1
|
Xiong X, Du Y, Liu P, Li X, Lai X, Miao H, Ning B. Unveiling EIF5A2: A multifaceted player in cellular regulation, tumorigenesis and drug resistance. Eur J Pharmacol 2025; 997:177596. [PMID: 40194645 DOI: 10.1016/j.ejphar.2025.177596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
The eukaryotic initiation factor 5A2 gene (EIF5A2) is a highly conserved and multifunctional gene that significantly influences various cellular processes, including translation elongation, RNA binding, ribosome binding, protein binding and post-translational modifications. Overexpression of EIF5A2 is frequently observed in multiple cancers, where it functions as an oncoprotein. Additionally, EIF5A2 is implicated in drug resistance through the regulation of various molecular pathways. In the review, we describe the structure and functions of EIF5A2 in normal cells and its role in tumorigenesis. We also elucidate the molecular mechanisms associated with EIF5A2 in the context of tumorigenesis and drug resistance. We propose that the biological roles of EIF5A2 in regulating diverse cellular processes and tumorigenesis are clinically significant and warrant further investigation.
Collapse
Affiliation(s)
- Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China; Guangzhou Institute of Burn Clinical Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Yanli Du
- Guangdong Medical University, Zhanjiang, 524023, Guangdong, China; Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Peng Liu
- Departments of Burn and Plastic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Xinye Li
- Guangdong Medical University, Zhanjiang, 524023, Guangdong, China; Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Xudong Lai
- Department of infectious disease, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China
| | - Haixiong Miao
- Department of Orthopedic, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China.
| | - Bo Ning
- Department of Neurosurgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, Guangdong, China.
| |
Collapse
|
2
|
Yi Q, Zhu G, Zhu W, Wang J, Ouyang X, Yang K, Zhong J. LINC00518: a key player in tumor progression and clinical outcomes. Front Immunol 2024; 15:1419576. [PMID: 39108268 PMCID: PMC11300200 DOI: 10.3389/fimmu.2024.1419576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Long non-coding RNAs (lncRNAs), defined as RNA molecules exceeding 200 nucleotides in length, have been implicated in the regulation of various biological processes and the progression of tumors. Among them, LINC00518, a recently identified lncRNA encoded by a gene located on chromosome 6p24.3, consists of three exons and is predicted to positively regulate the expression of specific genes. LINC00518 has emerged as a key oncogenic lncRNA in multiple cancer types. It exerts its tumor-promoting effects by modulating the expression of several target genes, primarily through acting as a sponge for microRNAs (miRNAs). Additionally, LINC00518 influences critical signaling pathways, including the Wnt/β-catenin, JAK/STAT, and integrin β3/FAK pathways. Elevated levels of LINC00518 in tumor tissues are associated with increased tumor size, advanced clinical stage, metastasis, and poor survival prognosis. This review provides a comprehensive summary of the genetic characteristics, expression patterns, biological functions, and underlying mechanisms of LINC00518 in human diseases.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kuan Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Wu Y, Yin S, Li C, Zhao L, Song M, Yu Y, Tang L, Yang Y. A signature of seven hypoxia-related lncRNAs is a potential biomarker for predicting the prognosis of melanoma. Am J Cancer Res 2024; 14:1712-1729. [PMID: 38726277 PMCID: PMC11076246 DOI: 10.62347/lhkw3124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Melanoma is the most aggressive type of skin cancer and has a high mortality rate once metastasis occurs. Hypoxia is a universal characteristic of the microenvironment of cancer and a driver of melanoma progression. In recent years, long noncoding RNAs (lncRNAs) have attracted widespread attention in oncology research. In this study, screening was performed and revealed seven hypoxia-related lncRNAs AC008687.3, AC009495.1, AC245128.3, AL512363.1, LINC00518, LINC02416 and MCCC1-AS1 as predictive biomarkers. A predictive risk model was constructed via univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. Patients were grouped according to the model risk score, and Kaplan-Meier analysis was performed to compare survival between groups. Functional and pathway enrichment analyses were performed to compare gene set enrichment between groups. Moreover, a nomogram was constructed with the risk score as a variable. In both the training and validation sets, patients in the low-risk group had better overall survival than did those in the high-risk group (P<0.001). The 3-, 5- and 10-year area under the curve (AUC) values for the nomogram model were 0.821, 0.795 and 0.820, respectively. Analyses of immune checkpoints, immunotherapy response, drug sensitivity, and mutation landscape were also performed. The results suggested that the low-risk group had a better response to immunotherapeutic. In addition, the nomogram can effectively predict the prognosis and immunotherapy response of melanoma patients. The signature of seven hypoxia-related lncRNAs showed great potential value as an immunotherapy response biomarker, and these lncRNAs might be treatment targets for melanoma patients.
Collapse
Affiliation(s)
- Yunyang Wu
- School of Traditional Chinese Medicine, Naval Medical UniversityShanghai, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical UniversityShanghai, China
| | - Shenhui Yin
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Chunzhen Li
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Liyuan Zhao
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Mengqi Song
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Ling Tang
- School of Traditional Chinese Medicine, Naval Medical UniversityShanghai, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical UniversityShanghai, China
| | - Yanlong Yang
- School of Traditional Chinese Medicine, Naval Medical UniversityShanghai, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical UniversityShanghai, China
| |
Collapse
|
4
|
Wan Q, Deng Y, Wei R, Ma K, Tang J, Deng YP. Tumor-infiltrating macrophage associated lncRNA signature in cutaneous melanoma: implications for diagnosis, prognosis, and immunotherapy. Aging (Albany NY) 2024; 16:4518-4540. [PMID: 38475660 PMCID: PMC10968696 DOI: 10.18632/aging.205606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/08/2024] [Indexed: 03/14/2024]
Abstract
Along with the increasing knowledge of long noncoding RNA, the interaction between the long noncoding RNA (lncRNA) and tumor immune infiltration is increasingly valued. However, there is a lack of understanding of correlation between regulation of specific lncRNAs and tumor-infiltrating macrophages within melanoma. In this research, a macrophage associated lncRNA signature was identified by multiple machine learning algorithms and the robust and effectiveness of signature also validated in other independent datasets. The signature contained six specific lncRNAs (PART1, LINC00968, LINC00954, LINC00944, LINC00518 and C20orf197) was constructed, which could diagnose melanoma and predict the prognosis of patients. Moreover, our signature achieves higher accuracy than the previous well-established markers and regarded as an independent prognostic indicator. The pathway enrichment revealed that these lncRNAs were closely correlated with many immune processes. In addition, the signature was associated with different immune microenvironment and applied to predict response of immune checkpoint inhibitor therapy (low risk of patients well respond to anti-PD-1 therapy and high risk is insensitive to anti-CTLA-4 therapy). Therefore, our finding supplies a more accuracy and effective lncRNA signature for tumor-infiltrating macrophages targeting treatment approaches and affords a new clinical application for predicting the response of immunotherapies in melanomas.
Collapse
Affiliation(s)
- Qi Wan
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuhua Deng
- Department of Infection Control, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ran Wei
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ke Ma
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jing Tang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ying-Ping Deng
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Chen YN, Fu XR, Guo H, Fu XY, Shi KS, Gao T, Yu HQ. YY1-induced lncRNA00511 promotes melanoma progression via the miR-150-5p/ADAM19 axis. Am J Cancer Res 2024; 14:809-831. [PMID: 38455406 PMCID: PMC10915319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/07/2024] [Indexed: 03/09/2024] Open
Abstract
Increasing evidence indicates that long noncoding RNAs (lncRNAs) are therapeutic targets and key regulators of tumors development and progression, including melanoma. Long intergenic non-protein-coding RNA 511 (LINC00511) has been demonstrated as an oncogenic molecule in breast, stomach, colorectal, and lung cancers. However, the precise role and functional mechanisms of LINC00511 in melanoma remain unknown. This study confirmed that LINC00511 was highly expressed in melanoma cells (A375 and SK-Mel-28 cells) and tissues, knockdown of LINC00511 could inhibit melanoma cell migration and invasion, as well as the growth of subcutaneous tumor xenografts in vivo. By using Chromatin immunoprecipitation (ChIP) assay, it was demonstrated that the transcription factor Yin Yang 1 (YY1) is capable of binding to the LINC00511 promoter and enhancing its expression in cis. Further mechanistic investigation showed that LINC00511 was mainly enriched in the cytoplasm of melanoma cells and interacted directly with microRNA-150-5p (miR-150-5p). Consistently, the knockdown of miR-150-5p could recover the effects of LINC00511 knockdown on melanoma cells. Furthermore, ADAM metallopeptidase domain expression 19 (ADAM19) was identified as a downstream target of miR-150-5p, and overexpression of ADAM19 could promote melanoma cell proliferation. Rescue assays indicated that LINC00511 acted as a competing endogenous RNA (ceRNA) to sponge miR-150-5p and increase the expression of ADAM19, thereby activating the PI3K/AKT pathway. In summary, we identified LINC00511 as an oncogenic lncRNA in melanoma and defined the LINC00511/miR-150-5p/ADAM19 axis, which might be considered a potential therapeutic target and novel molecular mechanism the treatment of patients with melanoma.
