1
|
Vijayan V, M Unagolla J, Panchal D, John JE, Menon SS, Menon JU. Biomimetic nanoparticles for targeted therapy of liver disease. RSC PHARMACEUTICS 2025:d5pm00044k. [PMID: 40321406 PMCID: PMC12045541 DOI: 10.1039/d5pm00044k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Liver fibrosis is a progressive and fatal condition characterized by stiffness and scarring of the liver due to excessive buildup of extracellular matrix (ECM) proteins. If left untreated, it can progress to liver cirrhosis and hepatocellular carcinoma (HCC)-one of the fastest-rising causes of cancer mortality in the United States. Despite the increased prevalence of liver fibrosis due to infections, exposure to toxins, and unhealthy lifestyles, there are no effective treatments available. Recent advances in nanomedicine can lead to more targeted and effective strategies for treating liver diseases than existing treatments. In particular, the use of biomimetic nanoparticles (NPs) such as liposomes and cell-membrane-coated NPs is of interest. NPs functionalized with cell membranes mimic the properties of the source cell used and provide inherent immune evasion ability, homologous adhesion, and prolonged circulation. This review explores the types of biomimetic coatings, different cargoes delivered through biomimetic NPs for various treatment modalities, and the type of core NPs used for targeting liver fibrosis and HCC.
Collapse
Affiliation(s)
- Veena Vijayan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | - Janitha M Unagolla
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | - Dhruvisha Panchal
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | - Judith Eloyi John
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | | | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
- Department of Chemical Engineering, University of Rhode Island Kingston RI 02881 USA
| |
Collapse
|
2
|
Hosseini-Kharat M, Bremmell KE, Prestidge CA. Why do lipid nanoparticles target the liver? Understanding of biodistribution and liver-specific tropism. Mol Ther Methods Clin Dev 2025; 33:101436. [PMID: 40104152 PMCID: PMC11919328 DOI: 10.1016/j.omtm.2025.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Lipid nanoparticles (LNPs) are now highly effective transporters of nucleic acids to the liver. This liver-specificity is largely due to their association with certain serum proteins, most notably apolipoprotein E (ApoE), which directs them to liver cells by binding to the low-density lipoprotein (LDL) receptors on hepatocytes. The liver's distinct anatomy, with its various specialized cell types, also influences how LNPs are taken up from the circulation, cleared, and how effective they are in delivering treatments. In this review, we consider factors that facilitate LNP's effective liver targeting and explore the latest advances in liver-targeted LNP technologies. Understanding how LNPs are targeted to the liver can help for effective design and optimization of nanoparticle-based therapies. Comprehension of the cellular interaction and biodistribution of LNPs not only leads to better treatments for liver diseases but also delivers insight for directing nanoparticles to other tissues, potentially broadening their range of therapeutic applications.
Collapse
Affiliation(s)
- Mahboubeh Hosseini-Kharat
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
3
|
Lin C, Kuzmanović A, Wang N, Liao L, Ernst S, Penners C, Jans A, Hammoor T, Stach PB, Peltzer M, Volkert I, Zechendorf E, Hassan R, Myllys M, Liedtke C, Herrmann A, Chakraborty G, Trautwein C, Hengstler J, Müller‐Newen G, Wang J, Ghallab A, Bartneck M. Exceptional Uptake, Limited Protein Expression: Liver Macrophages Lost in Translation of Synthetic mRNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409729. [PMID: 39792811 PMCID: PMC11884593 DOI: 10.1002/advs.202409729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/26/2024] [Indexed: 01/12/2025]
Abstract
Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging. Despite attempts such as inhibiting intracellular ribonuclease, substituting uridine bases in mRNA with pseudouridine, and using a different ionizable lipid in the LNP mixture, no substantial increase in Egfp translation by NPC is possible. The investigation reveals that hepatocytes, which are distinct from other liver cells due to their polyploidy, exhibit significantly elevated levels of total RNA and protein, along with a higher proportion of ribosomal protein per individual cell. Consequently, fundamental cellular differences account for the low mRNA translation observed in NPC. The findings therefore suggest that cellular biology imposes a natural limitation on synthetic mRNA translation that is strongly influenced by cellular ploidy.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- Department of Rheumatology and Shanghai Institute of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Adrian Kuzmanović
