1
|
Merrick BA, Brooks AM, Foley JF, Martin NP, Fannin RD, Gladwell W, Gerrish KE. hTERT and SV40LgT Renal Cell Lines Adjust Their Transcriptional Responses After Copy Number Changes from the Parent Proximal Tubule Cells. Int J Mol Sci 2025; 26:3607. [PMID: 40332109 PMCID: PMC12027150 DOI: 10.3390/ijms26083607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Primary mouse renal proximal tubule epithelial cells (moRPTECs) were immortalized by lentivirus transduction to create hTERT or SV40LgT (LgT) cell lines. Prior work showed a more pronounced injury and repair response in LgT versus hTERT cells after chemical challenge. We hypothesized that unique genomic changes occurred after immortalization, altering critical genes and pathways. RNA-seq profiling and whole-genome sequencing (WGS) of parent, hTERT, and LgT cells showed that 92.5% of the annotated transcripts were shared, suggesting a conserved proximal tubule expression pattern. However, the cell lines exhibited unique transcriptomic and genomic profiles different from the parent cells. Three transcript classes were quite relevant for chemical challenge response-Cyps, ion channels, and metabolic transporters-each important for renal function. A pathway analysis of the hTERT cells suggested alterations in intermediary and energy metabolism. LgT cells exhibited pathway activation in cell cycle and DNA repair that was consistent with replication stress. Genomic karyotyping by combining WGS and RNA-seq data showed increased gene copy numbers in chromosome 5 for LgT cells, while hTERT cells displayed gene copy losses in chromosomes 4 and 9. These data suggest that the exaggerated transcriptional responses of LgT cells versus hTERT cells result from differences in gene copy numbers, replication stress, and the unique selection processes underlying LgT or hTERT immortalization.
Collapse
Affiliation(s)
- Bruce Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Ashley M. Brooks
- Biostatistics and Computational Biology Branch, Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Julie F. Foley
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Rick D. Fannin
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA; (R.D.F.); (W.G.); (K.E.G.)
| | - Wesley Gladwell
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA; (R.D.F.); (W.G.); (K.E.G.)
| | - Kevin E. Gerrish
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA; (R.D.F.); (W.G.); (K.E.G.)
| |
Collapse
|
2
|
Xu J, Zhang J, Zhang C, Hu H, Wang S, Deng F, Zhou W, Liu Y, Hu C, Huang H, Wei S. LncRNA-ANRIL regulates CDKN2A to promote malignant proliferation of Kasumi-1 cells. Cell Div 2025; 20:2. [PMID: 39875984 PMCID: PMC11773856 DOI: 10.1186/s13008-025-00144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the regulatory effects of long non-coding RNA-ANRIL on CDKN2A in the cell cycle of Kasumi-1 cells and elucidate the underlying molecular mechanisms. METHODS ANRIL and CDKN2A expression levels were quantified using RT-qPCR in peripheral blood samples from acute myeloid leukemia (AML) patients. CDKN2A knockdown efficiency was validated via RT-qPCR, and cell cycle distribution was analyzed using flow cytometry. Cell proliferation assays were conducted with CCK-8 following palbociclib treatment and CDKN2A downregulation. RNA immunoprecipitation (RIP) identified potential ANRIL-associated targets, while western blotting assessed the expression levels of GSK3β/β-catenin/cyclin D1 signaling components and related proteins. RESULTS ANRIL and CDKN2A were markedly overexpressed in AML patient samples. Knockdown of ANRIL and CDKN2A led to G1 phase arrest accompanied by reduced CDK2/4/6 and cyclin D1 protein levels, while ANRIL upregulation induced the opposite effect. Palbociclib treatment for 24 h and 48 h elevated the G1 phase cell population and suppressed CDK2/4/6 and cyclin D1 protein expression, demonstrating its ability to counteract ANRIL-driven cell cycle progression. Downregulation of ANRIL and CDKN2A also suppressed the GSK3β/β-catenin signaling pathway, reducing cyclin D1 expression, whereas ANRIL upregulation reactivated this axis. Co-transfection experiments showed that simultaneous cyclin D1 suppression and ANRIL overexpression attenuated ANRIL's stimulatory effects on cell cycle progression. RIP analysis confirmed a physical interaction between ANRIL and CDKN2A. Furthermore, CDKN2A downregulation inhibited cell proliferation and reversed GSK3β/β-catenin/cyclin D1 pathway activation mediated by ANRIL upregulation. CONCLUSION ANRIL facilitates Kasumi-1 cell survival by modulating CDKN2A to activate the GSK3β/β-catenin/cyclin D1 signaling pathway.
Collapse
Affiliation(s)
- Jianxia Xu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Jingxin Zhang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Chengsi Zhang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Huali Hu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Siqi Wang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Fahua Deng
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Wu Zhou
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Yuancheng Liu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Chenlong Hu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China.
| | - Sixi Wei
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China.
| |
Collapse
|
3
|
Ortiz-Melo MT, Campos JE, Sánchez-Guzmán E, Herrera-Aguirre ME, Castro-Muñozledo F. Regulation of corneal epithelial differentiation: miR-141-3p promotes the arrest of cell proliferation and enhances the expression of terminal phenotype. PLoS One 2024; 19:e0315296. [PMID: 39642122 PMCID: PMC11623785 DOI: 10.1371/journal.pone.0315296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 12/08/2024] Open
Abstract
In recent years, different laboratories have provided evidence on the role of miRNAs in regulation of corneal epithelial metabolism, permeability and wound healing, as well as their alteration after surgery and in some ocular pathologies. We searched the available databases reporting miRNA expression in the human eye, looking for miRNAs highly expressed in central cornea, which could be crucial for maintenance of the epithelial phenotype. Using the rabbit RCE1(5T5) cell line as a model of corneal epithelial differentiation, we describe the participation of miR-141-3p as a possible negative regulator of the proliferative/migratory phenotype in corneal epithelial cells. The expression of miR-141-3p followed a time course similar to the differentiation-linked KRT3 cytokeratin, being delayed 24-48 hours relative to PAX6 expression; such result suggested that miR-141-3p only regulates the expression of terminal phenotype. Inhibition of miR-141-3p led to increased cell proliferation and motility, and induced the expression of molecular makers characteristic of an Epithelial Mesenchymal Transition (EMT). Comparison between the transcriptional profile of cells in which miR-141-3p was knocked down, and the transcriptomes from proliferative non-differentiated and differentiated stratified epithelia suggest that miR-141-3p is involved in the expression of terminal differentiation mediating the arrest of cell proliferation and inhibiting the EMT in highly motile early differentiating cells.
Collapse
Affiliation(s)
- María Teresa Ortiz-Melo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Jorge E. Campos
- Unidad de Biotecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Erika Sánchez-Guzmán
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| |
Collapse
|
4
|
Yang T, Li Y, Zheng Z, Qu P, Shao Z, Wang J, Ding N, Wang W. Comprehensive analysis of lncRNA-mediated ceRNA network in renal cell carcinoma based on GEO database. Medicine (Baltimore) 2024; 103:e39424. [PMID: 39213211 PMCID: PMC11365686 DOI: 10.1097/md.0000000000039424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Renal cell carcinoma (RCC) ranks among the leading causes of cancer-related mortality. Despite extensive research, the precise etiology and progression of RCC remain incompletely elucidated. Long noncoding RNA (lncRNA) has been identified as competitive endogenous RNA (ceRNA) capable of binding to microRNA (miRNA) sites, thereby modulating the expression of messenger RNAs (mRNA) and target genes. This regulatory network is known to exert a pivotal influence on cancer initiation and progression. However, the specific role and functional significance of the lncRNA-miRNA-mRNA ceRNA network in RCC remain poorly understood. The RCC transcriptome data was obtained from the gene expression omnibus database. The identification of differentially expressed long noncoding RNAs (DElncRNAs), differentially expressed miRNAs, and differentially expressed mRNAs (DEmRNAs) between RCC and corresponding paracancer tissues was performed using the "Limma" package in R 4.3.1 software. We employed a weighted gene co-expression network analysis to identify the key DElncRNAs that are most relevant to RCC. Subsequently, we utilized the encyclopedia of RNA interactomes database to predict the interactions between these DElncRNAs and miRNAs, and the miRDB database to predict the interactions between miRNAs and mRNAs. Therefore, key DElncRNAs were obtained to verify the expression of their related genes in the The Cancer Genome Atlas database and to analyze the prognosis. The construction of RCC-specific lncRNA-miRNA-mRNA ceRNA network was carried out using Cytoscape 3.7.0. A total of 286 DElncRNAs, 56 differentially expressed miRNAs, and 2065 DEmRNAs were identified in RCC. Seven key DElncRNAs (GAS6 antisense RNA 1, myocardial infarction associated transcript, long intergenic nonprotein coding RNA 921, MMP25 antisense RNA 1, Chromosome 22 Open Reading Frame 34, MIR34A host gene, MIR4435-2 host gene) were identified using weighted gene co-expression network analysis and encyclopedia of RNA interactomes databases. Subsequently, a network diagram comprising 217 nodes and 463 edges was constructed based on these key DElncRNAs. The functional analysis of DEmRNAs in the ceRNA network was conducted using Kyoto Encyclopedia of Genes and Genomes and gene ontology. We constructed RCC-specific ceRNA networks and identified the crucial lncRNAs associated with RCC using bioinformatics analysis, which will help us further understand the pathogenesis of this disease.
Collapse
Affiliation(s)
- Tianci Yang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Yixuan Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Zhouhang Zheng
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Pei Qu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Zhiang Shao
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Wei Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
5
|
Ohno-Oishi M, Meiai Z, Sato K, Kanno S, Kawano C, Ishikawa M, Nakazawa T. SH-SY5Y human neuronal cells with mutations of the CDKN2B-AS1 gene are vulnerable under cultured conditions. Biochem Biophys Rep 2024; 38:101723. [PMID: 38737728 PMCID: PMC11088231 DOI: 10.1016/j.bbrep.2024.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Glaucoma is a common cause of blindness worldwide. Genetic effects are believed to contribute to the onset and progress of glaucoma, but the underlying pathological mechanisms are not fully understood. Here, we set out to introduce mutations into the CDKN2B-AS1 gene, which is known as being the closely associated with glaucoma, in a human neuronal cell line in vitro. We introduced gene mutations with CRISPR/Cas9 into exons and introns into the CDKN2B-AS1 gene. Both mutations strongly promoted neuronal cell death in normal culture conditions. RNA sequencing and pathway analysis revealed that the transcriptional factor Fos is a target molecule regulating CDKN2B-AS1 overexpression. We demonstrated that gene mutation of CDKN2B-AS1 is directly associated with neuronal cell vulnerability in vitro. Additionally, Fos, which is a downstream signaling molecule of CDKN2B-AS1, may be a potential source of new therapeutic targets for neuronal degeneration in diseases such as glaucoma.