Collapse
Affiliation(s)
- Ya-Ni Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University Hohhot 010020, Inner Mongolia, China
| | - Xin-Rui Fu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University Hohhot 010020, Inner Mongolia, China
| | - Hua Guo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University Hohhot 010020, Inner Mongolia, China
| | - Xin-Yao Fu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University Hohhot 010020, Inner Mongolia, China
| | - Ke-Song Shi
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University Hohhot 010020, Inner Mongolia, China
| | - Tian Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University Hohhot 010020, Inner Mongolia, China
| | - Hai-Quan Yu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University Hohhot 010020, Inner Mongolia, China
| |
Collapse
|
6
|
Rubatto M, Borriello S, Sciamarrelli N, Pala V, Tonella L, Ribero S, Quaglino P. Exploring the role of epigenetic alterations and non-coding RNAs in melanoma pathogenesis and therapeutic strategies. Melanoma Res 2023; 33:462-474. [PMID: 37788101 DOI: 10.1097/cmr.0000000000000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Melanoma is a rare but highly lethal type of skin cancer whose incidence is increasing globally. Melanoma is characterized by high resistance to therapy and relapse. Despite significant advances in the treatment of metastatic melanoma, many patients experience progression due to resistance mechanisms. Epigenetic changes, including alterations in chromatin remodeling, DNA methylation, histone modifications, and non-coding RNA rearrangements, contribute to neoplastic transformation, metastasis, and drug resistance in melanoma. This review summarizes current research on epigenetic mechanisms in melanoma and their therapeutic potential. Specifically, we discuss the role of histone acetylation and methylation in gene expression regulation and melanoma pathobiology, as well as the promising results of HDAC inhibitors and DNMT inhibitors in clinical trials. We also examine the dysregulation of non-coding RNA, particularly miRNAs, and their potential as targets for melanoma therapy. Finally, we highlight the challenges of epigenetic therapies, such as the complexity of epigenetic mechanisms combined with immunotherapies and the need for combination therapies to overcome drug resistance. In conclusion, epigenetic changes may be reversible, and the use of combination therapy between traditional therapies and epigenetically targeted drugs could be a viable solution to reverse the increasing number of patients who develop treatment resistance or even prevent it. While several clinical trials are underway, the complexity of these mechanisms presents a significant challenge to the development of effective therapies. Further research is needed to fully understand the role of epigenetic mechanisms in melanoma and to develop more effective and targeted therapies.
Collapse
Affiliation(s)
- Marco Rubatto
- Department of Medical Sciences, Dermatologic Clinic, University of Turin Medical School, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Shen K, Song W, Wang H, Wang L, Yang Y, Hu Q, Ren M, Gao Z, Wang Q, Zheng S, Zhu M, Yang Y, Zhang Y, Wei C, Gu J. Decoding the metastatic potential and optimal postoperative adjuvant therapy of melanoma based on metastasis score. Cell Death Discov 2023; 9:397. [PMID: 37880239 PMCID: PMC10600209 DOI: 10.1038/s41420-023-01678-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
Metastasis is a formidable challenge in the prognosis of melanoma. Accurately predicting the metastatic potential of non-metastatic melanoma (NMM) and determining effective postoperative adjuvant treatments for inhibiting metastasis remain uncertain. In this study, we conducted comprehensive analyses of melanoma metastases using bulk and single-cell RNA sequencing data, enabling the construction of a metastasis score (MET score) through diverse machine-learning algorithms. The reliability and robustness of the MET score were validated using various in vitro assays and in vivo models. Our findings revealed a distinct molecular landscape in metastatic melanoma characterized by the enrichment of metastasis-related pathways, intricate cell-cell communication, and heightened infiltration of pro-angiogenic tumor-associated macrophages compared to NMM. Importantly, patients in the high MET score group exhibited poorer prognoses and an immunosuppressive microenvironment, featuring increased infiltration of regulatory T cells and decreased infiltration of CD8+ T cells, compared to the low MET score patient group. Expression of PD-1 was markedly higher in patients with low MET scores. Anti-PD-1 (aPD-1) therapy profoundly affected antitumor immunity activation and metastasis inhibition in these patients. In summary, our study demonstrates the effectiveness of the MET score in predicting melanoma metastatic potential. For patients with low MET scores, aPD-1 therapy may be a potential treatment strategy to inhibit metastasis. Patients with high MET scores may benefit from combination therapies.
Collapse
Affiliation(s)
- Kangjie Shen
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenyu Song
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongye Wang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianrong Hu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Ren
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zixu Gao
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiangcheng Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Shaoluan Zheng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Ming Zhu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanwen Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanyuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jianying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China.
| |
Collapse
|
8
|
Gu Y, Zhang X, Li Y, Shi J, Cui H, Ren Y, Liu S, Qiao Y, Cheng Y, Liu Y. MiR-204-5p-targeted AP1S2 is necessary for papillary thyroid carcinoma. Mol Cell Endocrinol 2023; 574:111993. [PMID: 37328093 DOI: 10.1016/j.mce.2023.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
MiR-204-5p, as a tumour suppressor, has been found in several cancers. However, whether miR-204-5p is involved in papillary thyroid carcinoma (PTC) has not yet been investigated. In this study, we identified miR-204-5p as a down-regulated miRNA in PTC tissues, unveiling that the levels of miR-204-5p in serum of patients with PTC were linked to PTC risk, and that the expression in patients concomitant with both PTC and benign lesions was much lower than that in patients only with PTC. Furthermore, we documented that miR-204-5p inhibited proliferation, migration, invasion, and cell cycle progression and triggered apoptosis of PTC cells via cell biology experiments. Finally, we identified that AP1S2 was a target of miR-204-5p using RNA-seq, iTRAQ, and bioinformatics prediction. Overall, miR-204-5p functions as a suppressor for PTC pathogenesis via the miR-204-5p/AP1S2 axis.
Collapse
Affiliation(s)
- Yulu Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China; National Health Commission Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Xin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, 999078, PR China
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Heran Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Yaxuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Sainan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Yi Cheng
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, 130021, PR China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
9
|
Niu C, Tan S. LncRNA FENDRR Suppresses Melanoma Growth via Influencing c-Myc mRNA Level. Clin Cosmet Investig Dermatol 2023; 16:2119-2128. [PMID: 37581008 PMCID: PMC10423570 DOI: 10.2147/ccid.s409622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/30/2023] [Indexed: 08/16/2023]
Abstract
Background Long non-coding RNAs (lncRNAs) play an important role in the occurrence of melanoma. However, the specific molecular mechanisms that regulate its biological function are still poorly understood. Therefore, the main purpose of this study is to elucidate the internal mechanism of lncRNA-FENDRR as a biological marker for the occurrence of SKCM and its influence on its proliferation. Results FENDRR is low expressed in skin cutaneous melanoma (SKCM) tissues and appears to be at an even lower level as the tumor progresses. However, the high expression of FENDRR can affect the proliferation of SKCM cell line A375. The results of flow cytometry showed that after overexpression of FENDRR, the cell cycle was arrested in the G1/G0 phase. Bioinformatics analysis and RIP results showed that FENDRR could be combined with YTHDF1. Together, these complexes regulate c-Myc mRNA level and determine cell proliferation. Conclusion We found that overexpression of FENDRR can effectively inhibit SKCM, which provides a new theoretical basis for new therapeutic approaches and targeted RNA drugs.
Collapse
Affiliation(s)
- Changying Niu
- Dermatological Department, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China
| | - Shenxing Tan
- Plastic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China
| |
Collapse
|
10
|
Hart M, Conrad J, Barrett E, Legg K, Ivey G, Lee PHU, Yung YC, Shim JW. X-linked hydrocephalus genes: Their proximity to telomeres and high A + T content compared to Parkinson's disease. Exp Neurol 2023; 366:114433. [PMID: 37156332 PMCID: PMC10330542 DOI: 10.1016/j.expneurol.2023.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Proximity to telomeres (i) and high adenine and thymine (A + T) content (ii) are two factors associated with high mutation rates in human chromosomes. We have previously shown that >100 human genes when mutated to cause congenital hydrocephalus (CH) meet either factor (i) or (ii) at 91% matching, while two factors are poorly satisfied in human genes associated with familial Parkinson's disease (fPD) at 59%. Using the sets of mouse, rat, and human chromosomes, we found that 7 genes associated with CH were located on the X chromosome of mice, rats, and humans. However, genes associated with fPD were in different autosomes depending on species. While the contribution of proximity to telomeres in the autosome was comparable in CH and fPD, high A + T content played a pivotal contribution in X-linked CH (43% in all three species) than in fPD (6% in rodents or 13% in humans). Low A + T content found in fPD cases suggests that PARK family genes harbor roughly 3 times higher chances of methylations in CpG sites or epigenetic changes than X-linked genes.
Collapse
Affiliation(s)
- Madeline Hart
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Joshua Conrad
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Emma Barrett
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Kaitlyn Legg
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Gabrielle Ivey
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Yun C Yung
- Department of Neuroscience, The Scintillon Research Institute, San Diego, CA, United States
| | - Joon W Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States.
| |
Collapse
|
11
|
Upregulation LncRNA MEG3 expression suppresses proliferation and metastasis in melanoma via miR-208/SOX4. Mol Cell Biochem 2023; 478:407-414. [PMID: 35838912 DOI: 10.1007/s11010-022-04515-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/24/2022] [Indexed: 02/02/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression and play a significant role in cancer progression. Previously, downregulation of lncRNA MEG3 was shown to associate with poor clinical outcomes in melanoma patients. The basis for this association has not been described and the aims of this study were to identify a role for lncRNA MEG3 in melanoma and to describe its regulatory mechanism of action. RT-qPCR was used to detect lncRNA MEG3 expression in melanoma cells and tissues. Luciferase reporter assays were used to identify lncRNA MEG3 downstream targets. Melanoma cells were transfected with various expression vectors and these transfected cells were assessed for; migration, colony formation, proliferation, in vivo tumorigenesis, and metastatic potential. Melanoma cell lines were found to be sensitive to lncRNA MEG3 expression levels and overexpression was found to inhibit melanoma cell proliferation and invasion, both in vitro and in vivo. Luciferase reporter assays identified miR-208 and SOX4 as downstream targets of lncRNA MEG3. Overexpression of miR-208 and silencing of SOX4 rescued invasion and proliferation by cells that overexpressed lncRNA MEG3. Moreover, lncRNA MEG3 inhibited cancer stem cell differentiation and suppressed melanoma progression and metastasis through inhibition of miR-208 by SOX4.
