1
|
Wei G, Zhang K, Shen FJ, Xie RR, Wang FW, Guo HQ, Liu L. Low-dose polystyrene microplastics exposure increases susceptibility to obesity-induced MASLD via disrupting intestinal barrier integrity and gut microbiota homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118310. [PMID: 40403691 DOI: 10.1016/j.ecoenv.2025.118310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/22/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025]
Abstract
The global incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has surged in recent years, potentially impacted by both high-energy food intake (e.g., high-fat diet, HFD) and environmental pollutants like microplastics (MPs). However, the combined impacts of MPs exposure and HFD feeding, particularly under long-time exposure, low concentrations MPs conditions, on the MASLD progression remain to be fully elucidated. In this study, C57BL/6 J male mice were fed either a normal chow diet or HFD with or without low-dose MPs (polystyrene) exposure (25-30 μg/kg body weight /day) for 14 weeks. The adverse health effects associated with MASLD development were evaluated, including intestinal permeability, gut microbiota composition, hepatic lipid metabolism, and the mediating role of the gut-liver axis. Additionally, HFD with or without low-dose MPs exposure was withdrawn to further verify this process. Our data demonstrated that low-dose MPs exposure or HFD feeding significantly increased the gut permeability, oxidative stress, pro-inflammatory response and apoptosis, while concurrently contributing to gut dysbiosis (e.g., reduced levels of Akkermansia) and MASLD development. Furthermore, low-dose MPs exposure exacerbated these effects in combination with HFD feeding, exhibiting a 'double hit' effect. Notably, the impacts of low-dose MPs exposure combined with HFD feeding on MASLD were difficult to reverse after two weeks withdrawing, likely due to the limited recovery potential of intestinal barrier integrity and gut microbiota homeostasis. These finding underscore the importance of avoiding MPs exposure in the pathogenesis of MASLD, particularly under a metabolic disorder conditions, and provide valuable insights for the developing therapeutic strategies to combat MASLD caused by MPs exposure.
Collapse
Affiliation(s)
- Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Kai Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Feng-Jie Shen
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Rong-Rong Xie
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Feng-Wei Wang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Hua-Qi Guo
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China.
| | - Lin Liu
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
2
|
Azmal M, Miah MM, Prima FS, Paul JK, Haque ASNB, Ghosh A. Advances and challenges in cancer immunotherapy: Strategies for personalized treatment. Semin Oncol 2025; 52:152345. [PMID: 40305928 DOI: 10.1016/j.seminoncol.2025.152345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 05/02/2025]
Abstract
Cancer immunotherapy has transformed oncology by harnessing the immune system to specifically target cancer cells, offering reduced systemic toxicity compared to traditional therapies. This review highlights key strategies, including adoptive cell transfer (ACT), immune checkpoint inhibitors, oncolytic viral (OV) therapy, monoclonal antibodies (mAbs), and mRNA-based vaccines. ACT reinfuses enhanced immune cells like tumor-infiltrating lymphocytes (TILs) to combat refractory cancers, while checkpoint inhibitors (eg, PD-1 and CTLA-4 blockers) restore T-cell activity. OV therapy uses engineered viruses (eg, T-VEC) to selectively lyse cancer cells, and advanced mAbs improve targeting precision. mRNA vaccines introduce tumor-specific antigens to trigger robust immune responses. Despite significant progress, challenges like immune-related side effects, high costs, and immunosuppressive tumor microenvironments persist. This review underscores the need for combination strategies and precision medicine to overcome these barriers and maximize the potential of immunotherapy in personalized cancer treatment.