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Nan Wang
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Liangliang Liao
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- Japan Union Hospital of Jilin University130033ChangchunChina
| | - Sabrina Ernst
- Confocal Microscopy FacilityInterdisciplinary Center for Clinical Research IZKFUniversity Hospital RWTH Aachen52074AachenGermany
| | - Christian Penners
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Alexander Jans
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Thomas Hammoor
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Petra Bumnuri Stach
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Mona Peltzer
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Ines Volkert
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Elisabeth Zechendorf
- Department of Intensive and Intermediate CareUniversity Hospital RWTH Aachen52074AachenGermany
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
- Department of Forensic and Veterinary ToxicologyFaculty of Veterinary MedicineSouth Valley University83523QenaEgypt
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Christian Liedtke
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Gurudas Chakraborty
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Christian Trautwein
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Jan Hengstler
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Gerhard Müller‐Newen
- Institute of Biochemistry and Molecular BiologyRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Junqing Wang
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
- Department of Forensic and Veterinary ToxicologyFaculty of Veterinary MedicineSouth Valley University83523QenaEgypt
| | - Matthias Bartneck
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
4
|
Idres YM, Idris A, Gao W. Preclinical testing of antiviral siRNA therapeutics delivered in lipid nanoparticles in animal models - a comprehensive review. Drug Deliv Transl Res 2025:10.1007/s13346-025-01815-x. [PMID: 40000558 DOI: 10.1007/s13346-025-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
The advent of RNA interference (RNAi) technology through the use of short-interfering RNAs (siRNAs) represents a paradigm shift in the fight against viral infections. siRNAs, with their ability to directly target and silence specific posttranscriptional genes, offer a novel mechanism of action distinct from that of traditional pharmacotherapeutics. This review delves into the growing field of siRNA therapeutics against viral infections, highlighting their critical role in contemporary antiviral strategies. Importantly, this review will solely focus on the use of lipid nanoparticles (LNPs) as the ideal antiviral siRNA delivery agent for use in vivo. We discuss the challenges of siRNA delivery and how LNPs have emerged as a pivotal solution to enhance antiviral efficacy. Specifically, this review focuses on work that have preclinically tested LNP formulated siRNA on virus infection animal models. Since the COVID-19 pandemic, we have witnessed a resurgence in the field of RNA-based therapies, including siRNAs against viruses including, SARS-CoV-2. Notably, the critical importance of LNPs as the ideal carrier for precious 'RNA cargo' can no longer be ignored with the advent of mRNA-LNP based COVID-19 vaccines. siRNA-based therapeutics represents an emerging class of anti-infective drugs with a foreseeable future as suitable antiviral agents.
Collapse
Affiliation(s)
- Yusuf M Idres
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wenqing Gao