Collapse
|
12
|
Dashti F, Mirazimi SMA, Kazemioula G, Mohammadi M, Hosseini M, Razaghi Bahabadi Z, Mirazimi MS, Abadi MHJN, Shahini A, Afshari M, Mirzaei H. Long non-coding RNAs and melanoma: From diagnosis to therapy. Pathol Res Pract 2023; 241:154232. [PMID: 36528985 DOI: 10.1016/j.prp.2022.154232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Although extremely rare, malignant melanoma is the deadliest type of skin malignancy with the inherent capability to invade other organs and metastasize to distant tissues. In 2021, it was estimated that approximately 106,110 patients may have received the diagnosis of melanoma, with a mortality rate of 7180. Surgery remains the common choice for treatment in patients with melanoma. Despite many advances in the treatment of melanoma, some patients, such as those who have received cytotoxic chemotherapeutic and immunotherapic agents, a significant number of patients may show inadequate treatment response following initiating these treatments. Non-coding RNAs, including lncRNAs, have become recently popular and attracted the attention of many researchers to make new insights into the pathogenesis of many diseases, particularly malignancies. LncRNAs have been thoroughly investigated in multiple cancers such as melanoma and have been shown to play a major role in regulating various physiological and pathological cellular processes. Considering their core regulatory function, these non-coding RNAs may be appropriate candidates for melanoma patients' diagnosis, prognosis, and treatment. In this review, we will cover all the current literature available for lncRNAs in melanoma and will discuss their potential benefits as diagnostic and/or prognostic markers or potent therapeutic targets in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Golnesa Kazemioula
- Department of Medical Genetics, School of Medicine,Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marjan Hosseini
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Mirazimi
- Department of Obstetrics & Gynocology,Isfahan School of Medicine,Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Afshari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Ping S, Gong R, Lei K, Qing G, Zhang G, Chen J. Development and validation of a ferroptosis-related lncRNAs signature to predict prognosis and microenvironment for melanoma. Discov Oncol 2022; 13:125. [PMID: 36371574 PMCID: PMC9653531 DOI: 10.1007/s12672-022-00581-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis plays an important role in cancer. However, studies about ferroptosis-related lncRNAs (FRLs) in skin cutaneous melanoma (SKCM) are scarce. Moreover, the relationship between prognostic FRLs and tumor microenvironment (TME) in melanoma remains unclear. This study investigates the potential prognostic value of FRLs and their association with TME in SKCM. The RNA-sequencing data of SKCM were downloaded from The Cancer Genome Atlas (TCGA) database. Melanoma patients were randomly divided into training and testing groups in a 1:1 ratio. A signature composed of 19 FRLs was developed by the least absolute shrinkage and selection operator (LASSO) regression analysis to divide patients into a low-risk group with a better prognosis and a high-risk group with a poor prognosis. Multivariate Cox regression analysis suggested that the risk score was an independent prognostic factor. The Area Under Curve (AUC) value of the risk score reached 0.768 in the training group and 0.770 in the testing group. Subsequent analysis proved that immune-related signaling pathways were significantly enriched in the low-risk group. The tumor immune cell infiltration analysis demonstrated that melanoma in the high-risk group tended to be immunologically "cold". We identified a novel FRLs signature which could accurately predict the prognosis of patients with melanoma.
Collapse
Affiliation(s)
- Shuai Ping
- Department of Gastroenterology, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, 266000 China
| | - Ruining Gong
- Department of Gastroenterology, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, 266000 China
| | - Ke Lei
- Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, 266000 China
| | - Gong Qing
- Department of Gastroenterology, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, 266000 China
| | - Guangheng Zhang
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077 China
| | - Jianghai Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei China
| |
Collapse
|
14
|
Rao Y, Zhu J, Zheng H, Dong W, Lin Q. A novel melanoma prognostic model based on the ferroptosis-related long non-coding RNA. Front Oncol 2022; 12:929960. [PMID: 36313708 PMCID: PMC9598429 DOI: 10.3389/fonc.2022.929960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/23/2022] [Indexed: 08/27/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death related to the biological process of many kinds of tumors. Long noncoding RNAs (LncRNA) have been found to play essential roles in the tumor, and their functions in the ferroptosis of tumor cells have been partially discovered. However, there is no summary of ferroptosis-related LncRNA and its functions in melanoma. In the present study, we aim to explore the expression profile of ferroptosis-related LncRNA genes and their value in melanoma prognosis by bioinformatics analysis. The expression of ferroptosis-related gene (FRG) from melanoma clinical data was extracted based on the Cancer Genome Atlas (TCGA) database. By screening the RNA expression data of 472 cases of melanoma and 810 cases of normal skin, eighteen ferroptosis-related differential genes were found to be related to the overall survival rate. Furthermore, 384 ferroptosis-related LncRNAs were discovered through constructing the mRNA-LncRNA co-expression network, and ten of them were found with prognostic significance in melanoma by multivariate Cox analysis. Risk assessment showed that the high expression of LncRNA00520 is associated with poor prognosis, while the increased expression of the other LncRNA is beneficial to the prognosis of patients with melanoma. From univariate and multivariate Cox regression analysis, there were ten ferroptosis-related LncRNA risk models towards to be significant independent prognostic factors for patients with melanoma and valuable predictive factors for overall survival (OS)(P<0.05). The ROC curve further suggested that the risk score has relatively reliable predictive ability (AUC=0.718). The protein level of ferroptosis-related genes was verified by the HPA database and IHC test, leading to the discovery that the expressions of ALOX5, PEBP1, ACSL4, and ZEB1 proteins up-regulated in tumor tissues, and existed differences between tumor tissues and normal tissues. In conclusion, we identified ten ferroptosis-related LncRNA and constructed a prognosis model base.
Collapse
Affiliation(s)
- Yamin Rao
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Zhu
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Zheng
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Dong
- Department of Pathology, Eastern Hepatobilliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Qingyuan Lin
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Liu Y, Ma S, Ma Q, Zhu H. Silencing LINC00665 inhibits cutaneous melanoma in vitro progression and induces apoptosis via the miR-339-3p/TUBB. J Clin Lab Anal 2022; 36:e24630. [PMID: 35929185 PMCID: PMC9459347 DOI: 10.1002/jcla.24630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 12/22/2022] Open
Abstract
Background LncRNAs are closely related to cutaneous melanoma (CM) tumorigenesis and metastasis, and it can affect the progression of CM by regulating cell proliferation, migration, invasion, apoptosis, and other cellular mechanisms. This study investigated the role of LINC00665 in CM. Methods Expressions of LINC00665, miR‐339‐3p, and tubulin beta chain (TUBB) in CM cells were analyzed by qRT‐PCR and/or Western blot. The LINC00665/miR‐339‐3p/TUBB targeting network was predicted by bioinformatics tools, screened out by Venn diagrams and analyzed by Pearson's correlation coefficients, followed by validation via dual‐luciferase reporter assay and/or pull‐down assay. Transfection of siLINC00665 or miR‐339‐3p inhibitor/mimic was conducted with CM cells whose viability, proliferation, migration, invasion, cell cycle progression, and apoptosis were measured by CCK‐8 assay, colony formation assay, wound healing assay, Transwell assay, and flow cytometry. The associations of TUBB with tumor biological characteristics and other proteins were analyzed by CanserSEA and String, respectively. Results High‐expressed LINC00665 was detected in CM cells. Silencing LINC00665 decreased CM cell viability; inhibited colony formation, cell cycle progression, migration and invasion; enhanced apoptosis; and upregulated miR‐339‐3p. LINC00665 targeted miR‐339‐3p which targeted TUBB. MiR‐339‐3p upregulation induced effects similar to the LINC00665‐silencing‐induced effects and could downregulate TUBB, which was associated with malignant behaviors and related to other five proteins. MiR‐339‐3p downregulation induced the opposite effects of what miR‐339‐3p upregulation induced, and the miR‐339‐3p downregulation‐induced effects could be reversed by LINC00665 silencing. Conclusion Silencing LINC00665 inhibits in vitro CM progression and induces apoptosis via the miR‐339‐3p/TUBB axis.
Collapse
Affiliation(s)
- Yi Liu
- Dermatological Department, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin City, China
| | - Shanshan Ma
- Department of Dermatology & STD, QingDao No.8 People's Hospital, Qingdao, China
| | - Qichao Ma
- Dermatological Department, Ningbo Yinzhou No 2. Hospital, Ningbo City, China
| | - Haigang Zhu
- Dermatological Department, Ningbo Yinzhou No 2. Hospital, Ningbo City, China
| |
Collapse
|
16
|
Yang F, Bian Z, Xu P, Sun S, Huang Z. MicroRNA-204-5p: A pivotal tumor suppressor. Cancer Med 2022; 12:3185-3200. [PMID: 35908280 PMCID: PMC9939231 DOI: 10.1002/cam4.5077] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules with a length of approximately 18-25 nt nucleotides that regulate gene expression post-transcriptionally. MiR-204-5p originates from the sixth intron of the transient receptor potential cation channel subfamily M member 3 (TRPM3) gene. MiR-204-5p is frequently downregulated in various cancer types and is related to the clinicopathological characteristics and prognosis of cancer patients. So far, many studies have determined that miR-204-5p functions as a tumor suppressor for its extensive and powerful capacity to inhibit tumor proliferation, metastasis, autophagy, and chemoresistance in multiple cancer types. MiR-204-5p appears to be a promising prognostic biomarker and a therapeutic target for human cancers. This review summarized the latest advances on the role of miR-204-5p in human cancers.
Collapse
Affiliation(s)
- Fan Yang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Peiwen Xu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Shengbai Sun
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
17
|
Xiao YF, Li BS, Liu JJ, Wang SM, Liu J, Yang H, Hu YY, Gong CL, Li JL, Yang SM. Role of lncSLCO1C1 in gastric cancer progression and resistance to oxaliplatin therapy. Clin Transl Med 2022; 12:e691. [PMID: 35474446 PMCID: PMC9043116 DOI: 10.1002/ctm2.691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric carcinoma (GC) is one of the most deadly diseases due to tumour metastasis and resistance to therapy. Understanding the molecular mechanism of tumour progression and drug resistance will improve therapeutic efficacy and develop novel intervention strategies. METHODS Differentially expressed long non-coding RNAs (lncRNAs) in clinical specimens were identified by LncRNA microarrays and validated in different clinical cohorts by quantitative real-time polymerase chain reaction (qRT-PCR), in situ hybridisation and bioinformatics analysis. Biological functions of lncRNA were investigated by using cell proliferation assays, migration assays, xenograft tumour models and bioinformatics analysis. Effects of lncSLCO1C1 on GC cell survival were assessed by comet assays and immunofluorescence assays. Underlying molecular mechanisms were further explored by using a number of technologies including RNA pull-down, mass spectrometry analysis, RNA immunoprecipitation, co-immunoprecipitation, miRNA sequencing, luciferase reporter assays and molecular modelling. RESULTS LncSLCO1C1 was highly upregulated in GC tissue samples and associated with GC patients' poor overall survival. Overexpression of lncSLCO1C1 promoted proliferation and migration, whereas decreased lncSLCO1C1 expression produced the opposite effects. lncSLCO1C1 also mediated tumour resistance to chemotherapy with oxaliplatin by reducing DNA damage and increasing cell proliferation. Despite sequence overlapping between lncSLCO1C1 and PDE3A, alternations of PDE3A expression had no effect on the GC cell progression, indicating that lncSLCO1C1, not PDE3A, related with the progression of GC cells. Mechanistically, lncSLCO1C1 serves as a scaffold for the structure-specific recognition protein 1 (SSRP1)/H2A/H2B complex and regulates the function of SSRP1 in reducing DNA damage. Meanwhile, lncSLCO1C1 functions as a sponge to adsorb miR-204-5p and miR-211-5p that target SSRP1 mRNA, and thus increases SSRP1 expression. Patients with high expressions of both lncSLCO1C1 and SSRP1 have poor overall survival, highlighting the role of lncSLCO1C1 in GC progression. CONCLUSIONS LncSLCO1C1 promotes GC progression by enhancing cell growth and preventing DNA damage via interacting and scaffolding the SSRP1/H2A/H2b complex and absorbing both miR-211-5p and miR-204-5p to increase SSRP1 expression.