Collapse
Affiliation(s)
- Mahir Azmal
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Munna Miah
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fatema Sultana Prima
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jibon Kumar Paul
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Anm Shah Newaz Been Haque
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| |
Collapse
|
3
|
Zinovieva M, Ryapolova A, Karabelsky A, Minskaia E. Oncolytic Vesicular Stomatitis Virus: Optimisation Strategies for Anti-Cancer Therapies. FRONT BIOSCI-LANDMRK 2024; 29:374. [PMID: 39614430 DOI: 10.31083/j.fbl2911374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024]
Abstract
Oncolytic viruses (OVs) represent a targeted anti-cancer therapy approach due to their ability not only to selectively infect and destroy malignant cells but also to induce an immune response. Vesicular stomatitis virus (VSV) offers a promising platform due to its low prevalence and pathogenicity in humans, lack of pre-existing immunity, easily manipulated genome, rapid growth to high titers in a broad range of cell lines, and inability to integrate into the host genome. However, despite its many advantages, many unresolved problems remain: problematic production based on the reverse genetics system, oncological selectivity, and the overall effectiveness of VSV monotherapy. This review will discuss various attempts at viral genome modifications aimed at improving the oncolytic properties of VSV. These strategies include inhibition of viral genes, modification of genes responsible for targeting cancer cells over healthy ones, insertion of foreign genes for boosting immune response, and changing the order of viral and inserted foreign genes. In addition, possible ways to improve VSV-based anti-tumor therapy and achieve higher efficiency will be considered by evaluating the effectiveness of various delivery methods as well as discussing treatment options by combining VSV with other groups of anticancer drugs.
Collapse
Affiliation(s)
- Margarita Zinovieva
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasia Ryapolova
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alexander Karabelsky
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ekaterina Minskaia
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
4
|
Hu Z, Li Y, Yang J, Liu J, Zhou H, Sun C, Tian C, Zhu C, Shao M, Wang S, Wei L, Liu M, Li S, Wang J, Xu H, Zhu W, Li X, Li J. Improved antitumor effectiveness of oncolytic HSV-1 viruses engineered with IL-15/IL-15Rα complex combined with oncolytic HSV-1-aPD1 targets colon cancer. Sci Rep 2024; 14:23671. [PMID: 39389985 PMCID: PMC11467195 DOI: 10.1038/s41598-024-72888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Oncolytic virotherapy is emerging as a promising therapeutic avenue for cancer treatment, harnessing both innate and tumor-specific immune responses for targeted tumor elimination. In this study, we present a novel oncolytic virus (oHSV1-IL15B) derived from herpes simplex virus-1 (HSV-1), armed with IL-15/IL-15Rα complex, with a focus on treating colon cancer combined with oncolytic HSV-1 expressing anti-PD-1 antibody (oHSV1-aPD1). Results from our study reveal that recombinant oHSV-1 virus equipped with IL-15/IL-15Rα complex exhibited significant anti-tumor effects in a murine CT26 colon adenocarcinoma model. Notably, oHSV1-IL15B combined with oHSV-1-aPD1 demonstrates superior tumor inhibition and prolonged overall survival compared to oHSV1-mock and monotherapy groups. Further exploration highlights the impact of oHSV1-IL15B, oHSV-1-aPD1 and combined group on antitumor capacity, revealing a substantial increase in CD8+ T and CD4+ T cell proportions of CT26-bearing BALB/c mice and promoting apoptosis in tumor tissue. The study emphasizes the pivotal role of cytotoxic CD8+T cells in oncolytic virotherapy, demonstrating that recombinant oHSV1-IL15B combined with oncolytic HSV-1-aPD1 induces a robust tumor-specific T cell response. RNA sequence analysis highlighted oHSV1-IL15B combined with oHSV1-aPD1 improved tumors immune microenvironment on immune response, antiviral response-related genes and apoptosis-related genes, which contributed to anti-tumor immunotherapy. The findings underscore the promising antitumor activity achieved through the combination of IL-15/IL-15Rα complex and anti-PD-1 antibody with oHSV-1. This research opens avenues for diverse therapeutic strategies, suggesting the potential of synergistically utilizing cytokines and anti-PD-1 antibody with oncolytic viruses to enhance immunotherapy for cancer management.
Collapse
Affiliation(s)
- Zongfeng Hu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Yixiao Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | | | - Jiajia Liu
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Hua Zhou
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Chunyang Sun
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Chao Tian
- Beijing WellGene Company, Ltd, Beijing, 100085, China
| | - Chengyang Zhu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Mingxia Shao
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Shengrun Wang
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Lijun Wei
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Min Liu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Shuzhen Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Jinyu Wang
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Haitian Xu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Wei Zhu
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China
| | - Xiaopeng Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China.