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Lehrich BM, Delgado ER. Lipid Nanovesicle Platforms for Hepatocellular Carcinoma Precision Medicine Therapeutics: Progress and Perspectives. Organogenesis 2024; 20:2313696. [PMID: 38357804 PMCID: PMC10878025 DOI: 10.1080/15476278.2024.2313696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. HCC is highly heterogenous with diverse etiologies leading to different driver mutations potentiating unique tumor immune microenvironments. Current therapeutic options, including immune checkpoint inhibitors and combinations, have achieved limited objective response rates for the majority of patients. Thus, a precision medicine approach is needed to tailor specific treatment options for molecular subsets of HCC patients. Lipid nanovesicle platforms, either liposome- (synthetic) or extracellular vesicle (natural)-derived present are improved drug delivery vehicles which may be modified to contain specific cargos for targeting specific tumor sites, with a natural affinity for liver with limited toxicity. This mini-review provides updates on the applications of novel lipid nanovesicle-based therapeutics for HCC precision medicine and the challenges associated with translating this therapeutic subclass from preclinical models to the clinic.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan R. Delgado
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Cai Y, Wang W, Jiao Q, Hu T, Ren Y, Su X, Li Z, Feng M, Liu X, Wang Y. Nanotechnology for the Diagnosis and Treatment of Liver Cancer. Int J Nanomedicine 2024; 19:13805-13821. [PMID: 39735328 PMCID: PMC11681781 DOI: 10.2147/ijn.s490661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Liver cancer has become a major global health challenge due to its high incidence, high rate of late diagnosis and limited treatment options. Although there are many clinical treatments available for liver cancer, the cure rate is still very low, and now researchers have begun to explore new aspects of liver cancer treatment, and nanotechnology has shown great potential for improving diagnostic accuracy and therapeutic efficacy and is therefore a promising treatment option. In diagnosis, nanomaterials such as gold nanoparticles, magnetic nanoparticles, and silver nanoparticles can realize highly sensitive and specific detection of liver cancer biomarkers, supporting diagnosis and real-time monitoring of the disease process. In terms of treatment, nanocarriers can realize precise targeted delivery of drugs, improve the bioavailability of liver cancer therapeutic drugs and reduce systemic toxic side effects. In addition, advanced technologies such as nanoparticle-based photothermal therapy and photodynamic therapy provide innovative solutions to overcome drug resistance and local tumor ablation. Therefore, in this paper, we will introduce nanotechnology for hepatocellular carcinoma in terms of tumor marker detection, targeted drug delivery, and synergistic PDT/CDT therapy.
Collapse
Affiliation(s)
- Yuxuan Cai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Tangbin Hu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yidan Ren
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, People’s Republic of China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, People’s Republic of China
| | - Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
7
|
Zhang Y, Zhang C, Wu N, Feng Y, Wang J, Ma L, Chen Y. The role of exosomes in liver cancer: comprehensive insights from biological function to therapeutic applications. Front Immunol 2024; 15:1473030. [PMID: 39497820 PMCID: PMC11532175 DOI: 10.3389/fimmu.2024.1473030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
In recent years, cancer, especially primary liver cancer (including hepatocellular carcinoma and intrahepatic cholangiocarcinoma), has posed a serious threat to human health. In the field of liver cancer, exosomes play an important role in liver cancer initiation, metastasis and interaction with the tumor microenvironment. Exosomes are a class of nanoscale extracellular vesicles (EVs)secreted by most cells and rich in bioactive molecules, including RNA, proteins and lipids, that mediate intercellular communication during physiological and pathological processes. This review reviews the multiple roles of exosomes in liver cancer, including the initiation, progression, and metastasis of liver cancer, as well as their effects on angiogenesis, epithelial-mesenchymal transformation (EMT), immune evasion, and drug resistance. Exosomes have great potential as biomarkers for liver cancer diagnosis and prognosis because they carry specific molecular markers that facilitate early detection and evaluation of treatment outcomes. In addition, exosomes, as a new type of drug delivery vector, have unique advantages in the targeted therapy of liver cancer and provide a new strategy for the treatment of liver cancer. The challenges and prospects of exosome-based immunotherapy in the treatment of liver cancer were also discussed. However, challenges such as the standardization of isolation techniques and the scalability of therapeutic applications remain significant hurdles.