Collapse
Affiliation(s)
- Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Zou Meiai
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiya Kanno
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chihiro Kawano
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Ishikawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
6
|
Razavinia A, Razavinia A, Jamshidi Khalife Lou R, Ghavami M, Shahri F, Tafazoli A, Khalesi B, Hashemi ZS, Khalili S. Exosomes as novel tools for renal cell carcinoma therapy, diagnosis, and prognosis. Heliyon 2024; 10:e32875. [PMID: 38948044 PMCID: PMC11211897 DOI: 10.1016/j.heliyon.2024.e32875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Background Renal Cell Carcinoma (RCC) stands as a formidable challenge within the field of oncology, despite considerable research endeavors. The advanced stages of this malignancy present formidable barriers to effective treatment and management. Objective This review aims to explore the potential of exosomes in addressing the diagnostic and therapeutic challenges associated with RCC. Specifically, it investigates the role of exosomes as biomarkers and therapeutic vehicles in the context of RCC management. Methods For this review article, a comprehensive literature search was conducted using databases such as PubMed, employing relevant keywords to identify research articles pertinent to the objectives of the review. Initially, 200 articles were identified, which underwent screening to remove duplicates and assess relevance based on titles and abstracts, followed by a detailed examination of full texts. From the selected articles, relevant data were extracted and synthesized to address the review's objectives. The conclusions were drawn based on a thorough analysis of the findings. The quality was ensured through independent review and resolution of discrepancies among multiple reviewers. Results Exosomes demonstrate potential as diagnostic tools for early detection, prognosis, and treatment monitoring in RCC. Their ability to deliver various therapeutic agents, such as small interfering RNAs, lncRNAs, chemotherapeutic drugs, and immune-stimulating agents, allows for a personalized approach to RCC management. By leveraging exosome-based technologies, precision and efficacy in treatment strategies can be significantly enhanced. Conclusion Despite the promising advancements enabled by exosomes in the management of RCC, further research is necessary to refine exosome-based technologies and validate their efficacy, safety, and long-term benefits through rigorous clinical trials. Embracing exosomes as integral components of RCC diagnosis and treatment represents a significant step towards improving patient outcomes and addressing the persistent challenges posed by this malignancy in the field of oncology.
Collapse
Affiliation(s)
- Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abazar Razavinia
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roya Jamshidi Khalife Lou
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahlegha Ghavami
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Forouzan Shahri
- Department of Chemistry, Faculty of Sciences, University of Guilan, Iran
| | - Aida Tafazoli
- Department of Bacterial and Virology, Shiraz medical school, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
7
|
Tian P, Wei J, Li J, Ren J, He C. An oncogenic role of lncRNA SNHG1 promotes ATG7 expression and autophagy involving tumor progression and sunitinib resistance of Renal Cell Carcinoma. Cell Death Discov 2024; 10:273. [PMID: 38851811 PMCID: PMC11162435 DOI: 10.1038/s41420-024-02021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
Renal cell carcinoma (RCC) is a malignant tumor with high incidence in adult kidney. Long non-coding RNAs (lncRNAs) have recently been recognized as important regulators in the development of RCC. However, whether lncRNA SNHG1 is associated with RCC progression remains to be elucidated. Here, the role of SNHG1 in RCC autophagy and sunitinib resistance was evaluated. Expression of SNHG1 in RCC tissues and cells was assessed using RT-qPCR. Western blot was utilized to measure the levels of autophagy-related molecules and ATG7. RNA pull-down and RIP assays were performed to confirm the molecular axis between SNHG1/PTBP1/ATG7. Cell proliferation, migration, invasion and apoptosis were analyzed by CCK-8, EdU, transwell and flow cytometry, respectively. The subcellular localization of SNHG1 was determined by an intracellular fractionation assay. The fluorescence intensity of GFP-LC3 autophagosome in RCC cells was detected. IHC staining was performed to test ATG7 expression in tumor tissues from nude mice. Here, a positive correlation of upregulated SNHG1 with poor prognosis of RCC patients was observed in RCC tissues and cells. SNHG1 knockdown suppressed tumor growth and reversed sunitinib resistance and autophagy of RCC cells. Additionally, SNHG1 was found to directly bind to PTBP1, thereby positively regulating ATG7 expression. Furthermore, we verified that SNHG1 mediated the malignant behavior of RCC cells through the PTBP1/ATG7 axis. To sum up, SNHG1 regulates RCC cell autophagy and sunitinib resistance through the PTBP1/ATG7 axis, which highlights a promising therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Pei Tian
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan Province, PR China
| | - Jinxing Wei
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China
| | - Jing Li
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan Province, PR China
| | - Junkai Ren
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan Province, PR China
| | - Chaohong He
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan Province, PR China.
| |
Collapse
|
8
|
Mohammadi M, Mansouri K, Mohammadi P, Pournazari M, Najafi H. Exosomes in renal cell carcinoma: challenges and opportunities. Mol Biol Rep 2024; 51:443. [PMID: 38520545 DOI: 10.1007/s11033-024-09384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer that accounts for approximately 2-3% of adult malignancies. Among the primary treatment methods for this type of cancer are surgery and targeted treatment. Still, due to less than optimal effectiveness, there are problems such as advanced distant metastasis, delayed diagnosis, and drug resistance that continue to plague patients. In recent years, therapeutic advances have increased life expectancy and effective treatment in renal cell carcinoma patients. One of these methods is the use of stem cells. Although the therapeutic effects of stem cells, especially mesenchymal stem cells, are still impressive, today, extracellular vesicles (EVs) as carrying molecules and various mediators in intercellular communications, having a central role in tumorigenesis, metastasis, immune evasion, and drug response, and on the other hand, due to its low immunogenicity and strong regulatory properties of the immune system, has received much attention from researchers and doctors. Despite the increasing interest in exosomes as the most versatile type of EVs, the heterogeneity of their efficacy presents challenges and, on the other hand, exciting opportunities for diagnostic and clinical interventions.In the upcoming article, we will review the various aspects of exosomes' effects in the prevention, treatment, and progress of renal cell carcinoma and also ways to optimize them to strengthen their positive sides.
Collapse
Affiliation(s)
- Mahan Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Deng B, Zhao Y, Liu J. Downregulation of lncRNA CDKN2B-AS1 attenuates inflammatory response in mice with allergic rhinitis by regulating miR-98-5p/SOCS1 axis. Funct Integr Genomics 2024; 24:48. [PMID: 38436805 PMCID: PMC10912270 DOI: 10.1007/s10142-024-01318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Long non-coding RNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in various diseases has been verified. However, the underlying mechanism of CDKN2B-AS1 contributes to the development of allergic rhinitis (AR) remains unknown. To evaluate the impact of CDKN2B-AS1 on AR, BALB/c mice were sensitized by intraperitoneal injection of normal saline containing ovalbumin (OVA) and calmogastrin to establish an AR model. Nasal rubbing and sneezing were documented after the final OVA treatment. The concentrations of IgE, IgG1, and inflammatory elements were quantified using ELISA. Hematoxylin and eosin (H&E) staining and immunofluorescence were used to assess histopathological variations and tryptase expression, respectively. StarBase, TargetScan and luciferase reporter assays were applied to predict and confirm the interactions among CDKN2B-AS1, miR-98-5p, and SOCS1. CDKN2B-AS1, miR-98-5p, and SOCS1 levels were assessed by quantitative real-time PCR (qRT-PCR) or western blotting. Our results revealed that CDKN2B-AS1 was obviously over-expressed in the nasal mucosa of AR patients and AR mice. Down-regulation of CDKN2B-AS1 significantly decreased nasal rubbing and sneezing frequencies, IgE and IgG1 concentrations, and cytokine levels. Furthermore, down-regulation of CDKN2B-AS1 also relieved the pathological changes in the nasal mucosa, and the infiltration of eosinophils and mast cells. Importantly, these results were reversed by the miR-98-5p inhibitor, whereas miR-98-5p directly targeted CDKN2B-AS1, and miR-98-5p negatively regulated SOCS1 level. Our findings demonstrate that down-regulation of CDKN2B-AS1 improves allergic inflammation and symptoms in a murine model of AR through the miR-98-5p/SOCS1 axis, which provides new insights into the latent functions of CDKN2B-AS1 in AR treatment.
Collapse
Affiliation(s)
- Bangyu Deng
- Department of Otolaryngology, First Affiliated Hospital of Soochow University, No.899, Pinghai Road, Suzhou, 215006, Jiangsu, China
- Department of Otolaryngology-Head and Neck Surgery, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yunxia Zhao
- Department of Maternal and Child Health, Suzhou Jinji Lake Health Service Center, Suzhou, Jiangsu, China
| | - Jisheng Liu
- Department of Otolaryngology, First Affiliated Hospital of Soochow University, No.899, Pinghai Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
10
|
Li H, Huang H, Tan H, Jia Q, Song W, Zhang Q, Zhou B, Bai J. Key processes in tumor metastasis and therapeutic strategies with nanocarriers: a review. Mol Biol Rep 2024; 51:197. [PMID: 38270746 DOI: 10.1007/s11033-023-08910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 01/26/2024]
Abstract
Cancer metastasis is the leading cause of cancer-related death. Metastasis occurs at all stages of tumor development, with unexplored changes occurring at the primary site and distant colonization sites. The growing understanding of the metastatic process of tumor cells has contributed to the emergence of better treatment options and strategies. This review summarizes a range of features related to tumor cell metastasis and nanobased drug delivery systems for inhibiting tumor metastasis. The mechanisms of tumor metastasis in the ideal order of metastatic progression were summarized. We focus on the prominent role of nanocarriers in the treatment of tumor metastasis, summarizing the latest applications of nanocarriers in combination with drugs to target important components and processes of tumor metastasis and providing ideas for more effective nanodrug delivery systems.
Collapse
Affiliation(s)
- Hongjie Li
- School of Clinical Medicine, Weifang Medical University, 261053, Weifang, China
| | - Haiqin Huang
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, 250012, Jinan, China
| | - Qitao Jia
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China
| | - Weina Song
- Department of Pediatric Respiratory and Critical Care, Qilu Hospital of Shandong University Dezhou Hospital, 253000, Dezhou, China
| | - Qingdong Zhang
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China.
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, 261053, Weifang, China.
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China.
| |
Collapse
|
11
|
Kazmi I, Altamimi ASA, Afzal M, Majami AA, Abbasi FA, Almalki WH, Alzera SI, Kukreti N, Fuloria NK, Fuloria S, Sekar M, Abida. Non-coding RNAs: Emerging biomarkers and therapeutic targets in ulcerative colitis. Pathol Res Pract 2024; 253:155037. [PMID: 38160482 DOI: 10.1016/j.prp.2023.155037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Al Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzera
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
12
|
Li X, Li K, Deng K, Liu Z, Huang X, Guo J, Yang F, Wang F. LncRNA12097.1 contributes to endometrial cell growth by enhancing YES1 activating β-catenin via sponging miR-145-5p. Int J Biol Macromol 2024; 256:128477. [PMID: 38035963 DOI: 10.1016/j.ijbiomac.2023.128477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Despite previous investigations elucidating the regulatory mechanisms of long non-coding RNAs (lncRNAs) in endometrial function and reproductive disorders, the precise pathways through which lncRNAs impact endometrial functions and fertility remain unclear. In this study, we performed an expression profile analysis of lncRNAs in the endometrial tissue of Hu sheep with different prolificacy, identifying 13,707 lncRNAs. We discovered a bidirectional lncRNA, designated lncRNA12097.1, exhibiting significant up-regulation exclusively in the endometrium of Hu sheep with high fecundity. Functional analyses revealed lncRNA12097.1 significantly enhanced proliferation and cell cycle progression in both endometrial epithelial cell (EEC) and stromal cells (ESC), while inhibiting apoptosis in these cell types. Mechanistically, we demonstrated a directly interaction between lncRNA12097.1 and miR-145-5p, with YES proto-oncogene 1 (YES1) being identified as a validated target of miR-145-5p. Interference with lncRNA12097.1 resulted in suppressed cell growth through down-regulation of YES1 expression, which could be rescued by miR-145-5p. Furthermore, lncRNA12097.1 functions as a competitive endogenous RNA (ceRNA) for miR-145-5p in ESCs, sequestering miR-145-5p and preventing its binding to the 3'UTR of YES1 mRNA. This interaction led to increased expression of YES1 and subsequent activation of downstream β-catenin signaling, thereby promoting ESC growth in Hu sheep. These findings provide novel molecular insights into the mechanisms underlying prolificacy in sheep.