- Beijing WellGene Company, Ltd, Beijing, 100085, China.
| | - Jingfeng Li
- School of Pharmacy, Yantai University, Yantai, 264005, Shandong, China.
| |
Collapse
|
5
|
Švajger U, Kamenšek U. Interleukins and interferons in mesenchymal stromal stem cell-based gene therapy of cancer. Cytokine Growth Factor Rev 2024; 77:76-90. [PMID: 38508954 DOI: 10.1016/j.cytogfr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
The tumor microenvironment is importantly shaped by various cytokines, where interleukins (ILs) and interferons (IFNs) shape the balance of immune activity within tumor niche and associated lymphoid organs. Their importance in activation and tuning of both innate and adaptive immune responses prompted their use in several clinical trials, albeit with limited therapeutic efficacy and risk of toxicity due to systemic administration. Increasing preclinical evidence suggests that local delivery of ILs and IFNs could significantly increase their effectiveness, while simultaneously attenuate the known side effects and issues related to their biological activity. A prominent way to achieve this is to use cell-based delivery vehicles. For this purpose, mesenchymal stromal stem cells (MSCs) are considered an almost ideal candidate. Namely, MSCs can be obtained in large quantities and from obtainable sources (e.g. umbilical cord or adipose tissue), their ex vivo expansion is relatively straightforward compared to other cell types and they possess very low immunogenicity making them suitable for allogeneic use. Importantly, MSCs have shown an intrinsic capacity to respond to tumor-directed chemotaxis. This review provides a focused and detailed discussion on MSC-based gene therapy using ILs and IFNs, engineering techniques and insights on potential future advancements.
Collapse
Affiliation(s)
- Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Šlajmerjeva Ulica 6, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana SI-1000, Slovenia.
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška Cesta 2, Ljubljana SI-1000, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, Ljubljana SI-1000, Slovenia
| |
Collapse
|
6
|
Zeng M, Zhang W, Li Y, Yu L. Harnessing adenovirus in cancer immunotherapy: evoking cellular immunity and targeting delivery in cell-specific manner. Biomark Res 2024; 12:36. [PMID: 38528632 DOI: 10.1186/s40364-024-00581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
Recombinant adenovirus (rAd) regimens, including replication-competent oncolytic adenovirus (OAV) and replication-deficient adenovirus, have been identified as potential cancer therapeutics. OAV presents advantages such as selective replication, oncolytic efficacy, and tumor microenvironment (TME) remodeling. In this perspective, the principles and advancements in developing OAV toolkits are reviewed. The burgeoning rAd may dictate efficacy of conventional cancer therapies as well as cancer immunotherapies, including cancer vaccines, synergy with adoptive cell therapy (ACT), and TME reshaping. Concurrently, we explored the potential of rAd hitchhiking to adoptive immune cells or stem cells, highlighting how this approach facilitates synergistic interactions between rAd and cellular therapeutics at tumor sites. Results from preclinical and clinical trials in which immune and stem cells were infected with rAd have been used to address significant oncological challenges, such as postsurgical residual tumor tissue and metastatic tissue. Briefly, rAd can eradicate tumors through various mechanisms, resulting from tumor immunogenicity, reprogramming of the TME, enhancement of cellular immunity, and effective tumor targeting. In this context, we argue that rAd holds immense potential for enhancing cellular immunity and synergistically improving antitumor effects in combination with novel cancer immunotherapies.
Collapse
Affiliation(s)
- Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd. No, 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China.