Collapse
Affiliation(s)
- Yinghui Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Congcong Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Nan Wu
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yuan Feng
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jiayi Wang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Ma
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yulong Chen
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Diwan R, Gaytan SL, Bhatt HN, Pena-Zacarias J, Nurunnabi M. Liver fibrosis pathologies and potentials of RNA based therapeutics modalities. Drug Deliv Transl Res 2024; 14:2743-2770. [PMID: 38446352 DOI: 10.1007/s13346-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
Liver fibrosis (LF) occurs when the liver tissue responds to injury or inflammation by producing excessive amounts of scar tissue, known as the extracellular matrix. This buildup stiffens the liver tissue, hinders blood flow, and ultimately impairs liver function. Various factors can trigger this process, including bloodborne pathogens, genetic predisposition, alcohol abuse, non-steroidal anti-inflammatory drugs, non-alcoholic steatohepatitis, and non-alcoholic fatty liver disease. While some existing small-molecule therapies offer limited benefits, there is a pressing need for more effective treatments that can truly cure LF. RNA therapeutics have emerged as a promising approach, as they can potentially downregulate cytokine levels in cells responsible for liver fibrosis. Researchers are actively exploring various RNA-based therapeutics, such as mRNA, siRNA, miRNA, lncRNA, and oligonucleotides, to assess their efficacy in animal models. Furthermore, targeted drug delivery systems hold immense potential in this field. By utilizing lipid nanoparticles, exosomes, nanocomplexes, micelles, and polymeric nanoparticles, researchers aim to deliver therapeutic agents directly to specific biomarkers or cytokines within the fibrotic liver, increasing their effectiveness and reducing side effects. In conclusion, this review highlights the complex nature of liver fibrosis, its underlying causes, and the promising potential of RNA-based therapeutics and targeted delivery systems. Continued research in these areas could lead to the development of more effective and personalized treatment options for LF patients.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Samantha Lynn Gaytan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Himanshu Narendrakumar Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Jacqueline Pena-Zacarias
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biological Sciences, College of Science, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA.
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA.
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA.
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
9
|
Senapedis W, Gallagher KM, Figueroa E, Farelli JD, Lyng R, Hodgson JG, O'Donnell CW, Newman JV, Pacaro M, Siecinski SK, Chen J, McCauley TG. Targeted transcriptional downregulation of MYC using epigenomic controllers demonstrates antitumor activity in hepatocellular carcinoma models. Nat Commun 2024; 15:7875. [PMID: 39285180 PMCID: PMC11405918 DOI: 10.1038/s41467-024-52202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Dysregulation of master regulator c-MYC (MYC) plays a central role in hepatocellular carcinoma (HCC) and other cancers but remains an elusive target for therapeutic intervention. MYC expression is epigenetically modulated within naturally occurring DNA loop structures, Insulated Genomic Domains (IGDs). We present a therapeutic approach using an epigenomic controller (EC), a programmable epigenomic mRNA medicine, to precisely modify MYC IGD sub-elements, leading to methylation of MYC regulatory elements and durable downregulation of MYC mRNA transcription. Significant antitumor activity is observed in preclinical models of HCC treated with the MYC-targeted EC, as monotherapy or in combination with tyrosine kinase or immune checkpoint inhibitors. These findings pave the way for clinical development of MYC-targeting epigenomic controllers in HCC patients and provide a framework for programmable epigenomic mRNA therapeutics for cancer and other diseases.
Collapse
Affiliation(s)
| | | | - Elmer Figueroa
- Omega Therapeutics, Cambridge, MA, USA
- Flagship Pioneering, Cambridge, MA, USA
| | | | - Robert Lyng
- Omega Therapeutics, Cambridge, MA, USA
- SalioGen Therapeutics, Lexington, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen YC, Lee YL, Lee CA, Lin TY, Hwu EET, Cheng PC. Development of a Lipid-encapsulated TGFβRI-siRNA Drug for Liver Fibrosis Induced by Schistosoma mansoni. PLoS Negl Trop Dis 2024; 18:e0012502. [PMID: 39264964 PMCID: PMC11421824 DOI: 10.1371/journal.pntd.0012502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/24/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Schistosoma mansoni infection leads to chronic schistosomiasis and severe hepatic fibrosis. We designed a liver-targeted lipid nanoparticle (LNP) carrying siRNA against type I TGF-β receptor (TGFβRI) mRNA to treat schistosomiasis-induced liver fibrosis in BALB/c mice. Knockdown of TGFβRI by LNP-siTGFβRI reduced LX-2 cell activation in vitro and alleviated liver fibrosis in S. mansoni-infected mice. αSMA and Col1a1 fibrotic markers in the liver tissues of infected mice were significantly suppressed in the treatment groups. In the serum of the LNP-siTGFβRI-treated groups, cytokines IFNγ, IL-1α, IL-6, IL-12, RANTES (CCL5), and TNFα increased, while GM-CSF, IL-2, IL-4, IL-10, IL-13, and KC (CXCL1) decreased compared to the control. Cell proportions were significantly altered in S. mansoni-infected mice, with increased CD56d NK cells and decreased CD19+ B cells and CD4+ T cells compared to naïve mice. Following LNP-siTGFβRI treatment, CD56d NK cells were downregulated, while B and memory Th cell populations were upregulated. The density of fibrotic regions significantly decreased with LNP-siTGFβRI treatment in a dose-dependent manner, and no systemic toxicity was observed in the major organs. This targeted siRNA delivery strategy effectively reduced granulomatous lesions in schistosomiasis-induced liver fibrosis without detectable side effects.