Collapse
Affiliation(s)
- Xiaodan Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhipeng Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinai Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China
| | - Jiahe Guo
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Yang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Wang S, Hui C, Zhang T, Wu P, Nakaguchi T, Xuan P. Graph Reasoning Method Based on Affinity Identification and Representation Decoupling for Predicting lncRNA-Disease Associations. J Chem Inf Model 2023; 63:6947-6958. [PMID: 37906529 DOI: 10.1021/acs.jcim.3c01214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An increasing number of studies have shown that dysregulation of lncRNAs is related to the occurrence of various diseases. Most of the previous methods, however, are designed based on homogeneity assumption that the representation of a target lncRNA (or disease) node should be updated by aggregating the attributes of its neighbor nodes. However, the assumption ignores the affinity nodes that are far from the target node. We present a novel prediction method, GAIRD, to fully leverage the heterogeneous information in the network and the decoupled node features. The first major innovation is a random walk strategy based on width-first searching and depth-first searching. Different from previous methods that only focus on homogeneous information, our new strategy learns both the homogeneous information within local neighborhoods and the heterogeneous information within higher-order neighborhoods. The second innovation is a representation decoupling module to extract the purer attributes and the purer topologies. Third, a module based on group convolution and deep separable convolution is developed to promote the pairwise intrachannel and interchannel feature learning. The experimental results show that GAIRD outperforms comparing state-of-the-art methods, and the ablation studies prove the contributions of major innovations. We also performed case studies on 3 diseases to further demonstrate the effectiveness of the GAIRD model in applications.
Collapse
Affiliation(s)
- Shuai Wang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Cui Hui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne 3083, Australia
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| | - Peiliang Wu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao 066004, China
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| | - Ping Xuan
- Department of Computer Science, School of Engineering, Shantou University, Shantou 515063, China
| |
Collapse
|
14
|
Marqués M, Pont M, Hidalgo I, Sorolla MA, Parisi E, Salud A, Sorolla A, Porcel JM. MicroRNAs Present in Malignant Pleural Fluid Increase the Migration of Normal Mesothelial Cells In Vitro and May Help Discriminate between Benign and Malignant Effusions. Int J Mol Sci 2023; 24:14022. [PMID: 37762343 PMCID: PMC10531386 DOI: 10.3390/ijms241814022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The sensitivity of pleural fluid (PF) analyses for the diagnosis of malignant pleural effusions (MPEs) is low to moderate. Knowledge about the pathobiology and molecular characteristics of this condition is limited. In this study, the crosstalk between stromal cells and tumor cells was investigated in vitro in order to reveal factors that are present in PF which can mediate MPE formation and aid in discriminating between benign and malignant etiologies. Eighteen PF samples, in different proportions, were exposed in vitro to mesothelial MeT-5A cells to determine the biological effects on these cells. Treatment of normal mesothelial MeT-5A cells with malignant PF increased cell viability, proliferation, and migration, and activated different survival-related signaling pathways. We identified differentially expressed miRNAs in PF samples that could be responsible for these changes. Consistently, bioinformatics analysis revealed an enrichment of the discovered miRNAs in migration-related processes. Notably, the abundance of three miRNAs (miR-141-3p, miR-203a-3, and miR-200c-3p) correctly classified MPEs with false-negative cytological examination results, indicating the potential of these molecules for improving diagnosis. Malignant PF produces phenotypic and functional changes in normal mesothelial cells. These changes are partly mediated by certain miRNAs, which, in turn, could serve to differentiate malignant from benign effusions.
Collapse
Affiliation(s)
- Marta Marqués
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Mariona Pont
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Iván Hidalgo
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital, Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - José M. Porcel
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
- Pleural Medicine and Clinical Ultrasound Unit, Department of Internal Medicine, Arnau de Vilanova University Hospital, Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain
| |
Collapse
|
15
|
Sanchez A, Lhuillier J, Grosjean G, Ayadi L, Maenner S. The Long Non-Coding RNA ANRIL in Cancers. Cancers (Basel) 2023; 15:4160. [PMID: 37627188 PMCID: PMC10453084 DOI: 10.3390/cancers15164160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
ANRIL (Antisense Noncoding RNA in the INK4 Locus), a long non-coding RNA encoded in the human chromosome 9p21 region, is a critical factor for regulating gene expression by interacting with multiple proteins and miRNAs. It has been found to play important roles in various cellular processes, including cell cycle control and proliferation. Dysregulation of ANRIL has been associated with several diseases like cancers and cardiovascular diseases, for instance. Understanding the oncogenic role of ANRIL and its potential as a diagnostic and prognostic biomarker in cancer is crucial. This review provides insights into the regulatory mechanisms and oncogenic significance of the 9p21 locus and ANRIL in cancer.
Collapse
Affiliation(s)
| | | | | | - Lilia Ayadi
- CNRS, Université de Lorraine, IMoPA, F-54000 Nancy, France
| | | |
Collapse
|
16
|
Bohosova J, Kozelkova K, Al Tukmachi D, Trachtova K, Naar O, Ruckova M, Kolarikova E, Stanik M, Poprach A, Slaby O. Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:7587-7600. [PMID: 36988708 PMCID: PMC10374689 DOI: 10.1007/s00432-023-04700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients. METHODS Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients. RESULTS Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%. CONCLUSION In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.
Collapse
Affiliation(s)
- Julia Bohosova
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Katerina Kozelkova
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Dagmar Al Tukmachi
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Karolina Trachtova
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Ondrej Naar
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Michaela Ruckova
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Eva Kolarikova
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Zluty Kopec 543/7, 602 00, Brno, Czech Republic
| | - Michal Stanik
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Zluty Kopec 543/7, 602 00, Brno, Czech Republic
| | - Alexandr Poprach
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Zluty Kopec 543/7, 602 00, Brno, Czech Republic
| | - Ondrej Slaby
- Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic.
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
17
|
Guz M, Jeleniewicz W, Cybulski M. Interactions between circRNAs and miR-141 in Cancer: From Pathogenesis to Diagnosis and Therapy. Int J Mol Sci 2023; 24:11861. [PMID: 37511619 PMCID: PMC10380543 DOI: 10.3390/ijms241411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
The function of non-coding RNAs (ncRNAs) in the pathogenesis and development of cancer is indisputable. Molecular mechanisms underlying carcinogenesis involve the aberrant expression of ncRNAs, including circular RNAs (circRNAs), and microRNAs (miRNAs). CircRNAs are a class of single-stranded, covalently closed RNAs responsible for maintaining cellular homeostasis through their diverse functions. As a part of the competing endogenous RNA (ceRNAs) network, they play a central role in the regulation of accessibility of miRNAs to their mRNA targets. The interplay between these molecular players is based on the primary role of circRNAs that act as miRNAs sponges, and the circRNA/miRNA imbalance plays a central role in different pathologies including cancer. Herein, we present the latest state of knowledge about interactions between circRNAs and miR-141, a well-known member of the miR-200 family, in malignant transformation, with emphasis on the biological role of circRNA/miR-141/mRNA networks as a future target for novel anti-cancer therapies.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marek Cybulski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
18
|
Liang XR, Liu YF, Chen F, Zhou ZX, Zhang LJ, Lin ZJ. Cell Cycle-Related lncRNAs as Innovative Targets to Advance Cancer Management. Cancer Manag Res 2023; 15:547-561. [PMID: 37426392 PMCID: PMC10327678 DOI: 10.2147/cmar.s407371] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs (ncRNAs) longer than 200nt. They have complex biological functions and take part in multiple fundamental biological processes, such as cell proliferation, differentiation, survival and apoptosis. Recent studies suggest that lncRNAs modulate critical regulatory proteins involved in cancer cell cycle, such as cyclin, cell cycle protein-dependent kinases (CDK) and cell cycle protein-dependent kinase inhibitors (CKI) through different mechanisms. To clarify the role of lncRNAs in the regulation of cell cycle will provide new ideas for design of antitumor therapies which intervene with the cell cycle progression. In this paper, we review the recent studies about the controlling of lncRNAs on cell cycle related proteins such as cyclin, CDK and CKI in different cancers. We further outline the different mechanisms involved in this regulation and describe the emerging role of cell cycle-related lncRNAs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Xiao-Ru Liang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Yan-Fei Liu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Feng Chen
- Department of General Surgery, Weifang Traditional Chinese Hospital, Weifang, Shandong, People’s Republic of China
| | - Zhi-Xia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Li-Jie Zhang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Zhi-Juan Lin
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| |
Collapse
|
19
|
Hjazi A, Ghaffar E, Asghar W, Alauldeen Khalaf H, Ikram Ullah M, Mireya Romero-Parra R, Hussien BM, Abdulally Abdulhussien Alazbjee A, Singh Bisht Y, Fakri Mustafa Y, Reza Hosseini-Fard S. CDKN2B-AS1 as a novel therapeutic target in cancer: Mechanism and clinical perspective. Biochem Pharmacol 2023; 213:115627. [PMID: 37257723 DOI: 10.1016/j.bcp.2023.115627] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Long non-coding RNAs (lncRNA) have been identified as essential components having considerable modulatory impactson biological activities through altering gene transcription, epigenetic changes, and protein translation. Cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1), a recently discovered lncRNA, was shown to be substantially elevated in various cancers.Furthermore, via modulation ofvarious signalingaxes, it is effectively connected to the control of critical cancer-associatedbiological pathways likecell proliferation, apoptosis, cell cycle, epithelial-mesenchymal transition(EMT), invasion, and migration. Considering the crucial functions ofCDKN2B-AS1in cancer onset and development, this lncRNA offers immense therapeutic implications for usage as a new diagnostic or treatment approach. In this article, we evaluate the most recent discoveries made into the functions of the lncRNA CDKN2B-AS1 in cancer, in addition to its prospect asbeneficial properties,prognostic anddiagnostic biomarkersin the cancer-related treatment, emphasizingits participation in a broad network of signalingaxes whichcould affectvariouscancers and investigating its promising therapeutic possibility.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | | | | | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | | | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Seyed Reza Hosseini-Fard
- Biochemistry Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Zhang Q, Ren H, Ge L, Zhang W, Song F, Huang P. A review on the role of long non-coding RNA and microRNA network in clear cell renal cell carcinoma and its tumor microenvironment. Cancer Cell Int 2023; 23:16. [PMID: 36732762 PMCID: PMC9893571 DOI: 10.1186/s12935-023-02861-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Renal cell carcinoma (RCC) is the second lethal urogenital malignancy with the increasing incidence and mortality in the world. Clear cell renal cell carcinoma (ccRCC) is one major subtype of RCC, which accounts for about 70 to 80% of all RCC cases. Although many innovative therapeutic options have emerged during the last few decades, the efficacy of these treatments for ccRCC patients is very limited. To date, the prognosis of patients with advanced or metastatic ccRCC is still poor. The 5-year survival rate of these patients remains less than 10%, which mainly attributes to the complexity and heterogeneity of the tumor microenvironment (TME). It has been demonstrated that long non-coding RNAs (lncRNAs) perform an indispensable role in the initiation and progression of various tumors. They mostly function as sponges for microRNAs (miRNAs) to regulate the expression of target genes, finally influence the growth, metastasis, apoptosis, drug resistance and TME of tumor cells. However, the role of lncRNA/miRNA/mRNA axis in the TME of ccRCC remains poorly understood. In this review, we summarized the biological function of lncRNA/miRNA/mRNA axis in the pathogenesis of ccRCC, then discussed how lncRNA/miRNA/mRNA axis regulate the TME, finally highlighted their potential application as novel biomarkers and therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Qi Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hao Ren
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Luqi Ge
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wen Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
21
|
Song Y, Guo F, Zhao Y, Ma X, Wu L, Yu J, Ji H, Shao M, Huang F, Zhao L, Fan X, Xu Y, Wang Q, Qin G. Novel lncRNA-prader willi/angelman region RNA, SNRPN neighbour (PWARSN) aggravates tubular epithelial cell pyroptosis by regulating TXNIP via dual way in diabetic kidney disease. Cell Prolif 2023; 56:e13349. [PMID: 36316968 PMCID: PMC9890532 DOI: 10.1111/cpr.13349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES Elevated thioredoxin-interacting protein (TXNIP)-induced pyroptosis contributes to the pathology of diabetic kidney disease (DKD). However, the molecular mechanisms in dysregulated TXNIP in DKD remain largely unclear. MATERIALS AND METHODS Transcriptomic analysis identified a novel long noncoding RNA-Prader Willi/Angelman region RNA, SNRPN neighbour (PWARSN)-which was highly expressed in a proximal tubular epithelial cell (PTEC) under high glucose conditions. We focused on revealing the functions of PWARSN in regulating TXNIP-mediated pyroptosis in PTECs by targeting PWARSN expression via lentivirus-mediated overexpression and CRISPR-Cas9-based knockout in vitro and overexpressing PWARSN in the renal cortex by AAV-9 targeted injection in vivo. A number of molecular techniques disclosed the mechanisms of PWARSN in regulating TXNIP induced-pyroptosis in DKD. RESULTS TXNIP-NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and PTEC pyroptosis were activated in the renal tubules of patients with DKD and in diabetic mice. Then we explored that PWARSN enhanced TXNIP-driven PTECs pyroptosis in vitro and in vivo. Mechanistically, cytoplasmic PWARSN sponged miR-372-3p to promote TXNIP expression. Moreover, nuclear PWARSN interacted and facilitated RNA binding motif protein X-linked (RBMX) degradation through ubiquitination, resulting in the initiation of TXNIP transcription by reducing H3K9me3-enrichment at the TXNIP promoter. Further analysis indicated that PWARSN might be a potential biomarker for DKD. CONCLUSIONS These findings illustrate distinct dual molecular mechanisms for PWARSN-modulated TXNIP and PTECs pyroptosis in DKD, presenting PWARSN as a promising therapeutic target for DKD.