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
7
|
Ramaj T, Zou X. On the treatment of melanoma: A mathematical model of oncolytic virotherapy. Math Biosci 2023; 365:109073. [PMID: 37660975 DOI: 10.1016/j.mbs.2023.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 08/02/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
We develop and analyze a mathematical model of oncolytic virotherapy in the treatment of melanoma. We begin with a special, local case of the model, in which we consider the dynamics of the tumour cells in the presence of an oncolytic virus at the primary tumour site. We then consider the more general regional model, in which we incorporate a linear network of lymph nodes through which the tumour cells and the oncolytic virus may spread. The modelling also considers the impact of hypoxia on the disease dynamics. The modelling takes into account both the effects of hypoxia on tumour growth and spreading, as well as the impact of hypoxia on oncolytic virotherapy as a treatment modality. We find that oxygen-rich environments are favourable for the use of adenoviruses as oncolytic agents, potentially suggesting the use of complementary external oxygenation as a key aspect of treatment. Furthermore, the delicate balance between a virus' infection capabilities and its oncolytic capabilities should be considered when engineering an oncolytic virus. If the virus is too potent at killing tumour cells while not being sufficiently effective at infecting them, the infected tumour cells are destroyed faster than they are able to infect additional tumour cells, leading less favourable clinical results. Numerical simulations are performed in order to support the analytic results and to further investigate the impact of various parameters on the outcomes of treatment. Our modelling provides further evidence indicating the importance of three key factors in treatment outcomes: tumour microenvironment oxygen concentration, viral infection rates, and viral oncolysis rates. The numerical results also provide some estimates on these key model parameters which may be useful in the engineering of oncolytic adenoviruses.
Collapse
Affiliation(s)
- Tedi Ramaj
- Department of Mathematics, Western University, London, On Canada.
| | - Xingfu Zou
- Department of Mathematics, Western University, London, On Canada
| |
Collapse
|
8
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
9
|
Huang Z, Guo H, Lin L, Li S, Yang Y, Han Y, Huang W, Yang J. Application of oncolytic virus in tumor therapy. J Med Virol 2023; 95:e28729. [PMID: 37185868 DOI: 10.1002/jmv.28729] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
Oncolytic viruses (OVs) can selectively kill tumor cells without affecting normal cells, as well as activate the innate and adaptive immune systems in patients. Thus, they have been considered as a promising measure for safe and effective cancer treatment. Recently, a few genetically engineered OVs have been developed to further improve the effect of tumor elimination by expressing specific immune regulatory factors and thus enhance the body's antitumor immunity. In addition, the combined therapies of OVs and other immunotherapies have been applied in clinical. Although there are many studies on this hot topic, a comprehensive review is missing on illustrating the mechanisms of tumor clearance by OVs and how to modify engineered OVs to further enhance their antitumor effects. In this study, we provided a review on the mechanisms of immune regulatory factors in OVs. In addition, we reviewed the combined therapies of OVs with other therapies including radiotherapy and CAR-T or TCR-T cell therapy. The review is useful in further generalize the usage of OV in cancer treatment.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hongen Guo
- Department of Dermatology, Dermatology Hospital of Fuzhou, Fujian, Fuzhou, China
| | - Lin Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Shixiong Li
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yong Yang
- Department of Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Weiwei Huang
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd, Beijing, China
- Academician Workstation, Changsha Medical University, Changsha, China
| |
Collapse
|
10
|
Oladejo M, Paulishak W, Wood L. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Semin Cancer Biol 2023; 88:81-95. [PMID: 36526110 DOI: 10.1016/j.semcancer.2022.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Cancer vaccines and immune checkpoint inhibitors (ICIs) function at different stages of the cancer immune cycle due to their distinct mechanisms of action. Therapeutic cancer vaccines enhance the activation and infiltration of cytotoxic immune cells into the tumor microenvironment (TME), while ICIs, prevent and/or reverse the dysfunction of these immune cells. The efficacy of both classes of immunotherapy has been evaluated in monotherapy, but they have been met with several challenges. Although therapeutic cancer vaccines can activate anti-tumor immune responses, these responses are susceptible to attenuation by immunoregulatory molecules. Similarly, ICIs are ineffective in the absence of tumor-infiltrating lymphocytes (TILs). Further, ICIs are often associated with immune-related adverse effects that may limit quality of life and compliance. However, the combination of the improved immunogenicity afforded by cancer vaccines and restrained immunosuppression provided by immune checkpoint inhibitors may provide a suitable platform for therapeutic synergism. In this review, we revisit the history and various classifications of therapeutic cancer vaccines. We also provide a summary of the currently approved ICIs. Finally, we provide mechanistic insights into the synergism between ICIs and cancer vaccines.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Wyatt Paulishak