Collapse
Affiliation(s)
- Ying-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Drug Metabolism & Pharmacokinetics Department, Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Taiwan
| | - Ching-An Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Yuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Edwin En-Te Hwu
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark
| | - Po-Ching Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for International Tropical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Miao Y, Fu C, Yu Z, Yu L, Tang Y, Wei M. Current status and trends in small nucleic acid drug development: Leading the future. Acta Pharm Sin B 2024; 14:3802-3817. [PMID: 39309508 PMCID: PMC11413693 DOI: 10.1016/j.apsb.2024.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
Small nucleic acid drugs, composed of nucleotides, represent a novel class of pharmaceuticals that differ significantly from conventional small molecule and antibody-based therapeutics. These agents function by selectively targeting specific genes or their corresponding messenger RNAs (mRNAs), further modulating gene expression and regulating translation-related processes. Prominent examples within this category include antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), microRNAs (miRNAs), and aptamers. The emergence of small nucleic acid drugs as a focal point in contemporary biopharmaceutical research is attributed to their remarkable specificity, facile design, abbreviated development cycles, expansive target spectrum, and prolonged activity. Overcoming challenges such as poor stability, immunogenicity, and permeability issues have been addressed through the integration of chemical modifications and the development of drug delivery systems. This review provides an overview of the current status and prospective trends in small nucleic acid drug development. Commencing with a historical context, we introduce the primary classifications and mechanisms of small nucleic acid drugs. Subsequently, we delve into the advantages of the U.S. Food and Drug Administration (FDA) approved drugs and mainly discuss the challenges encountered during their development. Apart from researching chemical modification and delivery system that efficiently deliver and enrich small nucleic acid drugs to target tissues, promoting endosomal escape is a critical scientific question and important research direction in siRNA drug development. Future directions in this field will prioritize addressing these challenges to facilitate the clinical transformation of small nucleic acid drugs.
Collapse
Affiliation(s)
- Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
- Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| | - Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Tang
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
- Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| |
Collapse
|
12
|
Lyu Y, Yang X, Yang L, Dai J, Qin H, Zhou Y, Huang Y, Wang Y, Wu D, Shuai Q, Li Q, Xin X, Yin L. Lipid nanoparticle-mediated hepatocyte delivery of siRNA and silibinin in metabolic dysfunction-associated steatotic liver disease. J Control Release 2024; 373:385-398. [PMID: 38972640 DOI: 10.1016/j.jconrel.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Lipid nanoparticle-mediated co-delivery of siRNA and small molecule holds a great potential to treat metabolic dysfunction-associated steatotic liver disease (MASLD). However, targeted delivery of therapeutics to hepatocytes remains challenging. Taking the advantage of rising low density lipoprotein receptor/very-low density lipoprotein receptor (LDLR/VLDR) levels in MASLD, the biological fate of dinonylamine-ethylene glycol chlorophosphate-1-nonanol (DNNA-COP-NA) based lipid nanoparticles (LNPs) was oriented to liver tissues via apolipoprotein E (ApoE)-LDLR/VLDLR pathway. We then adopted a three-round screening strategy to optimize the formulation with both high potency and selectivity to deliver siRNA-HIF-1α (siHIF1α) and silibinin (SLB) payloads to hepatocytes. The optimized SLB/siHIF1α-LNPs mediates great siRNA delivery and transfection of hepatocytes. In high fat diet (HFD)- and carbon tetrachloride (CCl4)-induced mouse models of MASLD, SLB/siHIF1α-LNPs enabled the silencing of hypoxia inducible factor-1α (HIF-1α), a therapeutic target primarily expressed by hepatocytes, leading to significantly reduced inflammation and liver fibrosis synergized with SLB. Moreover, it is demonstrated the hepatocyte-targeting delivery of SLB/siHIF1α-LNPs has the potential to restore the immune homeostasis by modulating the population of Tregs and cytotoxic T cells in spleen. This proof-of-concept study enable siRNA and small molecule co-delivery to hepatocytes through intrinsic variation of targeting receptors for MASLD therapy.