Collapse
Affiliation(s)
- Yi Song
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Institute of Clinical MedicineThe First Affiliated Hospital of Zhengzhou universityZhengzhouChina
| | - Feng Guo
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Institute of Clinical MedicineThe First Affiliated Hospital of Zhengzhou universityZhengzhouChina
| | - Yan‐yan Zhao
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiao‐jun Ma
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Li‐na Wu
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ji‐feng Yu
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hong‐fei Ji
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ming‐wei Shao
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Feng‐juan Huang
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lin Zhao
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xun‐jie Fan
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Institute of Clinical MedicineThe First Affiliated Hospital of Zhengzhou universityZhengzhouChina
| | - Ya‐nan Xu
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Institute of Clinical MedicineThe First Affiliated Hospital of Zhengzhou universityZhengzhouChina
| | - Qing‐zhu Wang
- Department of Nuclear MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gui‐jun Qin
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
22
|
Zhu JL, Xue WB, Jiang ZB, Feng W, Liu YC, Nie XY, Jin LY. Long noncoding RNA CDKN2B-AS1 silencing protects against esophageal cancer cell invasion and migration by inactivating the TFAP2A/FSCN1 axis. Kaohsiung J Med Sci 2022; 38:1144-1154. [PMID: 36161699 DOI: 10.1002/kjm2.12596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Esophageal cancer (EC) is the most aggressive malignancy in the gastrointestinal tract. Long noncoding RNA cyclin-dependent kinase inhibitor 2 B antisense RNA 1 (CDKN2B-AS1) is implicated in EC development. However, the specific mechanisms involved remain poorly defined. Therefore, this research aimed to explore the mechanism of action of CDKN2B-AS1 in EC. Quantitative real-time polymerase chain reaction was conducted to measure CDKN2B-AS1 expression in EC cells and western blotting was utilized to evaluate transcription factor AP-2 alpha (TFAP2A) and fascin actin-bundling protein 1 (FSCN1) expression. After gain-of-function and loss-of-function assays, cell proliferation, migration, invasion, apoptosis, and apoptosis-related protein expression were assessed using cell counting kit-8, scratch tests, Transwell assays, flow cytometry, and western blotting, respectively. The binding relationship between CDKN2B-AS1 and TFAP2A was assessed by RNA immunoprecipitation and RNA pull-down assays. The binding relationship between TFAP2A and FSCN1 was evaluated using dual-luciferase reporter and chromatin immunoprecipitation assays. Tumor xenografts from nude mice were used for in vivo verification. CDKN2B-AS1, TFAP2A, and FSCN1 were upregulated in EC cells. Mechanistically, CDKN2B-AS1 transcriptionally activated FSCN1 by recruiting TFAP2A to the FSCN1 promoter. Silencing CDKN2B-AS1 or TFAP2A suppressed EC cell proliferative, migrating, and invasive properties and augmented apoptosis. TFAP2A was bound to CDKN2B-AS1 and the FSCN1 promoter. Overexpression of TFAP2A or FSCN1 abolished the effects of CDKN2B-AS1-silencing on EC cell function. CDKN2B-AS1 silencing curtailed tumorigenesis in nude mice, which was nullified by the upregulation of TFAP2A or FSCN1. Our findings demonstrated the antioncogenic effects of silencing CDKN2B-AS1 in EC through inactivation of the TFAP2A/FSCN1 axis.
Collapse
Affiliation(s)
- Jia-Liang Zhu
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wen-Bo Xue
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhi-Bin Jiang
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wei Feng
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yi-Cai Liu
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiong-Ying Nie
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Long-Yu Jin
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
23
|
Yang X, Wu P, Wang Z, Su X, Wu Z, Ma X, Wu F, Zhang D. Constructed the ceRNA network and predicted a FEZF1-AS1/miR-92b-3p/ZIC5 axis in colon cancer. Mol Cell Biochem 2022; 478:1083-1097. [PMID: 36219353 DOI: 10.1007/s11010-022-04578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/26/2022] [Indexed: 10/17/2022]
Abstract
The purpose of this study was to identify the role of FEZF1-AS1 in colon cancer and predicted the underlying mechanism. We extracted sequencing data of colon cancer patients from The Cancer Genome Atlas database, identified the differential expression of long noncoding RNA, microRNA, and messenger RNA, constructed a competitive endogenous RNA network, and then analyzed prognosis. Then, we used the enrichment analysis databases for functional analysis. Finally, we studied the FEZF1-AS1/miR-92b-3p/ZIC5 axis. We detected the expression of FEZF1-AS1, miR-92b-3p, and ZIC5 via quantitative reverse transcription-PCR, transfected colon cancer cell RKO with lentivirus and conducted FEZF1-AS1 knockdown, and performed cancer-related functional assays. It indicated that many RNA in the competitive endogenous RNA network, such as ZIC5, were predicted to be related to overall survival of colon cancer patients, and enrichment analysis showed cancer-related signaling pathways, such as PI3K/AKT signaling pathway. The expression of FEZF1-AS1 and ZIC5 was significantly higher and that of miR-92b-3p was lower in the colon cancer than in the normal colon tissues. FEZF1-AS1 promoted the migration, proliferation, as well as invasion of RKO. According to the prediction, FEZF1-AS1 and ZIC5 might competitively bind to miR-92b-3p, leading to the weakening of the inhibitory impact of miR-92b-3p on ZIC5 and increasing expression of ZIC5, thus further activating the PI3K/AKT signaling pathway, which led to the occurrence and development of colon cancer. The study suggested that FEZF1-AS1 might be an effective diagnosis biomarker for colon cancer.
Collapse
Affiliation(s)
- Xiaoping Yang
- Key Laboratory of Digestive Diseases of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Pingfan Wu
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou, 730050, China
| | - Zirui Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Xiaolu Su
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Zhiping Wu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xueni Ma
- Key Laboratory of Digestive Diseases of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Fanqi Wu
- Key Laboratory of Digestive Diseases of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China.,Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China. .,Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
24
|
Yang X, Yu Y, Wang Z, Wu P, Su X, Wu Z, Gan J, Zhang D. NOX4 has the potential to be a biomarker associated with colon cancer ferroptosis and immune infiltration based on bioinformatics analysis. Front Oncol 2022; 12:968043. [PMID: 36249057 PMCID: PMC9554470 DOI: 10.3389/fonc.2022.968043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
Background Colon cancer (CC) is a common tumor, but its pathogenesis is still not well understood. Competitive endogenous RNA (ceRNA) theory, ferroptosis and tumor immune infiltration may be the mechanisms of the development of cancer. The purpose of the study is to seek genes connected with both immunity and ferroptosis, and provide important molecular basis for early noninvasive diagnosis and immunotherapy of CC. Methods We extracted messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNA (lncRNA) data of CC from The Cancer Genome Atlas database (TCGA), identified the differentially expressed mRNA (DEmRNA), miRNA (DEmiRNA) and lncRNA (DElncRNA), then constructed a ceRNA network. Venn overlap analysis was used to identify genes associated with immunity and ferroptosis in ceRNA network. The expression and prognosis of target genes were analyzed via Gene Expression Profiling Interactive Analysis (GEPIA) and PrognoScan database, and we analysed the related functions and signaling pathways of target genes by enrichment analysis. The correlation between target genes and tumor immune infiltrating was explored by CIBERSORT and spearman correlation analysis. Finally, the expression of target genes was detected via quantitative reverse transcription-PCR (qRT-PCR) in CC and normal colon tissues. Results Results showed that there were 4 DElncRNA, 4 DEmiRNA and 126 DEmRNA in ceRNA network. NADPH oxidase 4 protein (NOX4) was a DEmRNA associated with immunity and ferroptosis in ceRNA network. NOX4 was highly expressed in CC and connected with unfavourable prognosis. NOX4 was obviously enriched in pathways connected with carcinogenesis and significantly correlated with six kinds of immune cells. Immune checkpoints and NOX4 spearman correlation analysis showed that the expression of NOX4 was positively related to programmed cell death protein 1 (PD-1)-PDCD1, programmed cell death-Ligand 1 (PD-L1)-CD274 and cytotoxic T-lymphocyte-associated protein 4 (CTLA4). Conclusions To conclude, our study suggests that NOX4 is associated with both ferroptosis and tumor immunity, and might be a biomarker associated with the carcinogenesis, prognosis of CC and a potential target of CC immunotherapy.