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
11
|
Li X, Sun X, Wang B, Li Y, Tong J. Oncolytic virus-based hepatocellular carcinoma treatment: Current status, intravenous delivery strategies, and emerging combination therapeutic solutions. Asian J Pharm Sci 2023; 18:100771. [PMID: 36896445 PMCID: PMC9989663 DOI: 10.1016/j.ajps.2022.100771] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022] Open
Abstract
Current treatments for advanced hepatocellular carcinoma (HCC) have limited success in improving patients' quality of life and prolonging life expectancy. The clinical need for more efficient and safe therapies has contributed to the exploration of emerging strategies. Recently, there has been increased interest in oncolytic viruses (OVs) as a therapeutic modality for HCC. OVs undergo selective replication in cancerous tissues and kill tumor cells. Strikingly, pexastimogene devacirepvec (Pexa-Vec) was granted an orphan drug status in HCC by the U.S. Food and Drug Administration (FDA) in 2013. Meanwhile, dozens of OVs are being tested in HCC-directed clinical and preclinical trials. In this review, the pathogenesis and current therapies of HCC are outlined. Next, we summarize multiple OVs as single therapeutic agents for the treatment of HCC, which have demonstrated certain efficacy and low toxicity. Emerging carrier cell-, bioengineered cell mimetic- or nonbiological vehicle-mediated OV intravenous delivery systems in HCC therapy are described. In addition, we highlight the combination treatments between oncolytic virotherapy and other modalities. Finally, the clinical challenges and prospects of OV-based biotherapy are discussed, with the aim of continuing to develop a fascinating approach in HCC patients.
Collapse
Affiliation(s)
- Xinguo Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaonan Sun
- The 4th People's Hospital of Shenyang, Shenyang 110031, China
| | - Bingyuan Wang
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiling Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Jing Tong
- The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
12
|
Vorobjeva IV, Zhirnov OP. Modern approaches to treating cancer with oncolytic viruses. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2022. [DOI: 10.18527/2500-2236-2022-9-1-91-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
According to the World Health Organization, cancer is the second leading cause of death in the world. This serves as a powerful incentive to search for new effective cancer treatments. Development of new oncolytic viruses capable of selectively destroying cancer cells is one of the modern approaches to cancer treatment. The advantage of this method – the selective lysis of tumor cells with the help of viruses – leads to an increase in the antitumor immune response of the body, that in turn promotes the destruction of the primary tumor and its metastases. Significant progress in development of this method has been achieved in the last decade. In this review we analyze the literature data on families of oncolytic viruses that have demonstrated a positive therapeutic effect against malignant neoplasms in various localizations. We discuss the main mechanisms of the oncolytic action of viruses and assess their advantages over other methods of cancer therapy as well as the prospects for their use in clinical practice.
Collapse
Affiliation(s)
- I. V. Vorobjeva
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology
| | - O. P. Zhirnov
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology; The Russian-German Academy of Medical and Biotechnological Sciences
| |
Collapse
|
13
|
Cerqueira OLD, Antunes F, Assis NG, Cardoso EC, Clavijo-Salomón MA, Domingues AC, Tessarollo NG, Strauss BE. Perspectives for Combining Viral Oncolysis With Additional Immunotherapies for the Treatment of Melanoma. Front Mol Biosci 2022; 9:777775. [PMID: 35495634 PMCID: PMC9048901 DOI: 10.3389/fmolb.2022.777775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest type of skin cancer with steadily increasing incidence worldwide during the last few decades. In addition to its tumor associated antigens (TAAs), melanoma has a high mutation rate compared to other tumors, which promotes the appearance of tumor specific antigens (TSAs) as well as increased lymphocytic infiltration, inviting the use of therapeutic tools that evoke new or restore pre-existing immune responses. Innovative therapeutic proposals, such as immune checkpoint inhibitors (ICIs), have emerged as effective options for melanoma. However, a significant portion of these patients relapse and become refractory to treatment. Likewise, strategies using viral vectors, replicative or not, have garnered confidence and approval by different regulatory agencies around the world. It is possible that further success of immune therapies against melanoma will come from synergistic combinations of different approaches. In this review we outline molecular features inherent to melanoma and how this supports the use of viral oncolysis and immunotherapies when used as monotherapies or in combination.