Collapse
Affiliation(s)
- Yifu Lyu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Xiuyi Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Jinyu Dai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Huanyu Qin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Yunuo Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Yunan Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Yanmei Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Di Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Qindai Shuai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Qilong Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China.
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
13
|
Zhang L, Lou W, Wang J. Advances in nucleic acid therapeutics: structures, delivery systems, and future perspectives in cancer treatment. Clin Exp Med 2024; 24:200. [PMID: 39196428 PMCID: PMC11358240 DOI: 10.1007/s10238-024-01463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Cancer has emerged as a significant threat to human health. Nucleic acid therapeutics regulate the gene expression process by introducing exogenous nucleic acid fragments, offering new possibilities for tumor remission and even cure. Their mechanism of action and high specificity demonstrate great potential in cancer treatment. However, nucleic acid drugs face challenges such as low stability and limited ability to cross physiological barriers in vivo. To address these issues, various nucleic acid delivery vectors have been developed to enhance the stability and facilitate precise targeted delivery of nucleic acid drugs within the body. In this review article, we primarily introduce the structures and principles of nucleic acid drugs commonly used in cancer therapy, as well as their cellular uptake and intracellular transportation processes. We focus on the various vectors commonly employed in nucleic acid drug delivery, highlighting their research progress and applications in recent years. Furthermore, we propose potential trends and prospects of nucleic acid drugs and their carriers in the future.
Collapse
Affiliation(s)
- Leqi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wenting Lou
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
| |
Collapse
|
14
|
Chu R, Wang Y, Kong J, Pan T, Yang Y, He J. Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders. J Mater Chem B 2024; 12:4759-4784. [PMID: 38682294 DOI: 10.1039/d3tb02766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The liver, a complex and vital organ in the human body, is susceptible to various diseases, including metabolic disorders, acute hepatitis, cirrhosis, and hepatocellular carcinoma. In recent decades, these diseases have significantly contributed to global morbidity and mortality. Currently, liver transplantation remains the most effective treatment for hepatic disorders. Nucleic acid therapeutics offer a selective approach to disease treatment through diverse mechanisms, enabling the regulation of relevant genes and providing a novel therapeutic avenue for hepatic disorders. It is expected that nucleic acid drugs will emerge as the third generation of pharmaceuticals, succeeding small molecule drugs and antibody drugs. Lipid nanoparticles (LNPs) represent a crucial technology in the field of drug delivery and constitute a significant advancement in gene therapies. Nucleic acids encapsulated in LNPs are shielded from the degradation of enzymes and effectively delivered to cells, where they are released and regulate specific genes. This paper provides a comprehensive review of the structure, composition, and applications of LNPs in the treatment of hepatic disorders and offers insights into prospects and challenges in the future development of LNPs.
Collapse
Affiliation(s)
- Runxuan Chu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Yi Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Jianglong Kong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Ting Pan
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| |
Collapse
|
15
|
Chen F, Zhang W, Gao X, Yuan H, Liu K. The Role of Small Interfering RNAs in Hepatocellular Carcinoma. J Gastrointest Cancer 2024; 55:26-40. [PMID: 37432548 DOI: 10.1007/s12029-023-00911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), a primary liver cancer with high mortality, is the most common malignant tumor in the world. Currently, the effect of routine treatment is poor, especially for this kind of cancer with strong heterogeneity and late detection. In the past decades, the researches of gene therapy for HCC based on small interfering RNA have blossomed everywhere. This is a promising therapeutic strategy, but the application of siRNA is limited by the discovery of effective molecular targets and the delivery system targeting HCC. As the deepening of research, scientists have developed many effective delivery systems and found more new therapeutic targets. CONCLUSIONS This paper mainly reviews the research on HCC treatment based on siRNA in recent years, and summarizes and classifies the HCC treatment targets and siRNA delivery systems.
