (Jhang Campus) Lahore Pakistan
| |
Collapse
|
17
|
Tan M, Gao S, Ru X, He M, Zhao J, Zheng L. Prediction and Identification of GPCRs Targeting for Drug Repurposing in Osteosarcoma. Front Oncol 2022; 12:828849. [PMID: 35463319 PMCID: PMC9021700 DOI: 10.3389/fonc.2022.828849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Osteosarcoma (OS) is a malignant bone tumor common in children and adolescents. The 5-year survival rate is only 67-69% and there is an urgent need to explore novel drugs effective for the OS. G protein-coupled receptors (GPCRs) are the common drug targets and have been found to be associated with the OS, but have been seldom used in OS. Methods The GPCRs were obtained from GPCRdb, and the GPCRs expression profile of the OS was downloaded from the UCSC Xena platform including clinical data. 10-GPCRs model signatures related to OS risk were identified by risk model analysis with R software. The predictive ability and pathological association of the signatures in OS were explored by bio-informatics analysis. The therapeutic effect of the target was investigated, followed by the investigation of the targeting drug by the colony formation experiment were. Results We screened out 10 representative GPCRs from 50 GPCRs related to OS risk and established a 10-GPCRs prognostic model (with CCR4, HCRTR2, DRD2, HTR1A, GPR158, and GPR3 as protective factors, and HTR1E, OPN3, GRM4, and GPR144 as risk factors). We found that the low-risk group of the model was significantly associated with the higher survival probability, with the area under the curve (AUC) of the ROC greater than 0.9, conforming with the model. Moreover, both risk-score and metastasis were the independent risk factor of the OS, and the risk score was positively associated with the metastatic. Importantly, the CD8 T-cells were more aggregated in the low-risk group, in line with the predict survival rate of the model. Finally, we found that DRD2 was a novel target with approved drugs (cabergoline and bromocriptine), and preliminarily proved the therapeutic effects of the drugs on OS. These novel findings might facilitate the development of OS drugs. Conclusion This study offers a satisfactory 10-GPCRs model signature to predict the OS prognostic, and based on the model signature, candidate targets with approved drugs were provided.
Collapse
Affiliation(s)
- Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shangzhi Gao
- Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application of Guangxi Medical University, Nanning, China
| | - Xiao Ru
- Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application of Guangxi Medical University, Nanning, China
| | - Maolin He
- Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
18
|
Current and Emerging Medical Therapies in Pituitary Tumors. J Clin Med 2022; 11:jcm11040955. [PMID: 35207228 PMCID: PMC8877616 DOI: 10.3390/jcm11040955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
Pituitary tumors (PT) represent in, the majority of cases, benign tumors for which surgical treatment still remains, except for prolactin-secreting PT, the first-line therapeutic option. Nonetheless, the role played by medical therapies for the management of such tumors, before or after surgery, has evolved considerably, due in part to the recent development of well-tolerated and highly efficient molecules. In this review, our aim was to present a state-of-the-art of the current medical therapies used in the field of PT and the benefits and caveats for each of them, and further specify their positioning in the therapeutic algorithm of each phenotype. Finally, we discuss the future of PT medical therapies, based on the most recent studies published in this field.
Collapse
|
19
|
Sabatino ME, Grondona E, De Paul AL. Architects of Pituitary Tumour Growth. Front Endocrinol (Lausanne) 2022; 13:924942. [PMID: 35837315 PMCID: PMC9273718 DOI: 10.3389/fendo.2022.924942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
The pituitary is a master gland responsible for the modulation of critical endocrine functions. Pituitary neuroendocrine tumours (PitNETs) display a considerable prevalence of 1/1106, frequently observed as benign solid tumours. PitNETs still represent a cause of important morbidity, due to hormonal systemic deregulation, with surgical, radiological or chronic treatment required for illness management. The apparent scarceness, uncommon behaviour and molecular features of PitNETs have resulted in a relatively slow progress in depicting their pathogenesis. An appropriate interpretation of different phenotypes or cellular outcomes during tumour growth is desirable, since histopathological characterization still remains the main option for prognosis elucidation. Improved knowledge obtained in recent decades about pituitary tumorigenesis has revealed that this process involves several cellular routes in addition to proliferation and death, with its modulation depending on many signalling pathways rather than being the result of abnormalities of a unique proliferation pathway, as sometimes presented. PitNETs can display intrinsic heterogeneity and cell subpopulations with diverse biological, genetic and epigenetic particularities, including tumorigenic potential. Hence, to obtain a better understanding of PitNET growth new approaches are required and the systematization of the available data, with the role of cell death programs, autophagy, stem cells, cellular senescence, mitochondrial function, metabolic reprogramming still being emerging fields in pituitary research. We envisage that through the combination of molecular, genetic and epigenetic data, together with the improved morphological, biochemical, physiological and metabolically knowledge on pituitary neoplastic potential accumulated in recent decades, tumour classification schemes will become more accurate regarding tumour origin, behaviour and plausible clinical results.