Collapse
Affiliation(s)
- Otto Luiz Dutra Cerqueira
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Fernanda Antunes
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Nadine G Assis
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Elaine C Cardoso
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Maria A Clavijo-Salomón
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ana C Domingues
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Nayara G Tessarollo
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Bryan E Strauss
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- *Correspondence: Bryan E Strauss,
| |
Collapse
|
14
|
Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7:117. [PMID: 35387984 PMCID: PMC8987060 DOI: 10.1038/s41392-022-00951-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) are emerging as potentially useful platforms in treatment methods for patients with tumors. They preferentially target and kill tumor cells, leaving healthy cells unharmed. In addition to direct oncolysis, the essential and attractive aspect of oncolytic virotherapy is based on the intrinsic induction of both innate and adaptive immune responses. To further augment this efficacious response, OVs have been genetically engineered to express immune regulators that enhance or restore antitumor immunity. Recently, combinations of OVs with other immunotherapies, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptors (CARs), antigen-specific T-cell receptors (TCRs) and autologous tumor-infiltrating lymphocytes (TILs), have led to promising progress in cancer treatment. This review summarizes the intrinsic mechanisms of OVs, describes the optimization strategies for using armed OVs to enhance the effects of antitumor immunity and highlights rational combinations of OVs with other immunotherapies in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
- College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, 643000, Zigong, Sichuan, People's Republic of China
| | - Daoyuan Xie
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Lu SC, Hansen MJ, Hemsath JR, Parrett BJ, Zell BN, Barry MA. Modulating Oncolytic Adenovirus Immunotherapy by Driving Two Axes of the Immune System by Expressing 4-1BBL and CD40L. Hum Gene Ther 2022; 33:250-261. [PMID: 34731019 PMCID: PMC11981553 DOI: 10.1089/hum.2021.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses (OVs) can have utility for direct killing of cancer cells, but may also serve to activate the immune system against cancer cells. While viruses alone can serve as immune stimulators, there is great interest in arming OVs with genes encoding immune stimulatory proteins to amplify their effects. In this work, we have tested the efficacy of conditionally-replicating adenoviruses (CRAds) with and without selected immunostimulatory payloads, murine CD40L (mCD40L) or 4-1BBL (m4-1BBL), in an immune competent mouse model of melanoma. When CRAd657-m4-1BBL and CRAd657-mCD40L were injected into B16-hCAR murine melanoma tumors, both single vectors delayed tumor growth and prolong survival compared to empty CRAd657. However, combined injection of both CRAd-m4-1BBL and CRAd-mCD40L mediated significantly better control of tumor growth. All of the payloads increased immune cell infiltration into tumors and notably reduced expression of PD-1 exhaustion marker on T cells. Tumor volumes were negatively associated with total infiltrating T cell population. We found that the payloads increased immune cell infiltration into tumors with some specificities: recruitment of CD8+ T cells was higher with m4-1BBL expression, while mCD40L expression induced more CD4+ T cell infiltration. Importantly, the combination of CRAd657-m4-1BBL and CRAd657-mCD40L induced the highest immune cells/T cell infiltration and the highest anti-TRP-2 tumor-associated antigen T cell responses than empty or single gene vector. This combination also caused depigmentation in areas adjacent to the tumor sites in more animals. These data indicate that driving two axes of the immune system with combined immune stimulatory payloads can lead to improved anticancer immune responses and better tumor control in an immune competent model of cancer.