Collapse
Affiliation(s)
- Yu-Feng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo-Sheng Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jing-Jing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Su-Min Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiao Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yi-Yang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chun-Li Gong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ji-Liang Li
- Wenzhou Medical University Eye Hospital and School of Biomedical Engineering, China.,Cancer Research Centre, University of Chinese Academy of Sciences Wenzhou Institute, Wenzhou, China.,Institute of Translational and Stratified Medicine, University of Plymouth Faculty of Medicine and Dentistry, Plymouth, UK
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Long noncoding RNA LINC00518 contributes to proliferation and metastasis in lung adenocarcinoma via the miR-335-3p/CTHRC1 Axis. Cell Death Dis 2022; 8:98. [PMID: 35246517 PMCID: PMC8897435 DOI: 10.1038/s41420-022-00905-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 12/23/2022]
Abstract
Long intergenic nonprotein coding RNA 518 (LINC00518) is recognized to impart cancer proliferation and metastasis in lung adenocarcinoma (LUAD). However, the study about the relationship between LINC00518 and LUAD is shallow so far. In our work, LINC00518 was predicted to be a negative regulator in LUAD based on the TCGA database. It was further verified that the cell proliferation, colony formation, migration, and invasion of LUAD could be obviously inhibited by the knockdown of LINC00518. Moreover, miR-335-3p/CTHRC1 axis was intensively possible to be a critical regulator in the effect of LINC00518 on LUAD via visual ceRNA network. Importantly the progress of LUAD was relevant to the active CTHRC1 which was realized by the target of LINC00518 to miR-335-3p. Furthermore, the knockdown of LINC00518 exhibited a synergistic effect with VS6063, an inhibitor of FAK protein, in the suppression of LUAD indicating that miR-335-3p/CTHRC1 axis was potentially exploitable as a targeted intervention to integrin β3/FAK signal pathway in LUAD. All the collective results demonstrated that LINC00518 could be a promising biomarker of the prognosis of LUAD and possibly a therapeutic target via miR-335-3p/CTHRC1 axis.
Collapse
|
19
|
Montico B, Giurato G, Pecoraro G, Salvati A, Covre A, Colizzi F, Steffan A, Weisz A, Maio M, Sigalotti L, Fratta E. The pleiotropic roles of circular and long noncoding RNAs in cutaneous melanoma. Mol Oncol 2022; 16:565-593. [PMID: 34080276 PMCID: PMC8807361 DOI: 10.1002/1878-0261.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma (CM) is a very aggressive disease, often characterized by unresponsiveness to conventional therapies and high mortality rates worldwide. The identification of the activating BRAFV600 mutations in approximately 50% of CM patients has recently fueled the development of novel small-molecule inhibitors that specifically target BRAFV600 -mutant CM. In addition, a major progress in CM treatment has been made by monoclonal antibodies that regulate the immune checkpoint inhibitors. However, although target-based therapies and immunotherapeutic strategies have yielded promising results, CM treatment remains a major challenge. In the last decade, accumulating evidence points to the aberrant expression of different types of noncoding RNAs (ncRNAs) in CM. While studies on microRNAs have grown exponentially leading to significant insights on CM biology, the role of circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) in this tumor is less understood, and much remains to be discovered. Here, we summarize and critically review the available evidence on the molecular functions of circRNAs and lncRNAs in BRAFV600 -mutant CM and CM immunogenicity, providing recent updates on their functional role in targeted therapy and immunotherapy resistance. In addition, we also include an evaluation of several algorithms and databases for prediction and validation of circRNA and lncRNA functional interactions.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
| | - Alessia Covre
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
| | - Francesca Colizzi
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Agostino Steffan
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Michele Maio
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
- NIBIT Foundation OnlusSienaItaly
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Elisabetta Fratta
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| |
Collapse
|
20
|
Jafari N, Nasiran Najafabadi A, Hamzei B, Ataee N, Ghasemi Z, Sadeghian-Rizi T, Honardoost MA, Zamani A, Dolatabadi NF, Tabatabaeian H. ESRG, LINC00518 and PWRN1 are newly-identified deregulated lncRNAs in colorectal cancer. Exp Mol Pathol 2022; 124:104732. [PMID: 34896077 DOI: 10.1016/j.yexmp.2021.104732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 01/05/2023]
Abstract
Colorectal cancer is the 2nd leading cause of death in humans because of cancer. This rank of death could be due to the high rate of incidence from one hand, and the lack of sufficient diagnostic and therapeutic approaches from the other hand. Thus, molecular tools have been emerging as the potential biomarker to improve the early diagnosis and therapeutic management that subsequently could lead to the heightened survival rate of colorectal cancer patients. Long non-coding RNA (lncRNAs) have shown promising capabilities to be used in clinics. The profiling methods could identify novel aberrantly expressed lncRNAs in colorectal cancer. We, thus, performed a comprehensive and unbiased approach to shortlist the dysregulated lncRNAs based on the colon adenocarcinoma TCGA data. An unbiased in silico method was used to rank the yet to profiled lncRNAs in colorectal cancer. qPCR was used to measure the expression level of selected lncRNAs. Our results nominated ESRG, LINC00518, PWRN1, and TTTY14 lncRNAs as the top-hit novel lncRNAs with aberrant expression in colon cancer. The qPCR method was used to profile these lncRNAs that showed the up-regulation of ESRG and LINC00518, and down-regulation of TTTY14 in thirty paired colorectal cancer specimens. The statistical analyses demonstrated that ESRG, LINC00518 and PWRN1 could distinguish the tumor from normal samples. Moreover, ESRG showed a negative correlation with the overall survival of patients. These diagnostic and prognostic results suggest that profiling ESRG, LINC00518 and PWRN1 s may have implications in clinics.
Collapse
Affiliation(s)
- Nasrin Jafari
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Arezo Nasiran Najafabadi
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Behnaz Hamzei
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran
| | - Nioosha Ataee
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Zahra Ghasemi
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Tahereh Sadeghian-Rizi
- Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Mohammad Amin Honardoost
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Atefeh Zamani
- Gene Raz Bu Ali, Genetics and Biotechnology Academy, Isfahan, Iran
| | | | - Hossein Tabatabaeian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Anahid Cancer Clinic, Isfahan Healthcare City, Isfahan, Iran.
| |
Collapse
|
21
|
Cherepakhin OS, Argenyi ZB, Moshiri AS. Genomic and Transcriptomic Underpinnings of Melanoma Genesis, Progression, and Metastasis. Cancers (Basel) 2021; 14:123. [PMID: 35008286 PMCID: PMC8750021 DOI: 10.3390/cancers14010123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma is a deadly skin cancer with rapidly increasing incidence worldwide. The discovery of the genetic drivers of melanomagenesis in the last decade has led the World Health Organization to reclassify melanoma subtypes by their molecular pathways rather than traditional clinical and histopathologic features. Despite this significant advance, the genomic and transcriptomic drivers of metastatic progression are less well characterized. This review describes the known molecular pathways of cutaneous and uveal melanoma progression, highlights recently identified pathways and mediators of metastasis, and touches on the influence of the tumor microenvironment on metastatic progression and treatment resistance. While targeted therapies and immune checkpoint blockade have significantly aided in the treatment of advanced disease, acquired drug resistance remains an unfortunately common problem, and there is still a great need to identify potential prognostic markers and novel therapeutic targets to aid in such cases.
Collapse
Affiliation(s)
| | - Zsolt B. Argenyi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| | - Ata S. Moshiri
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Shin J, Nile A, Oh JW. Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. Bioengineered 2021; 12:8259-8278. [PMID: 34565296 PMCID: PMC8806629 DOI: 10.1080/21655979.2021.1982846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Adaptin proteins (APs) play a crucial role in intracellular cell trafficking. The 'classical' role of APs is carried out by AP1‒3, which bind to clathrin, cargo, and accessory proteins. Accordingly, AP1-3 are crucial for both vesicle formation and sorting. All APs consist of four subunits that are indispensable for their functions. In fact, based on studies using cells, model organism knockdown/knock-out, and human variants, each subunit plays crucial roles and contributes to the specificity of each AP. These studies also revealed that the sorting and intracellular trafficking function of AP can exert varying effects on pathology by controlling features such as cell development, signal transduction related to the apoptosis and proliferation pathways in cancer cells, organelle integrity, receptor presentation, and viral infection. Although the roles and functions of AP1‒3 are relatively well studied, the functions of the less abundant and more recently identified APs, AP4 and AP5, are still to be investigated. Further studies on these APs may enable a better understanding and targeting of specific diseases.APs known or suggested locations and functions.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Niu Z, Li Y, Xu Y, Jiang W, Tao R, Chen Y, Han Y. Silencing FYVE, RhoGEF, and PH domain containing 1 (FGD1) suppresses melanoma progression by inhibiting PI3K/AKT signaling pathway. Bioengineered 2021; 12:12193-12205. [PMID: 34783295 PMCID: PMC8810171 DOI: 10.1080/21655979.2021.2005877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Cutaneous melanoma is the leading cause of death among skin cancers despite the availability of diverse treatments. FGD1 plays an important role in multiple cancers, but how it works in cutaneous melanoma has not been illustrated. Thus, this study was intended to investigate the roles of FGD1 and its underlying mechanisms in cutaneous melanoma. Bioinformatics tools and quantitative real-time polymerase chain reaction (qRT-PCR) were used to analyze the expression of FGD1 in cutaneous melanoma. After the knockdown of FGD1 in melanoma cells, the proliferation, migration, and invasion of cells were analyzed by cell counting kit-8 (CCK8) assay, colony formation assays and transwell assays. Western blot was used to check the expression of key factors in PI3K/AKT pathway. In addition, nude mice models were used to study the role of FGD1 in melanoma development and metastasis in vivo. The data demonstrated that FGD1 was up-regulated and predicted a poor clinical outcome for cutaneous melanoma patients. Knockdown of FGD1 inhibited melanoma cell proliferation, migration, and invasion. The expressions of p-PI3K and p-AKT were significantly decreased, while the expressions of PI3K and AKT showed no marked difference in the knockdown group. Meanwhile, knockdown of FGD1 suppressed the development of melanoma in vivo. This study suggested that knockdown of FGD1 could block melanoma formation and proliferation by inhibiting PI3K/AKT signaling pathway. FGD1 might be a promising therapeutic target for melanoma.