Collapse
Affiliation(s)
- Xiaoping Yang
- Key Laboratory of Digestive Diseases of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yi Yu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zirui Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Pingfan Wu
- Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People’s Liberation Army, Lanzhou, China
| | - Xiaolu Su
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhiping Wu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianxin Gan
- Department of general surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Dekui Zhang,
| |
Collapse
|
25
|
Safenkova IV, Burkin KM, Bodulev OL, Razo SC, Ivanov AV, Zherdev AV, Dzantiev BB, Sakharov IY. Comparative study of magnetic beads and microplates as supports in heterogeneous amplified assay of miRNA-141 by using mismatched catalytic hairpin assembly reaction. Talanta 2022; 247:123535. [DOI: 10.1016/j.talanta.2022.123535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
|
26
|
Significance of lncRNA CDKN2B-AS1 in Interventional Therapy of Liver Cancer and the Mechanism under Its Participation in Tumour Cell Growth via miR-199a-5p. JOURNAL OF ONCOLOGY 2022; 2022:2313416. [PMID: 36081669 PMCID: PMC9448535 DOI: 10.1155/2022/2313416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Methods Totally 34 LC patients admitted to our hospital between January 2020 and March 2021 (Obs group) and 32 healthy individuals over the same time span (Con group) were enrolled. CDKN2B-AS1 and miR-199a-5p in the two groups were PCR quantified, and their association and value for the diagnosis and therapy of LC were analyzed. In addition, purchased LC cells were adopted for in vitro assays, and the influences of CDKN2B-AS1 and miR-199a-5p on biological behaviours of LC cells were assessed through CCK-8, Transwell, and flow cytometry experiment, and their regulatory association was verified by the dual luciferase reporter (DLR) assay and rescue assay. And the autophagic protein expression was tested by the western blot to confirm the effect of both on the autophagic capacity of LC cells. Results CDKN2B-AS1 in LC cases presented high expression and dropped after therapy (P < 0.05), and the opposite situation of miR-199a-5p was found in the LC cases (P < 0.05). In vitro assays, after silencing of CDKN2B-AS1 and upregulation of miR-199a-5p, LC cells presented weaker viability, invasion and migration activities, and stronger apoptotic activity (all P < 0.05). The DLR assay revealed suppressed fluorescence activity of CDKN2B-AS1-WT by miR-199a-5p (P < 0.05). Moreover, according to the rescue assay, the impacts of silencing CDKN2B-AS1 on LC cells could be completely offset by silencing miR-199a-5p (P < 0.05). According to the clone formation and WB assay, the growth and autophagy of LC cells were under the regulation of CDKN2B-AS1 targeting miR-199a-5p (P < 0.05). Conclusion With high expression in LC cases, CDKN2B-AS1 is implicated in the development and progression of LC by suppressing cell autophagy through targeting miR-199a-5p.
Collapse
|
27
|
Chen K, Jiang T, Zeng Q, Wang S, Li L. Bone Marrow Mesenchymal Stem Co-Culture Inhibited the Proliferation of Endometrial Cancer Cells by Upregulating miR-141-3p/Death Associated Protein Kinase 1 (DAPK1) Axis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNAs are involved in the biological processes of a variety of cancers. Here, we intend to assess the effect of BMSC-derived exosomal miR-141-3p on endometrial cancer (EC) cells. EC tumor and normal tissues were collected to measure miR-141-3p and death associated protein kinase
1 (DAPK1) expression. EC cells transfected with miR-141-3p mimic were cultured with BMSCs followed by measuring cell proliferation, apoptosis and migration. miR-141-3p and DAPK1 level was significantly decreased in EC tissues and cell lines. After miR-141-3p mimics transfection, miR-141-3p
and DAPK1 expression was increased significantly, along with inhibited cell proliferation, migration and invasion and increased cell apoptosis. Moreover, co-culture with BMSC decreased EC cells in vitro activity, and upregulated miR-141-3p and DAPK1 expression. In conclusion, miR-141-3p
and DAPK1 is reduced in EC and miR-141-3p overexpression inhibited EC cell biological behaviors, indicating that miR-141-3p might be a potential target for treatment of EC.
Collapse
Affiliation(s)
- Keming Chen
- Department of Obstetrics and Gynecology, The First People’s of Jingzhou, Jingzhou, Hubei, 434000, China
| | - Tao Jiang
- Department of Obstetrics and Gynecology, The First People’s of Jingzhou, Jingzhou, Hubei, 434000, China
| | - Qingsong Zeng
- Department of Obstetrics and Gynecology, The First People’s of Jingzhou, Jingzhou, Hubei, 434000, China
| | - Sufei Wang
- Department of Obstetrics and Gynecology, The First People’s of Jingzhou, Jingzhou, Hubei, 434000, China
| | - Li Li
- Department of Obstetrics and Gynecology, The First People’s of Jingzhou, Jingzhou, Hubei, 434000, China
| |
Collapse
|
28
|
Xiao S, Zuo Y, Li Y, Huang Y, Fu S, Yuan D, Qiao X, Wang H, Wang J. Long Noncoding RNA HAGLROS Promotes the Malignant Progression of Bladder Cancer by Regulating the miR-330-5p/SPRR1B Axis. Front Oncol 2022; 12:876090. [PMID: 35664787 PMCID: PMC9159766 DOI: 10.3389/fonc.2022.876090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer (BC) is the most common genitourinary malignancy worldwide, and its aetiology and pathogenesis remain unclear. Accumulating evidence has shown that HAGLROS is closely related to the occurrence and progression of various cancers. However, the biological functions and underlying mechanisms of HAGLROS in BC remain unknown. In the present study, the expression of HAGLROS in BC was determined by public dataset analysis, transcriptome sequencing analysis, qRT–PCR and ISH assays. Gain- or loss-of-function assays were performed to study the biological roles of HAGLROS in BC cells and nude mouse xenograft model. Bioinformatic analysis, qRT–PCR, western blot, immunohistochemistry, FISH assays, subcellular fractionation assays and luciferase reporter assays were performed to explore the underlying molecular mechanisms of HAGLROS in BC. Here, we found that HAGLROS expression is significantly upregulated in BC tissues and cells, and elevated HAGLROS expression was related to higher pathologic grade and advanced clinical stage, which is significant for BC diagnosis. HAGLROS can enhance the growth and metastasis of BC in vitro and in vivo. Furthermore, miR-330-5p downregulation reversed the BC cells proliferation, migration and invasion inhibited by silencing HAGLROS. SPRR1B silencing restored the malignant phenotypes of BC cells promoted by miR-330--5p inhibitor. Mechanistically, we found that HAGLROS functions as a microRNA sponge to positively regulate SPRR1B expression by sponging miR-330-5p. Together, these results demonstrate that HAGLROS plays an oncogenic role and may serve as a potential biomarker for the diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Shiwei Xiao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China.,Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yigang Zuo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Yanan Li
- Department of Basic Chemistry, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yinglong Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Dongbo Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xuhua Qiao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| |
Collapse
|
29
|
Immune Infiltrates of m5C RNA Methylation-Related LncRNAs in Uterine Corpus Endometrial Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1531474. [PMID: 35392434 PMCID: PMC8983181 DOI: 10.1155/2022/1531474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/08/2022] [Indexed: 11/18/2022]
Abstract
Aberrant 5-methylcytidine (m5C) modification plays an essential role in the progression of different cancers. More and more researchers are focusing on developing a lncRNA-based risk model to assess the clinical prognosis of cancer patients. However, the impact of m5C-related lncRNAs on the prognosis of patients with uterine corpus endometrial carcinoma (UCEC), as well as the immune microenvironment of UCEC, remains unclear. Here, we comprehensively analyzed the predictive value of m5C-associated lncRNAs in UCEC and their association with the tumor immune microenvironment, according to the information extracted from the TCGA-UCEC dataset. We identified a total of 32 m5C-associated lncRNAs that were significantly correlated with the prognosis of UCEC patients. Two molecular subtypes were determined by consensus clustering analysis of these 32 m5C-associated prognostic lncRNAs. Further data showed that cluster 1 was associated with poor clinical prognosis, advanced tumor grade, higher PD-L1 expression levels, higher ESTIMATEScore, and higher immuneScore, as well as the immune cell infiltration. Then, 17 m5C-associated lncRNAs with prognostic values were obtained using LASSO regression analysis. And a risk model was constructed based on these 17 lncRNAs. It was revealed that the risk model could be used as an independent factor for UCEC prognosis. In addition, patients with UCEC in the high-risk group had higher tumor grades and immune scores. The risk model based on m5C-related lncRNAs was also closely associated with infiltrating immune cells. In conclusion, our study elucidated the crucial roles of the identified m5C-related lncRNAs in the UCEC patients' prognoses, as well as in the immune microenvironment in UCEC. The results suggest that the components of risk models based on the m5C-related lncRNAs may serve as important mediators of the immune microenvironment in UCEC.
Collapse
|
30
|
The association between single polymorphic positions and the risk of acute lymphoblastic leukemia. Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Li R, Lu C, Li X, Chen X, Huang G, Wen Z, Li H, Tao L, Hu Y, Zhao Z, Chen Z, Lai Y. A Four-MicroRNA Panel in Serum as a Potential Biomarker for Screening Renal Cell Carcinoma. Front Genet 2022; 13:897827. [PMID: 35938021 PMCID: PMC9355293 DOI: 10.3389/fgene.2022.897827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Renal cell carcinoma (RCC) has been a major health problem and is one of the most malignant tumors around the world. Serum microRNA (miRNA) profiles previously have been reported as non-invasive biomarkers in cancer screening. The aim of this study was to explore serum miRNAs as potential biomarkers for screening RCC. Methods: A three-phase study was conducted to explore serum miRNAs as potential biomarkers for screening RCC. In the screening phase, 12 candidate miRNAs related to RCC were selected for further study by the ENCORI database with 517 RCC patients and 71 NCs. A total of 220 participants [108 RCC patients and 112 normal controls (NCs)] were enrolled for training and validation. The dysregulated candidate miRNAs were further confirmed with 30 RCC patients and 30 NCs in the training phase and with 78 RCC patients and 82 NCs in the validation phase. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were used for assessing the diagnostic value of miRNAs. Bioinformatic analysis and survival analysis were also included in our study. Results: Compared to NCs, six miRNAs (miR-18a-5p, miR-138-5p, miR-141-3p, miR-181b-5p, miR-200a-3p, and miR-363-3p) in serum were significantly dysregulated in RCC patients. A four-miRNA panel was built by combining these candidate miRNAs to improve the diagnostic value with AUC = 0.908. ABCG1 and RNASET2, considered potential target genes of the four-miRNA panel, may play a significant role in the development of RCC. Conclusion: A four-miRNA panel in serum was identified for RCC screening in our study. The four--miRNA panel has a great potential to be a non-invasive biomarker for RCC screening.