Collapse
Affiliation(s)
- Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J. Hansen
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Jack R. Hemsath
- Department of Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Brian J. Parrett
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Brady N. Zell
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael A. Barry
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Biegert GWG, Rosewell Shaw A, Suzuki M. Current development in adenoviral vectors for cancer immunotherapy. Mol Ther Oncolytics 2021; 23:571-581. [PMID: 34938857 DOI: 10.1016/j.omto.2021.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adenoviruses are well characterized and thus easily modified to generate oncolytic vectors that directly lyse tumor cells and can be "armed" with transgenes to promote lysis, antigen presentation, and immunostimulation. Oncolytic adenoviruses (OAds) are safe, versatile, and potent immunostimulants in patients. Since transgene expression is restricted to the tumor, adenoviral transgenes overcome the toxicities and short half-life of systemically administered cytokines, immune checkpoint blockade molecules, and bispecific T cell engagers. While OAds expressing immunostimulatory molecules ("armed" OAds) have demonstrated anti-tumor potential in preclinical solid tumor models, the efficacy has not translated into significant clinical outcomes as a monotherapy. However, OAds synergize with established standards of care and novel immunotherapeutic agents, providing a multifaceted means to address complexities associated with solid tumors. Critically, armed OAds revitalize endogenous and adoptively transferred immune cells while simultaneously enhancing their anti-tumor function. To properly evaluate these novel vectors and reduce the gap in the cycle between bench-to-bedside and back, improving model systems must be a priority. The future of OAds will involve a multidimensional approach that provides immunostimulatory molecules, immune checkpoint blockade, and/or immune engagers in concert with endogenous and exogenous immune cells to initiate durable and comprehensive anti-tumor responses.
Collapse
Affiliation(s)
- Greyson Willis Grossman Biegert
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Amanda Rosewell Shaw
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
17
|
Appleton E, Hassan J, Chan Wah Hak C, Sivamanoharan N, Wilkins A, Samson A, Ono M, Harrington KJ, Melcher A, Wennerberg E. Kickstarting Immunity in Cold Tumours: Localised Tumour Therapy Combinations With Immune Checkpoint Blockade. Front Immunol 2021; 12:754436. [PMID: 34733287 PMCID: PMC8558396 DOI: 10.3389/fimmu.2021.754436] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer patients with low or absent pre-existing anti-tumour immunity ("cold" tumours) respond poorly to treatment with immune checkpoint inhibitors (ICPI). In order to render these patients susceptible to ICPI, initiation of de novo tumour-targeted immune responses is required. This involves triggering of inflammatory signalling, innate immune activation including recruitment and stimulation of dendritic cells (DCs), and ultimately priming of tumour-specific T cells. The ability of tumour localised therapies to trigger these pathways and act as in situ tumour vaccines is being increasingly explored, with the aspiration of developing combination strategies with ICPI that could generate long-lasting responses. In this effort, it is crucial to consider how therapy-induced changes in the tumour microenvironment (TME) act both as immune stimulants but also, in some cases, exacerbate immune resistance mechanisms. Increasingly refined immune monitoring in pre-clinical studies and analysis of on-treatment biopsies from clinical trials have provided insight into therapy-induced biomarkers of response, as well as actionable targets for optimal synergy between localised therapies and ICB. Here, we review studies on the immunomodulatory effects of novel and experimental localised therapies, as well as the re-evaluation of established therapies, such as radiotherapy, as immune adjuvants with a focus on ICPI combinations.
Collapse
Affiliation(s)
- Elizabeth Appleton
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jehanne Hassan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charleen Chan Wah Hak
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Nanna Sivamanoharan
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Anna Wilkins
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Adel Samson
- Leeds Institute of Medical Research at St. James, University of Leeds, Leeds, United Kingdom
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kevin J. Harrington
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Alan Melcher
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Erik Wennerberg
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| |
Collapse
|
18
|
Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer 2021; 21:481-499. [PMID: 34083781 PMCID: PMC8173513 DOI: 10.1038/s41568-021-00363-z] [Citation(s) in RCA: 447] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Interleukins and associated cytokines serve as the means of communication for innate and adaptive immune cells as well as non-immune cells and tissues. Thus, interleukins have a critical role in cancer development, progression and control. Interleukins can nurture an environment enabling and favouring cancer growth while simultaneously being essential for a productive tumour-directed immune response. These properties of interleukins can be exploited to improve immunotherapies to promote effectiveness as well as to limit side effects. This Review aims to unravel some of these complex interactions.