Collapse
Affiliation(s)
- Zehao Niu
- Medical School of Chinese PLA, Beijing, China
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Medical School of Chinese PLA, Beijing, China
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiqian Jiang
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ran Tao
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Xue L, Wu P, Zhao X, Jin X, Wang J, Shi Y, Yang X, She Y, Li Y, Li C. Using Immune-Related lncRNA Signature for Prognosis and Response to Immunotherapy in Cutaneous Melanoma. Int J Gen Med 2021; 14:6463-6475. [PMID: 34675614 PMCID: PMC8518697 DOI: 10.2147/ijgm.s335266] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background Cutaneous melanoma is a highly malignant skin tumor, and most patients have a poor prognosis. In recent years, immunotherapy has assumed an important role in the treatment of advanced cutaneous melanoma, but only a small percentage of patients benefit from immunotherapy. A growing number of studies have demonstrated that the prognosis of patients with cutaneous melanoma is closely related to long non-coding RNA and the tumor immune microenvironment. Methods We downloaded RNA expression data and immune-related gene lists of cutaneous melanoma patients separately from The Cancer Genome Atlas database and ImmPort website and identified immune-related lncRNAs by co-expression analysis. The prognostic model was constructed by applying least absolute shrinkage and selection operator regression, and all patients were classified into high- and low-risk groups according to the risk score of the model. We evaluated the differences between the two groups in terms of survival outcomes, immune infiltration, pathway enrichment, chemotherapeutic drug sensitivity and immune checkpoint gene expression to verify the impact of lncRNA signature on clinical prognosis and immunotherapy efficacy. Results By correlation analysis and LASSO regression analysis, we constructed an immune-related lncRNA prognostic model based on five lncRNA: HLA-DQB1-AS1, MIR205HG, RP11-643G5.6, USP30-AS1 and RP11-415F23.4. Based on this model, we plotted Kaplan-Meier survival curves and time-dependent ROC curves and analyzed its ability as an independent prognostic factor for cutaneous melanoma in combination with clinicopathological features. The results showed that these lncRNA signature was an independent prognostic factor of cutaneous melanoma with favorable prognostic ability. Our results also show a higher degree of immune infiltration, higher expression of immune checkpoint-associated genes, and better outcome of immunotherapy in the low-risk group of the lncRNA signature. Conclusion The 5 immune-related lncRNA signatures constructed in our study can predict the prognosis of cutaneous melanoma and contribute to the selection of immunotherapy.
Collapse
Affiliation(s)
- Ling Xue
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China.,Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou, 730050, People's Republic of China
| | - Pingfan Wu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China.,Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou, 730050, People's Republic of China
| | - Xiaowen Zhao
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China.,Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou, 730050, People's Republic of China
| | - Xiaojie Jin
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Jingjing Wang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Yuxiang Shi
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Xiaojing Yang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Yali She
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Yaling Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China.,Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Changtian Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
25
|
Wozniak M, Czyz M. The Functional Role of Long Non-Coding RNAs in Melanoma. Cancers (Basel) 2021; 13:cancers13194848. [PMID: 34638331 PMCID: PMC8508152 DOI: 10.3390/cancers13194848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most lethal skin cancer, with increasing incidence worldwide. The molecular events that drive melanoma development and progression have been extensively studied, resulting in significant improvements in diagnostics and therapeutic approaches. However, a high drug resistance to targeted therapies and adverse effects of immunotherapies are still a major challenge in melanoma treatment. Therefore, the elucidation of molecular mechanisms of melanomagenesis and cancer response to treatment is of great importance. Recently, many studies have revealed the close association of long noncoding RNAs (lncRNAs) with the development of many cancers, including melanoma. These RNA molecules are able to regulate a plethora of crucial cellular processes including proliferation, differentiation, migration, invasion and apoptosis through diverse mechanisms, and even slight dysregulation of their expression may lead to tumorigenesis. lncRNAs are able to bind to protein complexes, DNA and RNAs, affecting their stability, activity, and localization. They can also regulate gene expression in the nucleus. Several functions of lncRNAs are context-dependent. This review summarizes current knowledge regarding the involvement of lncRNAs in melanoma. Their possible role as prognostic markers of melanoma response to treatment and in resistance to therapy is also discussed.
Collapse
|
26
|
Rao M, Xu S, Zhang Y, Liu Y, Luan W, Zhou J. Long non-coding RNA ZFAS1 promotes pancreatic cancer proliferation and metastasis by sponging miR-497-5p to regulate HMGA2 expression. Cell Death Dis 2021; 12:859. [PMID: 34552050 PMCID: PMC8458532 DOI: 10.1038/s41419-021-04123-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/10/2023]
Abstract
The lncRNA ZFAS1 plays a carcinogenic regulatory role in many human tumours, but it is rarely reported in pancreatic cancer. We identify the role and molecular mechanisms of ZFAS1 in pancreatic cancer. The expression of ZFAS1, miR-497-5p and HMGA2 in pancreatic cancer tissues was detected by qRT-PCR. Pancreatic cancer data in The Cancer Genome Atlas were also included in this study. CCK8, EdU, transwell and scratch wound assays were used to investigate the biological effects of ZFAS1 in pancreatic cancer cells. MS2-RIP, RNA pull-down, RNA-ChIP and luciferase reporter assays were used to clarify the molecular biological mechanisms of ZFAS1 in pancreatic cancer. The role of ZFAS1 in vivo was also confirmed via xenograft experiments. ZFAS1 was overexpressed in pancreatic cancer tissues. ZFAS1 promoted the growth and metastasis of pancreatic cancer cells, and miR-497-5p acted as a tumour suppressor gene in pancreatic cancer by targeting HMGA2. We also demonstrated that ZFAS1 exerts its effects by promoting HMGA2 expression through decoying miR-497-5p. We also found that ZFAS1 promoted the progression of pancreatic cancer in vivo by modulating the miR-497-5p/HMGA2 axis. In conclusion, this study revealed a new role for and the molecular mechanisms of ZFAS1 in pancreatic cancer, identifying ZFAS1 as a novel target for the diagnosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Min Rao
- Hepatobiliary surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Song Xu
- Hepatobiliary surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Zhang
- Hepatobiliary surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yifan Liu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenkang Luan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junjing Zhou
- Hepatobiliary surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
27
|
Xiao Y, Xia Y, Wang Y, Xue C. Pathogenic roles of long noncoding RNAs in melanoma: Implications in diagnosis and therapies. Genes Dis 2021; 10:113-125. [PMID: 37013035 PMCID: PMC10066279 DOI: 10.1016/j.gendis.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is one of the most dangerous types of cutaneous neoplasms, which are pigment-producing cells of neuroectodermal origin found all over the body. A great deal of research is focused on the mechanisms of melanoma to promote better diagnostic and treatment options for melanoma in its advanced stages. The progression of melanoma involves alteration in different levels of gene expression. With the successful implementation of next-generation sequencing technology, an increasing number of long noncoding RNAs (lncRNAs) sequences have been discovered, and a significant number of them have phenotypic effects in both in vitro and in vivo studies, implying that they play an important role in the occurrence and progression of human cancers, particularly melanoma. A number of evidence indicated that lncRNAs are important regulators in tumor cell proliferation, invasion, apoptosis, immune escape, energy metabolism, drug resistance, epigenetic regulation. To better understand the role of lncRNAs in melanoma tumorigenesis, we categorize melanoma-associated lncRNAs according to their cellular functions and associations with gene expression and signaling pathways in this review. Based on the mechanisms of lncRNA, we discuss the possibility of lncRNA-target treatments, and the application of liquid biopsies to detect lncRNAs in melanoma diagnosis and prognosis.