Collapse
Affiliation(s)
- Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Chong Lu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xinji Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Xuan Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Guocheng Huang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Zhenyu Wen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Hang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Lingzhi Tao
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Yimin Hu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Zhengping Zhao
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Zebo Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- *Correspondence: Zebo Chen, ; Yongqing Lai,
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- *Correspondence: Zebo Chen, ; Yongqing Lai,
| |
Collapse
|
32
|
Ren H, Guo X, Li F, Xia Q, Chen Z, Xing Y. Four Autophagy-Related Long Noncoding RNAs Provide Coexpression and ceRNA Mechanisms in Retinoblastoma through Bioinformatics and Experimental Evidence. ACS OMEGA 2021; 6:33976-33984. [PMID: 34926945 PMCID: PMC8674985 DOI: 10.1021/acsomega.1c05259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Retinoblastoma (RB) is the most common type of intraocular malignant tumor that lowers the quality of life among children worldwide. Long noncoding RNAs (lncRNAs) are reported to play a dual role in tumorigenesis and development of RB. Autophagy is also reported to be involved in RB occurrence. Although several studies of autophagy-related lncRNAs in RB have been explored before, there are still unknown potential mechanisms in RB. In the present study, we mined dataset GSE110811 from the Gene Expression Omnibus database and downloaded autophagy-related genes from the Human Autophagy Database for further bioinformatic analysis. By implementing the differential expression analysis and Pearson correlation analysis on the lncRNA expression matrix and autophagy-related genes expression matrix, we identified four autophagy-related lncRNAs (namely, N4BP2L2-IT2, SH3BP5-AS1, CDKN2B-AS1, and LINC-PINT) associated with RB. We then performed differential expression analysis on microRNA (miRNA) from dataset GSE39105 for further analyses of lncRNA-miRNA-mRNA regulatory mechanisms. With the miRNA-lncRNA module on the StarBase 3.0 website, we predicted the differentially expressed miRNAs that could target the autophagy-related lncRNAs and constructed a potential lncRNA-miRNA-mRNA regulatory network. Furthermore, the functional annotations of these target genes in regulatory networks were presented using the Cytoscape and the Metascape annotation tool. Finally, the expression pattern of the four autophagy-related lncRNAs was evaluated via qRT-PCR. In conclusion, our findings suggest that the four autophagy-related lncRNAs could be critical molecules associated with the development of RB and affect the occurrence and development of RB through the lncRNA-miRNA-mRNA regulatory network. Genes (GRP13B, IFT88, EPHA3, GABARAPL1, and EIF4EBP1) may serve as potential novel therapeutic targets and biomarkers in RB.
Collapse
|
33
|
Qin S, Ning M, Liu Q, Ding X, Wang Y, Liu Q. Knockdown of long non-coding RNA CDKN2B-AS1 suppresses the progression of breast cancer by miR-122-5p/STK39 axis. Bioengineered 2021; 12:5125-5137. [PMID: 34374638 PMCID: PMC8806778 DOI: 10.1080/21655979.2021.1962685] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
The lncRNAs have been made certain to take part in the development of most cancers in multiple ways. Here, our purpose is to making observation of the biological role and function of lncRNA CDKN2B-AS1 in human breast cancer. Twenty-eight pairs of breast cancer tissue and adjacent normal tissue from breast cancer patients were used to investigate the expression of CDKN2B-AS1 by qRT-PCR. And a lentivirus-shRNA guided CDKN2B-AS1 were to reduce its expression. The function of CDKN2B-AS1 was analyzed using a series of in vitro assays. Meanwhile, the xenograft model was used to further explicate the role of CDKN2B-AS1 in breast cancer. As for the results, there is a relative rich expression of CDKN2B-AS1 in breast cancer tissues compared with the corresponding adjacent normal tissues. Compared with the human breast epithelial cell line, the abundant expression of CDKN2B-AS1 in breast cancer cells were revealed as well. Then, knockdown CDKN2B-AS1 inhibited the malignant biological behaviors of MCF7 and T47D cells. In mechanism, CDKN2B-AS1 sponged the miR-122-5p to regulate STK39 expression. Furthermore, the inhibition effect with sh-CDKN2B-AS1 on breast cancer cells was alleviated by miR-122-5p inhibitor. Last, an in vivo model also confirmed that knockdown CDKN2B-AS1 retarded the growth of breast cancer. Our data concluded that knockdown of CDKN2B-AS1 suppresses the progression of breast cancer by miR-122-5p/STK39 axis.
Collapse
Affiliation(s)
- Shaojie Qin
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Mingliang Ning
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Qingyuan Liu
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Xiaoyun Ding
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Yanbai Wang
- Cerebrospinal Fluid Laboratory; General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| | - Qilun Liu
- The Third Departments of Tumor Surgery, General Hospital of Ningxia Medical University, Yinchuan City, Ningxia, China
| |
Collapse
|
34
|
Huang J, Wang J, He H, Huang Z, Wu S, Chen C, Liu W, Xie L, Tao Y, Cong L, Jiang Y. Close interactions between lncRNAs, lipid metabolism and ferroptosis in cancer. Int J Biol Sci 2021; 17:4493-4513. [PMID: 34803512 PMCID: PMC8579446 DOI: 10.7150/ijbs.66181] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism including synthesis, uptake, modification, degradation and transport has been considered a hallmark of malignant tumors and contributes to the supply of substances and energy for rapid cell growth. Meanwhile, abnormal lipid metabolism is also associated with lipid peroxidation, which plays an important role in a newly discovered type of regulated cell death termed ferroptosis. Long noncoding RNAs (lncRNAs) have been proven to be associated with the occurrence and progression of cancer. Growing evidence indicates that lncRNAs are key regulators of abnormal lipid metabolism and ferroptosis in cancer. In this review, we mainly summarized the mechanism by which lncRNAs regulate aberrant lipid metabolism in cancer, illustrated that lipid metabolism can also influence the expression of lncRNAs, and discussed the mechanism by which lncRNAs affect ferroptosis. A comprehensive understanding of the interactions between lncRNAs, lipid metabolism and ferroptosis could help us to develop novel strategies for precise cancer treatment in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Jin Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Zichen Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Sufang Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Wenbing Liu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Li Xie
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078 Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| |
Collapse
|
35
|
Saliani M, Mirzaiebadizi A, Mosaddeghzadeh N, Ahmadian MR. RHO GTPase-Related Long Noncoding RNAs in Human Cancers. Cancers (Basel) 2021; 13:5386. [PMID: 34771549 PMCID: PMC8582479 DOI: 10.3390/cancers13215386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
RHO GTPases are critical signal transducers that regulate cell adhesion, polarity, and migration through multiple signaling pathways. While all these cellular processes are crucial for the maintenance of normal cell homeostasis, disturbances in RHO GTPase-associated signaling pathways contribute to different human diseases, including many malignancies. Several members of the RHO GTPase family are frequently upregulated in human tumors. Abnormal gene regulation confirms the pivotal role of lncRNAs as critical gene regulators, and thus, they could potentially act as oncogenes or tumor suppressors. lncRNAs most likely act as sponges for miRNAs, which are known to be dysregulated in various cancers. In this regard, the significant role of miRNAs targeting RHO GTPases supports the view that the aberrant expression of lncRNAs may reciprocally change the intensity of RHO GTPase-associated signaling pathways. In this review article, we summarize recent advances in lncRNA research, with a specific focus on their sponge effects on RHO GTPase-targeting miRNAs to crucially mediate gene expression in different cancer cell types and tissues. We will focus in particular on five members of the RHO GTPase family, including RHOA, RHOB, RHOC, RAC1, and CDC42, to illustrate the role of lncRNAs in cancer progression. A deeper understanding of the widespread dysregulation of lncRNAs is of fundamental importance for confirmation of their contribution to RHO GTPase-dependent carcinogenesis.
Collapse
Affiliation(s)
- Mahsa Saliani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
36
|
Kumar V, Gupta S, Chaurasia A, Sachan M. Evaluation of Diagnostic Potential of Epigenetically Deregulated MiRNAs in Epithelial Ovarian Cancer. Front Oncol 2021; 11:681872. [PMID: 34692473 PMCID: PMC8529058 DOI: 10.3389/fonc.2021.681872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies among women worldwide. Early diagnosis of EOC could help in ovarian cancer management. MicroRNAs, a class of small non-coding RNA molecules, are known to be involved in post-transcriptional regulation of ~60% of human genes. Aberrantly expressed miRNAs associated with disease progression are confined in lipid or lipoprotein and secreted as extracellular miRNA in body fluid such as plasma, serum, and urine. MiRNAs are stably present in the circulation and recently have gained an importance to serve as a minimally invasive biomarker for early detection of epithelial ovarian cancer. Methods Genome-wide methylation pattern of six EOC and two normal ovarian tissue samples revealed differential methylation regions of miRNA gene promoter through MeDIP-NGS sequencing. Based on log2FC and p-value, three hypomethylated miRNAs (miR-205, miR-200c, and miR-141) known to have a potential role in ovarian cancer progression were selected for expression analysis through qRT-PCR. The expression of selected miRNAs was analyzed in 115 tissue (85 EOC, 30 normal) and 65 matched serum (51 EOC and 14 normal) samples. Results All three miRNAs (miR-205, miR-200c, and miR-141) showed significantly higher expression in both tissue and serum cohorts when compared with normal controls (p < 0.0001). The receiver operating characteristic curve analysis of miR-205, miR-200c, and miR-141 has area under the curve (AUC) values of 87.6 (p < 0.0001), 78.2 (p < 0.0001), and 86.0 (p < 0.0001), respectively; in advance-stage serum samples, however, ROC has AUC values of 88.1 (p < 0.0001), 78.9 (p < 0.0001), and 86.7 (p < 0.0001), respectively, in early-stage serum samples. The combined diagnostic potential of the three miRNAs in advance-stage serum samples and early-stage serum samples has AUC values of 95.9 (95% CI: 0.925-1.012; sensitivity = 96.6% and specificity = 80.0%) and 98.1 (95% CI: 0.941-1.021; sensitivity = 90.5% and specificity = 100%), respectively. Conclusion Our data correlate the epigenetic deregulation of the miRNA genes with their expression. In addition, the miRNA panel (miR-205 + miR-200c + miR-141) has a much higher AUC, sensitivity, and specificity to predict EOC at an early stage in both tissue and serum samples.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Amrita Chaurasia
- Department of Gynaecology and Obstetrics, Motilal Nehru Medical College, Allahabad, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
37
|
LncRNAs in the Regulation of Genes and Signaling Pathways through miRNA-Mediated and Other Mechanisms in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2021; 22:ijms222011193. [PMID: 34681854 PMCID: PMC8539140 DOI: 10.3390/ijms222011193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
The fundamental novelty in the pathogenesis of renal cell carcinoma (RCC) was discovered as a result of the recent identification of the role of long non-coding RNAs (lncRNAs). Here, we discuss several mechanisms for the dysregulation of the expression of protein-coding genes initiated by lncRNAs in the most common and aggressive type of kidney cancer-clear cell RCC (ccRCC). A model of competitive endogenous RNA (ceRNA) is considered, in which lncRNA acts on genes through the lncRNA/miRNA/mRNA axis. For the most studied oncogenic lncRNAs, such as HOTAIR, MALAT1, and TUG1, several regulatory axes were identified in ccRCC, demonstrating a number of sites for various miRNAs. Interestingly, the LINC00973/miR-7109/Siglec-15 axis represents a novel agent that can suppress the immune response in patients with ccRCC, serving as a valuable target in addition to the PD1/PD-L1 pathway. Other mechanisms of action of lncRNAs in ccRCC, involving direct binding with proteins, mRNAs, and genes/DNA, are also considered. Our review briefly highlights methods by which various mechanisms of action of lncRNAs were verified. We pay special attention to protein targets and signaling pathways with which lncRNAs are associated in ccRCC. Thus, these new data on the different mechanisms of lncRNA functioning provide a novel basis for understanding the pathogenesis of ccRCC and the identification of new prognostic markers and targets for therapy.