Collapse
Affiliation(s)
- Feng Chen
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China
| | - Wang Zhang
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinran Gao
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China
| | - Hui Yuan
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China
| | - Kehai Liu
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
16
|
Qin Y, Ou L, Zha L, Zeng Y, Li L. Delivery of nucleic acids using nanomaterials. MOLECULAR BIOMEDICINE 2023; 4:48. [PMID: 38092998 PMCID: PMC10719232 DOI: 10.1186/s43556-023-00160-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
The increasing number of approved nucleic acid therapeutics demonstrates the potential for the prevention and treatment of a broad spectrum of diseases. This trend underscores the significant impact and promise of nucleic acid-based treatments in the field of medicine. Nevertheless, employing nucleic acids as therapeutics is challenging due to their susceptibility to degradation by nucleases and their unfavorable physicochemical characteristics that hinder delivery into cells. Appropriate vectors play a pivotal role in improving nucleic acid stability and delivering nucleic acids into specific cells. The maturation of delivery systems has led to breakthroughs in the development of therapeutics based on nucleic acids such as DNA, siRNA, and mRNA. Non-viral vectors have gained prominence among the myriad of nanomaterials due to low immunogenicity, ease of manufacturing, and simplicity of cost-effective, large-scale production. Here, we provide an overview of the recent advancements in nanomaterials for nucleic acid delivery. Specifically, we give a detailed introduction to the characteristics of polymers, lipids, and polymer-lipid hybrids, and provide comprehensive descriptions of their applications in nucleic acid delivery. Also, biological barriers, administration routes, and strategies for organ-selective delivery of nucleic acids are discussed. In summary, this review offers insights into the rational design of next-generation delivery vectors for nucleic acid delivery.
Collapse
Affiliation(s)
- Yuyang Qin
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liyuan Ou
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lili Zha
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yue Zeng
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Ling Li
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Li Z, Caron de Fromentel C, Kim W, Wang WH, Sun J, Yan B, Utturkar S, Lanman NA, Elzey BD, Yeo Y, Zhang H, Kazemian M, Levrero M, Andrisani O. RNA helicase DDX5 modulates sorafenib sensitivity in hepatocellular carcinoma via the Wnt/β-catenin-ferroptosis axis. Cell Death Dis 2023; 14:786. [PMID: 38036507 PMCID: PMC10689482 DOI: 10.1038/s41419-023-06302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Reduced expression of the RNA helicase DDX5 associated with increased hepatocellular carcinoma (HCC) tumor grade and poor patient survival following treatment with sorafenib. While immunotherapy is the first-line treatment for HCC, sorafenib and other multi-tyrosine kinase inhibitors (mTKIs) are widely used when immunotherapy is contra-indicated or fails. Herein, we elucidate the role of DDX5 in sensitizing HCC to sorafenib, offering new therapeutic strategies. Treatment of various human HCC cell lines with sorafenib/mTKIs downregulated DDX5 in vitro and in preclinical HCC models. Conversely, DDX5 overexpression reduced the viability of sorafenib-treated cells via ferroptosis, suggesting a role for DDX5 in sorafenib sensitivity. RNAseq of wild-type vs. DDX5-knockdown cells treated with or without sorafenib identified a set of common genes repressed by DDX5 and upregulated by sorafenib. This set significantly overlaps with Wnt signaling genes, including Disheveled-1 (DVL1), an indispensable Wnt activator and prognostic indicator of poor survival for sorafenib-treated patients. DDX5-knockout (DDX5KO) HCC cells exhibited DVL1 induction, Wnt/β-catenin pathway activation, and ferroptosis upon inhibition of canonical Wnt signaling. Consistently, xenograft HCC tumors exhibited reduced growth by inhibition of Wnt/β-catenin signaling via induction of ferroptosis. Significantly, overexpression of DDX5 in HCC xenografts repressed DVL1 expression and increased ferroptosis, resulting in reduced tumor growth by sorafenib. We conclude that DDX5 downregulation by sorafenib mediates adaptive resistance by activating Wnt/β-catenin signaling, leading to ferroptosis escape. Conversely, overexpression of DDX5 in vivo enhances the anti-tumor efficacy of sorafenib by suppressing Wnt/β-catenin activation and induction of ferroptosis. Thus, DDX5 overexpression in combination with mTKIs is a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Zhili Li
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Claude Caron de Fromentel
- Cancer Research Center of Lyon (CRCL) - INSERM U1052, CNRS5286, University Lyon, Université Claude Bernard Lyon 1, F69000, Lyon, France
| | - Woojun Kim
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Wen-Hung Wang
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Jiazeng Sun
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Bingyu Yan
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Sagar Utturkar
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Nadia Atallah Lanman
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Bennett D Elzey
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Yoon Yeo
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Majid Kazemian
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL) - INSERM U1052, CNRS5286, University Lyon, Université Claude Bernard Lyon 1, F69000, Lyon, France.