Collapse
|
28
|
Zhu L, Chen Y, Chen M, Wang W. Mechanism of miR-204-5p in exosomes derived from bronchoalveolar lavage fluid on the progression of pulmonary fibrosis via AP1S2. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1068. [PMID: 34422980 PMCID: PMC8339838 DOI: 10.21037/atm-20-8033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/11/2021] [Indexed: 11/06/2022]
Abstract
Background Exosomes are nanoscale vesicles secreted by various types of cells that are responsible for intracellular communication. Despite that bronchoalveolar lavage fluid (BALF) has been proven to involve in tumor development, more efforts are required to investigate the impact of BALF on pulmonary fibrosis (PF). This study aimed to investigate the mechanism of how exosomal miR-204-5p from BALF facilitates PF progression in rats. Methods PF rat model was established by intratracheal injection of bleomycin. BALF-derived exosomes (Exo) were extracted from normal and PF rats. PF-Exo (BALF-derived Exo from PF rats) and miR-204-5p antagomir were injected into rats to investigate the effect of exosomal miR-204-5p on PF. Collagen content in lung tissues of rats was assessed by Masson staining, hydroxyproline (HYP) content assay and immunohistochemistry (IHC). Primary lung fibroblasts were isolated, and treated by TGF-β1. After co-transfection of PF-Exo, miR-204-5p inhibitor and sh-AP1S2, cell proliferation, levels of miR-204-5p, fibrotic markers α-SMA and collagen 1 (Col 1), and proteins of autophagy markers LC3II, LC3I and P62 were measured. The interaction between miR-204-5p and AP1S2 was determined by bioinformatics online software TargetScan and dual-luciferase reporter assay. Results miR-204-5p was abundantly expressed in the PF-Exo group. PF-Exo injection potentiated PF progression and proliferation ability of lung fibroblasts in vivo and in vitro. Injection with PF-Exo and miR-204-5p antagomir significantly increased the LC3II/I ratio and decreased the HYP content, proteins of α-SMA, Col 1 and P62, collagen content in rat lung tissues of PF rats. TGF-β1 induction elevated the LC3II/LC3I ratio, suppressed the cell proliferation rate, and decreased the levels of α-SMA, Col 1 and P62. Additionally, AP1S2 was a direct target of miR-204-5p. miR-204-5p inhibitor can counteract the effect of PF-Exo in proliferation of lung fibroblasts, while sh-AP1S2 eliminated the effect of miR-204-5p inhibitor. Conclusions Exosomal miR-204-5p from BALF inhibits autophagy to promote the progression of PF rats by targeting AP1S2.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Rheumatism Immunology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yahui Chen
- Department of Rheumatism Immunology, Ningbo Sixth Hospital, Ningbo, China
| | - Mo Chen
- Department of Rheumatism Immunology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenwen Wang
- Department of Rheumatism Immunology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Son SW, Yun BD, Song MG, Lee JK, Choi SY, Kuh HJ, Park JK. The Hypoxia-Long Noncoding RNA Interaction in Solid Cancers. Int J Mol Sci 2021; 22:ijms22147261. [PMID: 34298879 PMCID: PMC8307739 DOI: 10.3390/ijms22147261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is one of the representative microenvironment features in cancer and is considered to be associated with the dismal prognosis of patients. Hypoxia-driven cellular pathways are largely regulated by hypoxia-inducible factors (HIFs) and notably exert influence on the hallmarks of cancer, such as stemness, angiogenesis, invasion, metastasis, and the resistance towards apoptotic cell death and therapeutic resistance; therefore, hypoxia has been considered as a potential hurdle for cancer therapy. Growing evidence has demonstrated that long noncoding RNAs (lncRNAs) are dysregulated in cancer and take part in gene regulatory networks owing to their various modes of action through interacting with proteins and microRNAs. In this review, we focus attention on the relationship between hypoxia/HIFs and lncRNAs, in company with the possibility of lncRNAs as candidate molecules for controlling cancer.
Collapse
Affiliation(s)
- Seung Wan Son
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Ba Da Yun
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Mun Gyu Song
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Jin Kyeong Lee
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
30
|
Han X, Wu J, Zhang Y, Song J, Shi Z, Chang H. LINC00518 Promotes Cell Proliferation by Regulating the Cell Cycle of Lung Adenocarcinoma Through miR-185-3p Targeting MECP2. Front Oncol 2021; 11:646559. [PMID: 33937054 PMCID: PMC8081883 DOI: 10.3389/fonc.2021.646559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Previous studies have shown that long intergenic non-protein coding RNA 00518 (LINC00518) are essential for the cell growth and metastasis of human cancer. However, the role of LINC00518 in lung adenocarcinoma (LUAD) is still unknown. This research put emphasis on the function of LINC00518 on the cell growth of LUAD. The lncRNA, miRNA and mRNA expression were measured by using qRT-PCR. Protein levels were measured by using Western blotting. CCK-8, colony formation assays and transwell assay were performed to evaluate the cell proliferation ability and invasion. Bioinformatic analysis and luciferase reporter assays were chosen to confirm the mechanism of LINC00518 in LUAD. We found that LINC00518 was highly expressed in LUAD specimens and the high-expression was negatively correlated with the overall survival rates. This finding was also proved in the LUAD cell lines. Through a series of in vitro and in vivo experiments, we proved that LICN00518 promoted the cell growth of LUAD by regulating the cell cycle. Moreover, LICN00518 upregulated the expression of MECP2 by mutagenesis of miR-185-3p. The results suggested that LICN00518 could be used as a survival indicator and potential therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Xu Han
- Department of Thoracic and Cardiovascular Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Jixiang Wu
- Department of Thoracic and Cardiovascular Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Yajun Zhang
- Department of Thoracic and Cardiovascular Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Jianxiang Song
- Department of Thoracic and Cardiovascular Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Zhan Shi
- Department of Thoracic and Cardiovascular Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Huiwen Chang
- Department of Thoracic and Cardiovascular Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| |
Collapse
|
31
|
Silencing circSLAMF6 represses cell glycolysis, migration, and invasion by regulating the miR-204-5p/MYH9 axis in gastric cancer under hypoxia. Biosci Rep 2021; 40:225161. [PMID: 32496549 PMCID: PMC7313448 DOI: 10.1042/bsr20201275] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Gastric cancer (GC) is a malignant tumor of the digestive tract. Hypoxia plays an important role in the development of cancer, including GC. The present study aimed to investigate the role of circular RNA SLAMF6 (circSLAMF6) in the progression of GC under hypoxia. Methods: The expression of circSLAMF6, microRNA-204-5p (miR-204-5p) and myosin heavy chain 9 (MYH9) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). GC cells were maintained under hypoxia (1% O2) for experiments in vitro. Glucose consumption and lactate production were determined by a Glucose Assay Kit and a Lactate Assay Kit, respectively. Levels of all protein were detected by Western blot. Cell migration and invasion were examined by Transwell assay. The interaction between miR-204-5p and circSLAMF6 or MYH9 was analyzed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Murine xenograft model was established to explore the role of circSLAMF6 in vivo. Results: CircSLAMF6 expression was increased in GC cells under hypoxia. Hypoxia promoted glycolysis, migration, and invasion in GC cells, which were reversed by circSLAMF6 knockdown. CircSLAMF6 was validated as a miR-204-5p sponge, and MYH9 was a target of miR-204-5p. Functionally, miR-204-5p inhibitor weakened the inhibition of circSLAMF6 knockdown on GC cell progression under hypoxia. Besides, MYH9 depletion suppressed glycolysis, migration, and invasion in GC cells under hypoxia. Importantly, circSLAMF6 deficiency inhibited tumor growth in vivo by regulating the miR-204-5p/MYH9 axis. Conclusion: CircSLAMF6 was involved in glycolysis, migration, and invasion by regulating the miR-204-5p/MYH9 axis in GC cells under hypoxia.
Collapse
|
32
|
Liu Y, He D, Xiao M, Zhu Y, Zhou J, Cao K. Long noncoding RNA LINC00518 induces radioresistance by regulating glycolysis through an miR-33a-3p/HIF-1α negative feedback loop in melanoma. Cell Death Dis 2021; 12:245. [PMID: 33664256 PMCID: PMC7933330 DOI: 10.1038/s41419-021-03523-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 01/31/2023]
Abstract
The long noncoding RNA, LINC00518, is highly expressed in various types of cancers and is involved in cancer progression. Although LINC00518 promotes the metastasis of cutaneous malignant melanoma (CMM), the mechanism underlaying its effects on CMM radiosensitivity remains unclear. In this study, LINC00518 expression was significantly upregulated in CMM samples, and LINC00518 levels were associated with poor prognosis of patients with CMM. Knockdown of LINC00518 in CMM cells significantly inhibited cell invasion, migration, proliferation, and clonogenicity. LINC00518-mediated invasion, migration, proliferation, and clonogenicity were negatively regulated by the microRNA, miR-33a-3p, in vitro, which increased sensitivity to radiotherapy via inhibition of the hypoxia-inducible factor 1α (HIF-1α)/lactate dehydrogenase A glycolysis axis. Additionally, HIF-1α recognized the miR-33a-3p promoter region and recruited histone deacetylase 2, which decreased the expression of miR-33a-3p and formed an LINC00518/miR-33a-3p/HIF-1α negative feedback loop. Furthermore, signaling with initially activated glycolysis and radioresistance in CMM cells was impaired by Santacruzamate A, a histone deacetylase inhibitor, and 2-deoxy-D-glucose, a glycolytic inhibitor. Lastly, knockdown of LINC00518 expression sensitized CMM cancer cells to radiotherapy in an in vivo subcutaneously implanted tumor model. In conclusion, LINC00518 was confirmed to be an oncogene in CMM, which induces radioresistance by regulating glycolysis through an miR-33a-3p/HIF-1α negative feedback loop. Our study, may provide a potential strategy to improve the treatment outcome of radiotherapy in CMM.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Databases, Genetic
- Feedback, Physiological
- Gene Expression Regulation, Neoplastic
- Glycolysis
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Melanoma/genetics
- Melanoma/metabolism
- Melanoma/pathology
- Melanoma/radiotherapy
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Invasiveness
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Radiation Tolerance
- Signal Transduction
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Skin Neoplasms/radiotherapy
- Tumor Hypoxia
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Yan Liu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
- Department of Plastic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, PR China
| | - Dong He
- Department of Respiration, the Second People's Hospital of Hunan Province of Hunan University of Chinese Medicine, Changsha, 410000, PR China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Jianda Zhou
- Department of Plastic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, PR China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
33
|
De Falco V, Napolitano S, Esposito D, Guerrera LP, Ciardiello D, Formisano L, Troiani T. Comprehensive Review on the Clinical Relevance of Long Non-Coding RNAs in Cutaneous Melanoma. Int J Mol Sci 2021; 22:1166. [PMID: 33503876 PMCID: PMC7865742 DOI: 10.3390/ijms22031166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is considered a rare tumor, although it is one of the most common cancers in young adults and its incidence has risen in the last decades. Targeted therapy, with BRAF and MEK inhibitors, and immunotherapy revolutionized the treatment of metastatic melanoma but there is still a considerable percentage of patients with primary or acquired resistance to these therapies. Recently, oncology researchers directed their attention at the role of long non-coding RNAs (lncRNAs) in different types of cancers, including melanoma. lncRNAs are RNA transcripts, initially considered "junk sequences", that have been proven to have a crucial role in the fine regulation of physiological and pathological processes of different tissues. Furthermore, they are more expressed in tumors than protein-coding genes, constituting perfect candidates either as biomarkers (diagnostic, prognostic, predictive) or as therapeutic targets. In this work, we reviewed all the literature available for lncRNA in melanoma, elucidating all the potential roles in this tumor.