Collapse
|
38
|
Zheng Y, Zeng J, Xia H, Wang X, Chen H, Huang L, Zeng C. Upregulated lncRNA Cyclin-dependent kinase inhibitor 2B antisense RNA 1 induces the proliferation and migration of colorectal cancer by miR-378b/CAPRIN2 axis. Bioengineered 2021; 12:5476-5490. [PMID: 34511033 PMCID: PMC8806871 DOI: 10.1080/21655979.2021.1961656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
LncRNA Cyclin‐dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) plays a role in the progression of multiple cancers like cholangiocarcinoma, osteosarcoma and several gastrointestinal tumors. Few studies have linked its function and mechanism to the development of colorectal cancer (CRC). The expression of CDKN2B-AS1, microRNA (miR)-378b, and cytoplasmic activation/proliferation-associated protein 2 (CAPRIN2) was analyzed in CRC patients and cell lines. The proliferation and migration of CRC cells were evaluated after gain and loss-of function mutations. Interactions between CDKN2B-AS1 and miR-378b, miR-378b and CAPRIN2 were validated by luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. The role of CDKN2B-AS1 was further confirmed in a xenograft mouse model. We found that the expression of CDKN2B-AS1 and CAPRIN2 was upregulated in CRC and they were linked to the poor differentiation and distant metastasis in CRC patients. CDKN2B-AS1 knockdown attenuated while CDKN2B-AS1 overexpression promoted CRC cell proliferation and migration. Notably, the results of Starbase 2.0 database analysis and in vitro experiments demonstrated that CDKN2B-AS1 could interact with miR-378b and regulate its expression. Furthermore, CAPRIN2 acted as a downstream target of CDKN2B-AS1/miR-378b that involved in modulating β-catenin expression in CRC cells. Upregulation of CDKN2B-AS1 contributed to CRC progression via regulating CAPRIN2 expression by binding to miR-378b. Downregulation of CDKN2B-AS1 suppressed tumor growth and Ki-67 staining in vivo that was related to the miR-378b/CAPRIN2 pathway. This study indicated that lncRNA CDKN2B-AS1 promoted the development of CRC through the miR-378b/CAPRIN2/β-catenin axis. CDKN2B-AS1 might serve as a potential and useful target in CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jintao Zeng
- Department of Clinical Medicine, School of Basic Medicine, Chengde Medical College, Chengde, China
| | - Haoyun Xia
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiangyu Wang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hongyuan Chen
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Liangxiang Huang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Changqing Zeng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
39
|
Li J, Chen J, Zhang F, Li J, An S, Cheng M, Li J. LncRNA CDKN2B-AS1 hinders the proliferation and facilitates apoptosis of ox-LDL-induced vascular smooth muscle cells via the ceRNA network of CDKN2B-AS1/miR-126-5p/PTPN7. Int J Cardiol 2021; 340:79-87. [PMID: 34384839 DOI: 10.1016/j.ijcard.2021.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The patterns of lncRNA CDKN2B-AS1 in coronary heart disease (CHD) have been extensively studied. This study investigated the competing endogenous RNA (ceRNA) network of CDKN2B-AS1 in coronary atherosclerosis (CAS). METHODS Microarray analyses were performed to screen out the CHD-related lncRNAs (CDKN2B-AS1) and the downstream microRNAs (miR-126-5p). The expression of CDKN2B-AS1 in serum of patients with CHD and healthy volunteers was detected. Vascular smooth muscle cells (VSMCs) were treated with oxidized low density lipoprotein (ox-LDL) to establish the cell model. Then pcDNA-CDKN2B-AS1 and/or miR-126-5p mimic were transfected into ox-LDL-treated VSMCs to estimate cell proliferation, apoptosis and inflammation. The ceRNA network of CDKN2B-AS1 along with the possible pathway in CHD was testified. RESULTS CDKN2B-AS1 expression was low in patients with CHD and ox-LDL-treated VSMCs. Upon CDKN2B-AS1 overexpression, TNF-α, NF-κB and IL-1β levels in VSMCs were decreased, the proliferation of VSMCs was inhibited and the apoptosis rate was increased. Overexpression of miR-126-5p could reverse these trends. CDKN2B-AS1 as a ceRNA competitively bound to miR-126-5p to upregulate PTPN7. CDKN2B-AS1 inhibited VSMC proliferation and accelerated apoptosis by inhibiting the PI3K-Akt pathway. CONCLUSION LncRNA CDKN2B-AS1 upregulates PTPN7 by absorbing miR-126-5p and inhibits the PI3K-Akt pathway, thus hindering the proliferation and accelerating apoptosis of VSMCs induced by ox-LDL, thus being a therapeutic approach for CAS.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Jia Chen
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Fan Zhang
- Department of Cardiac Vascular Surgery, Linfen City Center Hospital, Linfen 041000, Shanxi, China
| | - Jianfeng Li
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Shoukuan An
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Ming Cheng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| | - Junquan Li
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
40
|
Ma ML, Zhang HY, Zhang SY, Yi XL. LncRNA CDKN2B‑AS1 sponges miR‑28‑5p to regulate proliferation and inhibit apoptosis in colorectal cancer. Oncol Rep 2021; 46:213. [PMID: 34368874 DOI: 10.3892/or.2021.8164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/30/2021] [Indexed: 11/06/2022] Open
Abstract
Long noncoding RNA (lncRNA) CDKN2B‑antisense RNA 1 (AS1) functions as a tumor oncogene in numerous cancers. However, the roles and mechanism of CDKN2B‑AS1 in colorectal cancer (CRC) have not been explored. The present study aimed to investigate whether and how CDKN2B‑AS1 contributes to CRC progression. The data revealed that CDKN2B‑AS1 expression was upregulated in CRC tissues. Loss‑of‑function assays demonstrated that CDKN2B‑AS1 in CRC modulated cell proliferation and apoptosis, which was mediated by cyclin D1, cyclin‑dependent kinase (CDK) 4, p‑Rb, caspase‑9 and caspase‑3. Bioinformatics analysis and luciferase reporter assays indicated direct binding of microRNA (miR)‑28‑5p to CDKN2B‑AS1. Moreover, the results herein revealed that the expression of miR‑28‑5p was negatively correlated with that of CDKN2B‑AS1 in CRC tissue. Moreover, CDKN2B‑AS1 acted as a miR‑28‑5p competing endogenous RNA (ceRNA) to target and regulate the expression of URGCP. These findings indicated that CDKN2B‑AS1 plays roles in CRC progression, providing a potential therapeutic target or novel diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Mei-Li Ma
- Department of Oncology, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266011, P.R. China
| | - Hong-Yan Zhang
- Department of Oncology, Qingdao ChengYang People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Shu-Yi Zhang
- Department of Radiology, Qingdao Haici Medical Group, Qingdao, Shandong 266034, P.R. China
| | - Xiao-Li Yi
- Department of Oncology, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
41
|
Guo R, Zou B, Liang Y, Bian J, Xu J, Zhou Q, Zhang C, Chen T, Yang M, Wang H, Pei F, Xu Z. LncRNA RCAT1 promotes tumor progression and metastasis via miR-214-5p/E2F2 axis in renal cell carcinoma. Cell Death Dis 2021; 12:689. [PMID: 34244473 PMCID: PMC8270952 DOI: 10.1038/s41419-021-03955-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023]
Abstract
Renal cell carcinoma is the second malignant tumors in the urinary system with high mortality and morbidity. Increasing evidence suggests that long non-coding RNAs (lncRNAs) play critical roles in tumor development and progression. In the current study, based on the publicly available data obtained from GEO and TCGA database, we identified five prognosis-related lncRNAs with the ability to predict the prognosis of patients with renal cell carcinoma. Among them, the uncharacterized and upregulated lncRNA RCAT1 (renal cancer-associated transcript 1) was identified as the key lncRNA. Our data further revealed that the expression of lncRNA RCAT1 was significantly upregulated in renal cell carcinoma tissues and cells. Gain-of-function and loss-of-function studies showed that lncRNA RCAT1 promoted cell proliferation, migration, and invasion in vitro and in vivo. Furthermore, we verified that lncRNA RCAT1 could abundantly sponge miR-214-5p, which served as a tumor suppressor in renal cell carcinoma. Significantly, miR-214-5p overexpression could attenuate the promotion of cell proliferation and metastasis induced by lncRNA RCAT1. Moreover, we found that E2F2 was a direct target of miR-214-5p, and lncRNA RCAT1 could protect E2F2 from miR-214-5p-mediated degradation. Taken together, our findings suggested that lncRNA RCAT1 could enhance the malignant phenotype of renal cell carcinoma cells by modulating miR-214-5p/E2F2 axis, and lncRNA RCAT1 might be a novel prognostic biomarker and a potential therapeutic target for renal cell carcinoma.
Collapse
Affiliation(s)
- Renbo Guo
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Urology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Benkui Zou
- Department of Urology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yiran Liang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jiasheng Bian
- Department of Urology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jian Xu
- Department of Urology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qian Zhou
- Department of Urology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chao Zhang
- Department of Urology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tao Chen
- Department of Urology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingshan Yang
- Department of Urology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Huansheng Wang
- Department of Urology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fajun Pei
- Department of Urology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
42
|
Xu J, Xu W, Yang X, Liu Z, Sun Q. LncRNA HCG11/miR-579-3p/MDM2 axis modulates malignant biological properties in pancreatic carcinoma via Notch/Hes1 signaling pathway. Aging (Albany NY) 2021; 13:16471-16484. [PMID: 34230221 PMCID: PMC8266358 DOI: 10.18632/aging.203167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Increasing reports have revealed that dysregulated expression of long non-coding RNAs (lncRNAs) is involved in pancreatic carcinoma progression. This study intends to explore the function and molecular mechanism of lncRNA HLA complex group 11 (HCG11) in pancreatic carcinoma. METHODS The expression profiles of HCG11 in pancreatic carcinoma samples were detected by qPCR. Bioinformatics analysis was applied to detect the associations among HCG11/miR-579-3p/MDM2. The malignant properties of pancreatic carcinoma cells were measured by numerous biological assays. Xenograft model was exploited to detect the effect of HCG11 on tumor growth. RESULTS A significant increase of HCG11 was occurred in pancreatic carcinoma samples. Knockdown of HCG11 suppressed the progression of pancreatic carcinoma cells. Bioinformatics analysis revealed that HCG11 upregulated MDM2 expression by competitively targeting miR-579-3p. The rescue assays showed that miR-579-3p reversed cell behaviors caused by HCG11, and MDM2 reversed cell properties induced by miR-579-3p. The Notch1 intracellular domain (NICD) and Hes1 protein levels were increased by overexpression of HCG11/MDM2. The tumor growth was suppressed after depletion of HCG11, followed by suppressing Ki67, PCNA and Vimentin expression, increasing TUNEL-positive cells and E-cadherin expression. CONCLUSIONS Our observations highlighted that HCG11 contributed to the progression of pancreatic carcinoma by promoting growth and aggressiveness, and inhibiting apoptosis via miR-579-3p/MDM2/Notch/Hes1 axis.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Weixue Xu
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xuan Yang
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhen Liu
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Qinyun Sun
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
43
|
Emerging role of lncRNAs in the regulation of Rho GTPase pathway. Biomed Pharmacother 2021; 140:111731. [PMID: 34015583 DOI: 10.1016/j.biopha.2021.111731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
The Ras homolog (Rho) family of small GTPases comprise several proteins with prominent roles in regulation of cell cycle transition, cell migration, and remodeling of actin cytoskeleton. Expression of these proteins is regulated by several factors among them are long non-coding RNAs (lncRNAs). The impact of lncRNAs on Rho GTPases signaling can be exerted through direct modulation of expression of these proteins or influencing expression of miRNAs that negatively regulate Rho GTPases. LINC00974/miR-122/RhoA, MALAT1/miR-429/RhoA, ZFAS1/miR-3924/RhoA/ROCK2, PCAT6/miR-326/RhoA/ROCK, SMILR/miR-141/RhoA/ROCK, DAPK1/miR-182/RhoA, GAS5/miR663a/RhoB, H19/miR-15b/CDC42/PAK1, TDRG1/miR-93/RhoC, TUG1/miR-498/CDC42, UCA1/miR-18a/Cdc42 and UCA1/miR-182/Cdc42 are examples of lncRNAs/miRNAs axes that regulate Rho GTPases. In the present manuscript, we describe the role of lncRNAs on Rho GTPases.