Collapse
Affiliation(s)
- Maria Eugenia Sabatino
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba, Argentina
| | - Ezequiel Grondona
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Ana Lucía De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
- *Correspondence: Ana Lucía De Paul,
| |
Collapse
|
20
|
Tang C, Zhu J, Yuan F, Yang J, Cai X, Ma C. Curcumin Sensitizes Prolactinoma Cells to Bromocriptine by Activating the ERK/EGR1 and Inhibiting the AKT/GSK-3β Signaling Pathway In Vitro and In Vivo. Mol Neurobiol 2021; 58:6170-6185. [PMID: 34463926 DOI: 10.1007/s12035-021-02541-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022]
Abstract
Although bromocriptine (BRC) as first-line drug is recommended for treating patients with prolactinoma, a minority of patients with prolactinoma are resistance to BRC. Moreover, our previous study showed the difference in drug sensitivity in BRC-treated rat prolactinoma cells, MMQ cells are more resistant to BRC, and GH3 cells are more sensitive to BRC. Curcumin (Cur) has been shown to inhibit proliferation of prolactinoma cell lines. The aim of this study is to further investigate whether Cur could enhance the growth-inhibitory effect of BRC resistance on prolactinoma cell lines and its possible mechanism. CCK-8 kit was used to test cell growth. Cell cycle analysis and apoptosis were performed by flow cytometry. Electron microscopy was used to test autophagosome. The mRNA expression profiles were analyzed using the Affymetrix Gene-Chip array. Western blot was used to test protein expression. Our data showed that Cur enhanced the growth-inhibitory effect of BRC on GH3 and MMQ cell proliferation. BRC and Cur both induced cell apoptosis, and Cur could significantly increase the apoptosis of BRC on pituitary adenoma cells through the ERK/EGR1 signaling pathway. Moreover, Cur could enhance the autophagic cell death (ACD) of BRC on tumor cells by inhibiting the AKT/GSK-3β signaling pathway. The same results were confirmed invivo study. Taken together, Cur sensitizes rat prolactinoma cells to BRC by activating the ERK/EGR1 and inhibiting the AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Chao Tang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Junhao Zhu
- Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Yuan
- Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jin Yang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiangming Cai
- School of Medicine, Southeast University, Nanjing, China
| | - Chiyuan Ma
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
- Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
- School of Medicine, Southeast University, Nanjing, China.
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Southern Medical University, Nanjing, China.
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Keleş CD, Vural B, Filiz S, Vural F, Gacar G, Eraldemir FC, Kurnaz S. THE EFFECTS OF ETANERCEPT AND CABERGOLINE ON ENDOMETRIOTIC IMPLANTS, UTERUS AND OVARIES IN RAT ENDOMETRIOSIS MODEL. J Reprod Immunol 2021; 146:103340. [PMID: 34139652 DOI: 10.1016/j.jri.2021.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The pathophysiology of endometriosis is still unknown and treatment options remain controversial. Searches focus on angiogenesis, stem cells, immunologic and inflammatory factors. This study investigated the effects of etanercept and cabergoline on ovaries, ectopic, and eutopic endometrium in an endometriosis rat model. This randomized, placebo-controlled, blinded study included 50 rats, Co(control), Sh(Sham), Cb(cabergoline), E(etanercept), and E + Cb(etanercept + cabergoline) groups. After surgical induction of endometriosis, 2nd operation was performed for endometriotic volume and AMH level. After 15 days of treatment: AMH level, flow cytometry, implant volume, histologic scores, immunohistochemical staining of ectopic, eutopic endometrium, and ovary were evaluated at 3rd operation. All groups had significantly reduced volume, TNF-α, VEGF, and CD 146/PDGF-Rβ staining of endometriotic implants comparing to the Sh group (p < 0.05).TNF-α staining of eutopic endometrium in all treatment groups was similar to Sh and Co groups (p > 0.05). E and E + Cb groups significantly decreased TNF-α staining in the ovary comparing to Sh, Co, and Cb groups (p < 0.05). All treatment groups had significantly higher AFC compared to the Sh group. CD25+ Cells' median percentage was significantly increased in the E + Cb group compared to Co, Sh, Cb, and E group. E + Cb group had a significantly higher CD5+ Cells' level than the Co group (p = 0.035). In conclusion; Etanercept and/or Cabergoline decreased volume, TNF-α, VEGF, and CD 146/PDGF-Rβ staining of the ectopic endometrial implant. E and E + Cb treatment decreased TNF-α levels in the ovary. E + Cb also increased peripheral blood CD25+ & CD5+ Cell's.