Collapse
Affiliation(s)
- Daria Briukhovetska
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Janina Dörr
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany.
- German Center for Translational Cancer Research (DKTK), Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
19
|
Hu HJ, Liang X, Li HL, Wang HY, Gu JF, Sun LY, Xiao J, Hu JQ, Ni AM, Liu XY. Optimization of the Administration Strategy for the Armed Oncolytic Adenovirus ZD55-IL-24 in Both Immunocompromised and Immunocompetent Mouse Models. Hum Gene Ther 2021; 32:1481-1494. [PMID: 34155929 DOI: 10.1089/hum.2021.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ZD55-IL-24 is an armed oncolytic adenovirus similar but superior to ONYX-015. Virotherapeutic strategies using ZD55-IL-24 have been demonstrated to be effective against several cancer types. However, it is unclear whether the traditional administration strategy is able to exert the maximal antitumor efficacy of ZD55-IL-24. In this study, we sought to optimize the administration strategy of ZD55-IL-24 in both A375-bearing immunocompromised mouse model and B16-bearing immunocompetent mouse model. Although the underlying antitumor mechanisms are quite different, the obtained results are similar in these two mouse tumor models. We find that the antitumor efficacy of ZD55-IL-24 increases as injection times increase in both of these two models. However, no obvious increase of efficacy is observed as the dose of each injection increases. Our further investigation reveals that the administration strategy of sustained ZD55-IL-24 therapy can achieve a better therapeutic effect than the traditional administration strategy of short-term ZD55-IL-24 therapy. Furthermore, there is no need to inject every day; every 2 or 3 days of injection achieves an equivalent therapeutic efficacy. Finally, we find that the sustained rather than the traditional short-term ZD55-IL-24 therapy can synergize with anti-PD-1 therapy to reject tumors in B16-bearing immunocompetent mouse model. These findings suggest that the past administration strategy of ZD55-IL-24 is in fact suboptimal and the antitumor efficacy can be further enhanced through administration strategy optimization. This study might shed some light on the development of clinically applicable administration regimens for ZD55-IL-24 therapy.
Collapse
Affiliation(s)
- Hai-Jun Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiu Liang
- School of Life Sciences and Technology, Tongji University, Shanghai, China; and
| | - Hai-Lang Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Huai-Yuan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Fa Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Lan-Ying Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Qing Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ai-Min Ni
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Hu HJ, Liang X, Li HL, Wang HY, Gu JF, Sun LY, Xiao J, Hu JQ, Ni AM, Liu XY. Enhanced anti-melanoma efficacy through a combination of the armed oncolytic adenovirus ZD55-IL-24 and immune checkpoint blockade in B16-bearing immunocompetent mouse model. Cancer Immunol Immunother 2021; 70:3541-3555. [PMID: 33903973 PMCID: PMC8571158 DOI: 10.1007/s00262-021-02946-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/14/2021] [Indexed: 12/22/2022]
Abstract
Although the recent treatment in melanoma through the use of anti-PD-1 immunotherapy is successful, the efficacy of this approach remains to be improved. Here, we explore the feasibility of combination strategy with the armed oncolytic adenovirus ZD55-IL-24 and PD-1 blockade. We find that combination therapy with localized ZD55-IL-24 and systemic PD-1 blockade leads to synergistic inhibition of both local and distant established tumors in B16-bearing immunocompetent mouse model. Our further mechanism investigation reveals that synergistic therapeutic effect is associated with marked promotion of tumor immune infiltration and recognition in both local and distant tumors as well as spleens. PD-1 blockade has no obvious effect on promotion of tumor immune infiltration and recognition. Localized therapy with ZD55-IL-24, however, can help PD-1 blockade to overcome the limitation of relatively low tumor immune infiltration and recognition. This study provides a rationale for investigation of such combination therapy in the clinic.
Collapse
Affiliation(s)
- Hai-Jun Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiu Liang
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hai-Lang Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Huai-Yuan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Fa Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lan-Ying Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Qing Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ai-Min Ni
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|