Collapse
|
44
|
Jiang S, Wang C, Zhu J, Huang X. Regulation of glial cell-derived neurotrophic factor in sevoflurane-induced neuronal apoptosis by long non-coding RNA CDKN2B-AS1 as a ceRNA to adsorb miR-133. Am J Transl Res 2021; 13:4760-4770. [PMID: 34150056 PMCID: PMC8205689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the regulatory mechanism of sevoflurane-induced neuronal apoptosis through analyzing the expression of glial cell-derived neurotrophic factor (GDNF) mediated by miR-133, sponged by long non-coding RNA (lncRNA) CDKN2B-AS1. METHODS An in vitro cell injury model was established by using different concentrations of sevoflurane and primary hippocampal neurons. Cell proliferation was detected by Cell Counting Kit-8 (CCK-8); caspase-3 and caspase-9 activities were detected by colorimetry, and apoptotic cells were determined by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Fluorescence in situ hybridization (FISH) analysis was used to detect localized expression of CDKN2B antisense RNA 1 (CDKN2B-AS1), and dual-luciferase reporter assay was employed to verify the correlation of CDKN2B-AS1 and miR-133, and of miR-133 and GDNF. The expression of CDKN2B-AS1, miR-133, and GDNF mRNA in the cell injury model were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Western blot was utilized to detect the expression of GDNF protein in the cell injury model. RESULTS In the cell injury model, CDKN2B-AS1 was highly expressed in the cytoplasm, and CDKN2B-AS1 and GDNF were downregulated and miR-133 was upregulated as detected by qRT-PCR (all P<0.05). The connections between CDKN2B-AS1 and miR-133, and between miR-133 and GDNF were confirmed. That is, CDKN2B-AS1 regulated the expression of GDNF by adsorbing miR-133 (all P<0.05). In cells treated with sevoflurane, overexpression of CDKN2B-AS1 could inhibit caspase-3 and caspase-9 activities and the degree of apoptosis. miR-133 could partially alleviate the effect of overexpressing CDKN2B-AS1 on cells, and si-GDNF the effect of miR-133 inhibitor (all P<0.05). CONCLUSION lncRNA CDKN2B-AS1 can up-regulate the expression of GDNF, inhibit neuronal apoptosis, and ease the toxic effect of sevoflurane on neural cells by acting as a sponge to adsorb miR-133.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Anesthesiology, Yanbian University Hospital (Yanbian Hospital) Yanji, Jilin Province, China
| | - Chonghe Wang
- Department of Anesthesiology, Yanbian University Hospital (Yanbian Hospital) Yanji, Jilin Province, China
| | - Jingyao Zhu
- Department of Anesthesiology, Yanbian University Hospital (Yanbian Hospital) Yanji, Jilin Province, China
| | - Xuezhu Huang
- Department of Anesthesiology, Yanbian University Hospital (Yanbian Hospital) Yanji, Jilin Province, China
| |
Collapse
|
45
|
Ning Z, Yu S, Zhao Y, Sun X, Wu H, Yu X. Identification of miRNA-Mediated Subpathways as Prostate Cancer Biomarkers Based on Topological Inference in a Machine Learning Process Using Integrated Gene and miRNA Expression Data. Front Genet 2021; 12:656526. [PMID: 33841512 PMCID: PMC8024646 DOI: 10.3389/fgene.2021.656526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
Accurately identifying classification biomarkers for distinguishing between normal and cancer samples is challenging. Additionally, the reproducibility of single-molecule biomarkers is limited by the existence of heterogeneous patient subgroups and differences in the sequencing techniques used to collect patient data. In this study, we developed a method to identify robust biomarkers (i.e., miRNA-mediated subpathways) associated with prostate cancer based on normal prostate samples and cancer samples from a dataset from The Cancer Genome Atlas (TCGA; n = 546) and datasets from the Gene Expression Omnibus (GEO) database (n = 139 and n = 90, with the latter being a cell line dataset). We also obtained 10 other cancer datasets to evaluate the performance of the method. We propose a multi-omics data integration strategy for identifying classification biomarkers using a machine learning method that involves reassigning topological weights to the genes using a directed random walk (DRW)-based method. A global directed pathway network (GDPN) was constructed based on the significantly differentially expressed target genes of the significantly differentially expressed miRNAs, which allowed us to identify the robust biomarkers in the form of miRNA-mediated subpathways (miRNAs). The activity value of each miRNA-mediated subpathway was calculated by integrating multiple types of data, which included the expression of the miRNA and the miRNAs’ target genes and GDPN topological information. Finally, we identified the high-frequency miRNA-mediated subpathways involved in prostate cancer using a support vector machine (SVM) model. The results demonstrated that we obtained robust biomarkers of prostate cancer, which could classify prostate cancer and normal samples. Our method outperformed seven other methods, and many of the identified biomarkers were associated with known clinical treatments.
Collapse
Affiliation(s)
- Ziyu Ning
- The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China.,School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Shuang Yu
- The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
| | - Yanqiao Zhao
- The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
| | - Xiaoming Sun
- The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
| | - Haibin Wu
- The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
| | - Xiaoyang Yu
- The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin, China
| |
Collapse
|
46
|
Yao X, Gao X, Bao Y, El-Samahy MA, Yang J, Wang Z, Li X, Zhang G, Zhang Y, Liu W, Wang F. lncRNA FDNCR promotes apoptosis of granulosa cells by targeting the miR-543-3p/DCN/TGF-β signaling pathway in Hu sheep. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:223-240. [PMID: 33767918 PMCID: PMC7973142 DOI: 10.1016/j.omtn.2021.02.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) regulate the development of follicles and reproductive diseases, but the mechanisms by which lncRNAs regulate ovarian functions and fertility remain elusive. We profiled the expression of lncRNAs in ovarian tissues of Hu sheep with different prolificacy and identified 21,327 lncRNAs. Many of the lncRNAs were differentially expressed in different groups. We further characterized an lncRNA that was predominantly expressed in the ovaries of the low prolificacy FecB+ (LPB+) group and mainly present in granulosa cells (GCs), and the expression of this lncRNA decreased during follicular development, which we named follicular development-associated lncRNA (FDNCR). Next, we found that FDNCR directly binds miR-543-3p, and decorin (DCN) was identified as a target of miR-543-3p. FDNCR overexpression promoted GC apoptosis through increased expression of DCN, which could be attenuated by miR-543-3p. Furthermore, miR-543-3p increased and FDNCR reduced the expression of transforming growth factor-β (TGF-β) pathway-related genes, including TGF-β1 and inhibin beta A (INHBA), which were upregulated upon DCN silencing. Our results demonstrated that FDNCR sponges miR-543-3p in GCs and prevents miR-543-3p from binding to the DCN 3′ UTR, resulting in DCN transactivation and TGF-β pathway inhibition and promotion of GC apoptosis in Hu sheep. These findings provide insights into the mechanisms underlying prolificacy in sheep.
Collapse
Affiliation(s)
- Xiaolei Yao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - XiaoXiao Gao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongjin Bao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - M A El-Samahy
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinyu Yang
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Zhibo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
47
|
Xie X, Lin J, Fan X, Zhong Y, Chen Y, Liu K, Ren Y, Chen X, Lai D, Li X, Li Z, Tang A. LncRNA CDKN2B-AS1 stabilized by IGF2BP3 drives the malignancy of renal clear cell carcinoma through epigenetically activating NUF2 transcription. Cell Death Dis 2021; 12:201. [PMID: 33608495 PMCID: PMC7895987 DOI: 10.1038/s41419-021-03489-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/05/2023]
Abstract
Because of the lack of sensitivity to radiotherapy and chemotherapy, therapeutic options for renal clear cell carcinoma (KIRC) are scarce. Long noncoding RNAs (lncRNAs) play crucial roles in the progression of cancer. However, their functional roles and upstream mechanisms in KIRC remain largely unknown. Exploring the functions of potential essential lncRNAs may lead to the discovery of novel targets for the diagnosis and treatment of KIRC. Here, according to the integrated analysis of RNA sequencing and survival data in TCGA-KIRC datasets, cyclin-dependent kinase inhibitor 2B antisense lncRNA (CDKN2B-AS1) was discovered to be the most upregulated among the 14 lncRNAs that were significantly overexpressed in KIRC and related to shorter survival. Functionally, CDKN2B-AS1 depletion suppressed cell proliferation, migration, and invasion both in vitro and in vivo. Mechanistically, CDKN2B-AS1 exerted its oncogenic activity by recruiting the CREB-binding protein and SET and MYND domain-containing 3 epigenetic-modifying complex to the promoter region of Ndc80 kinetochore complex component (NUF2), where it epigenetically activated NUF2 transcription by augmenting local H3K27ac and H3K4me3 modifications. Moreover, we also showed that CDKN2B-AS1 interacted with and was stabilized by insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), an oncofetal protein showing increased levels in KIRC. The Kaplan-Meier method and receiver operating curve analysis revealed that patients whose IGF2BP3, CDKN2B-AS1 and NUF2 are all elevated showed the shortest survival time, and the combined panel (containing IGF2BP3, CDKN2B-AS1, and NUF2) possessed the highest accuracy in discriminating high-risk from low-risk KIRC patients. Thus, we conclude that the stabilization of CDKN2B-AS1 by IGF2BP3 drives the malignancy of KIRC through epigenetically activating NUF2 transcription and that the IGF2BP3/CDKN2B-AS1/NUF2 axis may be an ideal prognostic and diagnostic biomarker and therapeutic target for KIRC.
Collapse
MESH Headings
- Animals
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- DNA Methylation
- Databases, Genetic
- Disease Progression
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- RNA Stability
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Signal Transduction
- Transcriptional Activation
- Tumor Burden
- Mice
Collapse
Affiliation(s)
- Xina Xie
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Jiatian Lin
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, 518000, Shenzhen, Guangdong, China
| | - Xiaoqin Fan
- Department of Otolaryngology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Yuantang Zhong
- Department of Urology, Longgang District Central Hospital, 518100, Shenzhen, Guangdong, China
| | - Yequn Chen
- Department of Community Surveillance, The First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Kaiqing Liu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Yonggang Ren
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Xiangling Chen
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Daihuan Lai
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Xuyi Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Zesong Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China.
| | - Aifa Tang
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China.
| |
Collapse
|