Collapse
Affiliation(s)
- Vincenzo De Falco
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Stefania Napolitano
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Luigi Pio Guerrera
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Davide Ciardiello
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Teresa Troiani
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| |
Collapse
|
34
|
LncRNA LINC00518 Acts as an Oncogene in Uveal Melanoma by Regulating an RNA-Based Network. Cancers (Basel) 2020; 12:cancers12123867. [PMID: 33371395 PMCID: PMC7767460 DOI: 10.3390/cancers12123867] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Uveal melanoma (UM) is the most frequent primary tumor of the eye in adults. Although molecular alterations on protein-coding genes have been associated with the development of UM, the role of non-coding RNAs and their competitive endogenous networks remain poorly investigated. Starting from a computational analysis on UM expression dataset deposited in The Cancer Genome Atlas, we identified the long non-coding RNA LINC00518 as a potential oncogene. We then experimentally evaluated LINC00518 and its supposed RNA signaling in human biopsies and in vitro functional assays. The results obtained suggest that LINC00518, under potential transcriptional control by MITF, regulates an RNA–RNA network promoting cancer-related processes (i.e., cell proliferation and migration). These findings open the way to the characterization of the unknown RNA signaling associated with UM and pave the way to the exploitation of a potential target for RNA-based therapeutics. Abstract Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults; little is known about the contribution of non-coding RNAs (ncRNAs) to UM pathogenesis. Competitive endogenous RNA (ceRNA) networks based on RNA–RNA interactions regulate physiological and pathological processes. Through a combined approach of in silico and experimental biology, we investigated the expression of a set of long non-coding RNAs (lncRNAs) in patient biopsies, identifying LINC00518 as a potential oncogene in UM. The detection of LINC00518 dysregulation associated with several in vitro functional assays allowed us to investigate its ceRNA regulatory network and shed light on its potential involvement in cancer-related processes, such as epithelial to mesenchymal transition (EMT) and CoCl2-induced hypoxia-like response. In vitro transient silencing of LINC00518 impaired cell proliferation and migration, and affected mRNA expression of LINGO2, NFIA, OTUD7B, SEC22C, and VAMP3. A “miRNA sponge” and “miRNA protector” model have been hypothesized for LINC00518-induced regulation of mRNAs. In vitro inhibition of MITF suggested its role as a potential activator of LINC00518 expression. Comprehensively, LINC00518 may be considered a new oncogene in UM and a potential target for RNA-based therapeutic approaches.
Collapse
|
35
|
Zhang J, Liu H, Zhang W, Li Y, Fan Z, Jiang H, Luo J. Identification of lncRNA-mRNA Regulatory Module to Explore the Pathogenesis and Prognosis of Melanoma. Front Cell Dev Biol 2020; 8:615671. [PMID: 33392203 PMCID: PMC7773644 DOI: 10.3389/fcell.2020.615671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is an aggressive form of skin cancer that results in high mortality rate worldwide. It is vital to discover effective prognostic biomarkers and therapeutic targets for the treatment of melanoma. Long non-coding RNA (lncRNA) has been verified to play an essential role in the regulation of gene expression in diseases and tumors. Therefore, it is significant to explore the function of lncRNAs in the development and progression of SKCM. In this paper, a set of differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were first screened out using 471 cutaneous melanoma samples and 813 normal skin samples. Gene Ontology and KEGG pathway enrichment analysis were performed to obtain the significant function annotations and pathways of DEmRNAs. We also ran survival analysis on both DElncRNAs and DEmRNAs to identify prognostic-related lncRNAs and mRNAs. Next, a set of hub genes derived from protein-protein interaction (PPI) network analysis and lncRNA target genes screened from starbase-ENCORI database were integrated to construct a lncRNA-mRNA regulatory module, which includes 6 lncRNAs 4 target mRNAs. We further checked the capacity of these lncRNA and mRNA in the diagnosis of melanoma, and found that single lncRNA can effectively distinguish tumor and normal tissue. Moreover, we ran CMap analysis to select a list of small molecule drugs for SKCM, such as EGFR inhibitor AG-490, growth factor receptor inhibitor GW-441756 and apoptosis stimulant betulinic-acid, which have shown therapeutic effect in the treatment of melanoma.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Dermatology, Graduate School of Dalian Medical University, Dalian, China
| | - Hui Liu
- Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Wenhao Zhang
- Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Yinfang Li
- Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Zhigang Fan
- Department of Oncology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong, China
| | - Hua Jiang
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
36
|
Ren Y, Zhu H, Han S. LINC00518 Interference Inhibits Non-Small Cell Lung Cancer by Upregulating miR216b-5p Expression. Cancer Manag Res 2020; 12:11041-11050. [PMID: 33173337 PMCID: PMC7646473 DOI: 10.2147/cmar.s270087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction Non–small cell lung cancer (NSCLC) accounts for the majority of lung cancer cases, and effective treatment for this disease is still lacking. This study aimed to explore the potential role of LINC00518 and miR216b-5p on cell proliferation and tumor growth in NSCLC. Methods The expression of LINC00518, miR216b-5p, MMP7, and MMP9 in NSCLC cell lines was determined by RT-qPCR analysis, which was also used to confirm the transfection effects. After transfection, proliferation, clone-formation ability, migration, and invasion of NSCLC cells were detected by CCK8, clone-formation, wound-healing, and transwell assays, respectively. Western blot analysis was used to detect the expression of MMP7, MMP9, Ki67, and PCNA. A xenograft model was constructed by subcutaneous injection of transfected NSCLC cells into nude mice. Results The results indicated that LINC00518 expression was increased and miR216b-5p expression decreased in NSCLC cell lines, and A549 cells were chosen for the next experiments. LINC00518 interference inhibited proliferation, invasion, and migration of A549 cells, together with the progression of NSCLC in vivo. In addition, LINC00518 directly targeted miR216b-5p. Downregulation of miR216b-5p weakened the inhibitory effect of LINC00518 interference on proliferation, invasion, and migration of A549 cells, as well as progression of NSCLC in vivo. Discussion In conclusion, LINC00518 interference inhibits NSCLC, which is partially reversed by downregulation of miR216b-5p expression.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu Province 225300, China.,Department of Oncology, Hospital 5, affiliated with Nantong University, Taizhou 225300, China
| | - Huadong Zhu
- School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Song Han
- Department of Cardiothoracic Surgery, Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, China
| |
Collapse
|
37
|
Safa A, Gholipour M, Dinger ME, Taheri M, Ghafouri-Fard S. The critical roles of lncRNAs in the pathogenesis of melanoma. Exp Mol Pathol 2020; 117:104558. [PMID: 33096077 DOI: 10.1016/j.yexmp.2020.104558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) embrace a huge fraction of human transcripts and participate in the pathogenesis of human disorders especially malignant conditions. Malignant melanoma, as the most fatal type of cutaneous malignnacies, is associated with dysregulation of several lncRNAs including PVT1, H19, MALAT1, and CCAT1. Moreover, a portion of lncRNAs are exclusively expressed in melanoma cell lines. Expression levels of several lncRNAs are associated with TNM stage, tumor size and progression of melanoma. Thus, these lncRNAs are regarded as biomarkers for this malignancy. Peripheral transcript levels of a number of lncRNAs, such as PVT1, SNHG5 and SPRY4-IT1, could distinguish melanoma patients from unaffected persons with appropriate sensitivity and specificity values. Moreover, expression levels of numerous lncRNAs in tissue biopsies could differentiate malignant samples from benign samples. Based on the results of both cell line and in vivo studies, lncRNAs regulate critical pathways in the carcinogenesis of melanoma, such as the PI3K/Akt and NF-κB signaling pathways, and are involved in the modulation of response to chemotherapeutic agents. Here we review the existing information on the role of lncRNAs in malignant melanoma.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Shen X, Ding Y, Lu F, Yuan H, Luan W. Long noncoding RNA MIR4435-2HG promotes hepatocellular carcinoma proliferation and metastasis through the miR-22-3p/YWHAZ axis. Am J Transl Res 2020; 12:6381-6394. [PMID: 33194037 PMCID: PMC7653602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Long noncoding RNAs (lncRNAs) play the critical biological role in many malignant tumours. MIR4435-2HG has been proven to be a novel oncogenic lncRNA. However, the exact role and mechanism of MIR4435-2HG in hepatocellular carcinoma (HCC) remain unclear. Here, we found that MIR4435-2HG is overexpressed in HCC tissue compared to normal controls and that high level of MIR4435-2HG indicates a poorer prognosis in HCC patients. MIR4435-2HG enhances the growth and metastasis ability of HCC cells. MIR4435-2HG promotes the expression of YWHAZ by sponging miR-22-3p to liberate YWHAZ mRNA transcripts. MIR4435-2HG facilitates the proliferation and metastasis of HCC by modulating the miR-22-3p/YWHAZ axis. These results demonstrated the role and mechanism of MIR4435-2HG in malignant progression of HCC. MIR4435-2HG may be used as the prognostic marker and treatment target for the patient with HCC.