Collapse
Affiliation(s)
- Cihan Deniz Keleş
- Department of Obstetrics & Gynecology, Milas Government Hospital, Muğla, Turkey
| | - Birol Vural
- Department of Obstetrics & Gynecology, Assisted Reproductive Technology Unit, Şişli Kolan International Hospital, İstanbul, Turkey.
| | - Serdar Filiz
- Department of Histology & Embryology, Assisted Reprodoctive Technology Unit, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Fisun Vural
- Department of Obstetrics & Gynecology, Haydarpaşa Numune Training and Research Hospital, Health Sciences University, Hamidiye Medical Faculty, Istanbul, Turkey
| | - Gülçin Gacar
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Fatma Ceyla Eraldemir
- Department of Medical Biochemistry, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Sema Kurnaz
- Department of Histology & Embryology, Kocaeli University School of Medicine, Kocaeli, Turkey
| |
Collapse
|
22
|
Pituitary Adenomas: From Diagnosis to Therapeutics. Biomedicines 2021; 9:biomedicines9050494. [PMID: 33946142 PMCID: PMC8146984 DOI: 10.3390/biomedicines9050494] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Pituitary adenomas are tumors that arise in the anterior pituitary gland. They are the third most common cause of central nervous system (CNS) tumors among adults. Most adenomas are benign and exert their effect via excess hormone secretion or mass effect. Clinical presentation of pituitary adenoma varies based on their size and hormone secreted. Here, we review some of the most common types of pituitary adenomas, their clinical presentation, and current diagnostic and therapeutic strategies.
Collapse
|
23
|
Wu Z, Gu W. Autophagy and Pituitary Adenoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:183-194. [PMID: 32671747 DOI: 10.1007/978-981-15-4272-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pituitary adenomas (PAs) are common, benign intracranial tumors that are usually effectively controlled with surgery, pharmacotherapy or radiotherapy. Some PAs against which conventional treatment is ineffective are great clinical challenges at present. Autophagy is a widespread physiological process in cells. Through autophagy, cells can degrade damaged or redundant proteins and organelles and achieve the recycling of intracellular substances to maintain the homeostasis of the intracellular environment. An increasing number of studies have demonstrated the importance of autophagy in tumor therapy. Both radiotherapy and chemotherapy can induce autophagy, which plays different roles in the course of therapy. In recent years, there has been growing interest in the role of autophagy during the treatment of PAs. This chapter reviews the recent progress of research on autophagy in PA and the autophagic mechanisms in the treatment of PA.
Collapse
Affiliation(s)
- Zhebao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Weiting Gu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
NAB2-STAT6 fusion protein mediates cell proliferation and oncogenic progression via EGR-1 regulation. Biochem Biophys Res Commun 2020; 526:287-292. [DOI: 10.1016/j.bbrc.2020.03.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023]
|
25
|
Xiao Z, Yang X, Zhang K, Liu Z, Shao Z, Song C, Wang X, Li Z. Estrogen receptor α/prolactin receptor bilateral crosstalk promotes bromocriptine resistance in prolactinomas. Int J Med Sci 2020; 17:3174-3189. [PMID: 33173437 PMCID: PMC7646122 DOI: 10.7150/ijms.51176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Prolactinomas are the most common type of functional pituitary adenoma. Although bromocriptine is the preferred first line treatment for prolactinoma, resistance frequently occurs, posing a prominent clinical challenge. Both the prolactin receptor (PRLR) and estrogen receptor α (ERα) serve critical roles in the development and progression of prolactinomas, and whether this interaction between PRLR and ERα contributes to bromocriptine resistance remains to be clarified. In the present study, increased levels of ERα and PRLR protein expression were detected in bromocriptine-resistant prolactinomas and MMQ cells. Prolactin (PRL) and estradiol (E2) were found to exert synergistic effects on prolactinoma cell proliferation. Furthermore, PRL induced the phosphorylation of ERα via the JAK2-PI3K/Akt-MEK/ERK pathway, while estrogen promoted PRLR upregulation via pERα. ERα inhibition abolished E2-induced PRLR upregulation and PRL-induced ERα phosphorylation, and fulvestrant, an ERα inhibitor, restored pituitary adenoma cell sensitivity to bromocriptine by activating JNK-MEK/ERK-p38 MAPK signaling and cyclin D1 downregulation. Collectively, these data suggest that the interaction between the estrogen/ERα and PRL/PRLR pathways may contribute to bromocriptine resistance, and therefore, that combination treatment with fulvestrant and bromocriptine (as opposed to either drug alone) may exert potent antitumor effects on bromocriptine-resistant prolactinomas.
Collapse
Affiliation(s)
- Zhengzheng Xiao
- Department of Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, Department of Neurosurgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003
| | - Xiaoli Yang
- Department of General Practice, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003
| | - Kun Zhang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 210011
| | - Zebin Liu
- Department of Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, Department of Neurosurgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003
| | - Zheng Shao
- Department of Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, Department of Neurosurgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003
| | - Chaojun Song
- Department of Henan Key Laboratory of Cancer Epigenetics; Cancer Institute, Department of Neurosurgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003
| | - Xiaobin Wang
- Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, Shenzhen, Guangdong 518000
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan hospital of Wuhan university, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|