Collapse
Affiliation(s)
- Xuanlin Shen
- Department of Rehabilitation, Changshu No. 2 People’s Hospital (The 5th Clinical Medical College of Yangzhou University)Changshu, Jiangsu, China
| | - Yuting Ding
- Department of Rehabilitation, Changshu No. 2 People’s Hospital (The 5th Clinical Medical College of Yangzhou University)Changshu, Jiangsu, China
| | - Feng Lu
- Department of Plastic Surgery, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Haitao Yuan
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Wenkang Luan
- Department of Plastic Surgery, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| |
Collapse
|
39
|
Liu L, Li X, Shi Y, Chen H. The long noncoding RNA FTX promotes a malignant phenotype in bone marrow mesenchymal stem cells via the miR-186/c-Met axis. Biomed Pharmacother 2020; 131:110666. [PMID: 32853911 DOI: 10.1016/j.biopha.2020.110666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Gliomas are the most common and aggressive primary tumours of the central nervous system in adults. Bone marrow-derived mesenchymal stem cells (BMSCs) are an important component of the glioma microenvironment. Our previous study indicated that BMSCs in the glioma microenvironment could be induced to malignantly transform by glioma stem cells (GSCs). The malignant transformation of BMSCs is closely related to glioma progression; however, the underlying mechanism of this transformation has not been fully clarified. In this study, we found that compared with the levels in normal BMSCs, the levels of the long noncoding RNA FTX transcript XIST regulator (lncRNA-FTX) were increased in malignantly transformed BMSCs (tBMSCs), which was associated with the proliferation, migration and invasion of tBMSCs. Next, by using a luciferase reporter assay and an RNA pull-down assay, we found that lncRNA-FTX acted as a sponge for miR-186 in tBMSCs. Further research revealed that miR-186 could bind to the 3'-UTR (untranslated region) of c-Met, which acts as an oncogene in gliomas. Through functional assays, we showed that lncRNA-FTX could regulate c-Met expression in tBMSCs in a miR-186-dependent manner. Based on these data, we concluded that lncRNA-FTX plays a key role in the GSC-mediated malignant transformation of BMSCs in the glioma microenvironment, which is of great significance for further understanding the pathogenesis of glioma.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaojian Li
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
40
|
Xie J, Zheng Y, Xu X, Sun C, Lv M. Long Noncoding RNA CAR10 Contributes to Melanoma Progression By Suppressing miR-125b-5p to Induce RAB3D Expression. Onco Targets Ther 2020; 13:6203-6211. [PMID: 32636644 PMCID: PMC7334016 DOI: 10.2147/ott.s249736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background Melanoma is a very malignant skin cancer with high mortality and unsatisfactory prognosis. Many long noncoding RNAs (lncRNAs) have been reported to be aberrantly expressed in melanoma. How lncRNA regulates melanoma progression is poorly defined. LncRNA CAR10 has been shown to regulate the progression of several cancers and its role in melanoma remains unclear. This study aims to determine the role and mechanism of lncRNA CAR10 in the regulation of melanoma progression. Methods qRT-PCR was utilized to analyze CAR10 in melanoma human tissues and cell lines while Kaplan–Meier curve was used to examine the survival rate. CCK8 assay and EdU assay were used to assess cell proliferation when Transwell assay was conducted to determine migration and invasion. And tumor xenograft assay was performed to evaluate tumor growth in vivo. Additionally, luciferase assay and RNA pulldown assay were performed to analyze the interactions among CAR10, miR-125b-5p and RAB3D. Results LncRNA CAR10 was upregulated in melanoma tissues and cell lines. Upregulation of CAR10 predicted a poor prognosis in patients with melanoma. CAR10 knockdown suppressed proliferation, migration and invasion of melanoma cells in vitro. CAR10 silencing attenuated tumor growth in vivo. CAR10 inhibited miR-125b-5p activity to upregulate RAB3D expression. And miR-125b-5p/RAB3D signaling is crucial for CAR10-dependent melanoma progression. Conclusion Our work suggests that lncRNA CAR10 promotes melanoma growth and metastasis through modulating miR-125b-5p/RAB3D axis.
Collapse
Affiliation(s)
- Jing Xie
- Department of Dermatology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Yanyan Zheng
- Department of Neurology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Xiaomin Xu
- Department of Reproduction and Genetics, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Congcong Sun
- Department of Reproduction and Genetics, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Mingfen Lv
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
41
|
Luan W, Ding Y, Yuan H, Ma S, Ruan H, Wang J, Lu F, Bu X. Long non-coding RNA LINC00520 promotes the proliferation and metastasis of malignant melanoma by inducing the miR-125b-5p/EIF5A2 axis. J Exp Clin Cancer Res 2020; 39:96. [PMID: 32466797 PMCID: PMC7254730 DOI: 10.1186/s13046-020-01599-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Long intergenic non-protein coding RNA 520 (LINC00520), a novel identified lncRNA, has been shown to modulate the malignant phenotype of tumor cells in some malignant tumors. However, the exact role and molecular mechanism of LINC00520 in malignant melanoma has not been studied. METHODS The expression of LINC00520 in melanoma tissues were detected by using RNA-seq analysis and qRT-PCR. Melanoma cases from the public databases (The Cancer Genome Atlas (TCGA), GEO#GSE15605, GEO#GSE34460 and GEO#GSE24996) were included in this study. CCK-8 assay, EdU assay, transwell and scratch wound assay were used to explore the role of LINC00520 in melanoma cells. Luciferase reporter assays, MS2-RIP, RNA pull-down and RNA-ChIP assay were used to demonstrate the molecular biological mechanism of LINC00520 in melanoma. RESULTS We found that LICN00520 was found to be overexpressed in melanoma tissue. High expression of LICN00520 is a risk factor for the prognosis of melanoma patients. LINC00520 promotes the proliferation, invasion and migration of melanoma cells. LICN00520 exerted its oncogenic role by competitive binding miR-125b-5p to promote Eukaryotic initiation factor 5A2 (EIF5A2) expression. We also showed that LICN00520 promotes the growth and metastasis of melanoma in vivo through regulating miR-125b-5p/EIF5A2 axis. CONCLUSIONS All results elucidated the role and molecular mechanism of LINC00520 in the malignant development of melanoma. LINC00520, a new oncogene in melanoma, maybe serve as a survival biomarkers or therapeutic target for melanoma patients.
Collapse
Affiliation(s)
- Wenkang Luan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China.
| | - Yuting Ding
- Department of Rehabilitation, Changshu No. 2 People's Hospital (The 5th Clinical Medical College of Yangzhou University), Changshu, Jiangsu, China
| | - Haitao Yuan
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China
| | - Shaojun Ma
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China
| | - Hongru Ruan
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China
| | - Jinlong Wang
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China
| | - Feng Lu
- Department of Plastic Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, 212000, Jiangsu, China.
| |
Collapse
|
42
|
Yang F, Lei P, Zeng W, Gao J, Wu N. Long Noncoding RNA LINC00173 Promotes the Malignancy of Melanoma by Promoting the Expression of IRS4 Through Competitive Binding to microRNA-493. Cancer Manag Res 2020; 12:3131-3144. [PMID: 32440211 PMCID: PMC7211300 DOI: 10.2147/cmar.s243869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Long intergenic non-protein-coding RNA 173 (LINC00173) plays crucial roles in lung cancer. However, the expression and biological functions of LINC00173 in melanoma have not yet been investigated. In this study, we aimed to characterize the involvement of LINC00173 in melanoma and elucidate its mechanisms of action. Materials and Methods Reverse-transcription quantitative PCR was performed to measure LINC00173 expression in melanoma. A CCK-8 assay, flow cytometry, and migration and invasion assays were applied to examine melanoma cell proliferation, apoptosis, migration, and invasion, respectively. A xenograft tumor experiment was performed to determine the tumorous growth of melanoma cells in vivo. Results We found that LINC00173 was upregulated in melanoma tissues and cell lines. High LINC00173 expression was closely associated with TNM stage, lymph node metastasis, and shorter overall survival of patients with melanoma. Functional assays revealed that LINC00173 downregulation inhibited melanoma cell proliferation, migration, and invasion and induced apoptosis, suggesting that LINC00173 acts as an oncogenic RNA. LINC00173 knockdown retarded the tumorous growth of melanoma cells in vivo. Mechanistically, LINC00173 increased insulin receptor substrate 4 (IRS4) expression by sponging microRNA-493 (miR-493), thereby acting as a competing endogenous RNA. The effects of LINC00173 knockdown on the malignant phenotype of melanoma cells were reversed by overexpression of IRS4 or knockdown of miR-493. Conclusion The LINC00173–miR-493–IRS4 pathway regulates melanoma characteristics by increasing the expression of IRS4 via competitive binding of LINC00173 to miR-493, suggesting that this pathway is a potential target for the diagnosis, prognosis, and/or treatment of melanoma.
Collapse
Affiliation(s)
- Fan Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Pengzhen Lei
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710048, People's Republic of China
| | - Jianwu Gao
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Na Wu
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| |
Collapse
|
43
|
Sui H, Fan S, Liu W, Li Y, Zhang X, Du Y, Bao H. LINC00028 regulates the development of TGFβ1-treated human tenon capsule fibroblasts by targeting miR-204-5p. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30165-0. [PMID: 32085895 DOI: 10.1016/j.bbrc.2020.01.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
Abstract
Glaucoma is a leading cause of blindness worldwide with complex pathogenesis. The excessive proliferation and fibrosis of human tenon capsule fibroblasts (HTFs) trigger the scar formation after glaucoma filtration surgery. The purpose was to investigate the role of long intergenic non-protein coding RNA 28 (LINC00028) and mechanism in transforming growth factor β1 (TGFβ1)-treated HTFs. The detection of LINC00028 and miR-204-5p expression was conducted using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was assessed by cell counting kit-8 (CCK-8) assay. Cell migration and invasion were monitored by transwell assay. The expression of Epithelial-mesenchymal transition (EMT)-related markers, including E-cadherin, α-Smooth muscle actin (α-SMA), fibronectin and β-catenin, and autophagy-related markers, including Beclin 1 and light chain 3 (LC3-II and LC3-I) at the protein level was quantified using western blot. The prediction of the relationship between LINC00028 and miR-204-5p was performed by the online tool miRcode, and the verification of the relationship between them was conducted using dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. The expression of LINC00028 was elevated in glaucoma tissues and TGFβ1-treated HTFs. LINC00028 downregulation blocked proliferation, migration, invasion, EMT, fibrosis and autophagy of TGFβ1-treated HTFs. MiR-204-5p was a target of LINC00028, and its reintroduction exerted a similar role of LINC00028 downregulation. The inhibition of miR-204-5p reversed the effects of LINC00028 downregulation in TGFβ1-treated HTFs. LINC00028 regulated proliferation, migration, invasion, EMT, fibrosis and autophagy to induce the development of HTFs by competitively targeting miR-204-5p, and LINC00028 was regarded as a promising biomarker for glaucoma filtration treatment.
Collapse
Affiliation(s)
- Huali Sui
- Department of Ophthalmology, Haiyang Third People's Hospital, Haiyang, Yantai, Shandong, 265100, China
| | - Shanshan Fan
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, China
| | - Wenjing Liu
- Department of Ophthalmology, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Yingchao Li
- Department of Ophthalmology, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Xuan Zhang
- Department of Ophthalmology, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Yunhong Du
- Department of Ophthalmology, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Huijing Bao
- Department of Ophthalmology, Taian City Central Hospital, Taian, Shandong, 271000, China.
| |
Collapse
|