- Hospices Civils de Lyon, Service d'Hépatologie et Gastroentérologie, Groupement Hospitalier Lyon Nord, Lyon, France.
| | - Ourania Andrisani
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Cancer Research, West Lafayette, IN, USA.
| |
Collapse
|
18
|
Luangmonkong T, Parichatikanond W, Olinga P. Targeting collagen homeostasis for the treatment of liver fibrosis: Opportunities and challenges. Biochem Pharmacol 2023; 215:115740. [PMID: 37567319 DOI: 10.1016/j.bcp.2023.115740] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is an excessive production, aberrant deposition, and deficit degradation of extracellular matrix (ECM). Patients with unresolved fibrosis ultimately undergo end-stage liver diseases. To date, the effective and safe strategy to cease fibrosis progression remains an unmet clinical need. Since collagens are the most abundant ECM protein which play an essential role in fibrogenesis, the suitable regulation of collagen homeostasis could be an effective strategy for the treatment of liver fibrosis. Therefore, this review provides a brief overview on the dysregulation of ECM homeostasis, focusing on collagens, in the pathogenesis of liver fibrosis. Most importantly, promising therapeutic mechanisms related to biosynthesis, deposition and extracellular interactions, and degradation of collagens, together with preclinical and clinical antifibrotic evidence of drugs affecting each target are orderly criticized. In addition, challenges for targeting collagen homeostasis in the treatment of liver fibrosis are discussed.
Collapse
Affiliation(s)
- Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands
| |
Collapse
|
19
|
Hora S, Wuestefeld T. Liver Injury and Regeneration: Current Understanding, New Approaches, and Future Perspectives. Cells 2023; 12:2129. [PMID: 37681858 PMCID: PMC10486351 DOI: 10.3390/cells12172129] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
The liver is a complex organ with the ability to regenerate itself in response to injury. However, several factors can contribute to liver damage beyond repair. Liver injury can be caused by viral infections, alcoholic liver disease, non-alcoholic steatohepatitis, and drug-induced liver injury. Understanding the cellular and molecular mechanisms involved in liver injury and regeneration is critical to developing effective therapies for liver diseases. Liver regeneration is a complex process that involves the interplay of various signaling pathways, cell types, and extracellular matrix components. The activation of quiescent hepatocytes that proliferate and restore the liver mass by upregulating genes involved in cell-cycle progression, DNA repair, and mitochondrial function; the proliferation and differentiation of progenitor cells, also known as oval cells, into hepatocytes that contribute to liver regeneration; and the recruitment of immune cells to release cytokines and angiogenic factors that promote or inhibit cell proliferation are some examples of the regenerative processes. Recent advances in the fields of gene editing, tissue engineering, stem cell differentiation, small interfering RNA-based therapies, and single-cell transcriptomics have paved a roadmap for future research into liver regeneration as well as for the identification of previously unknown cell types and gene expression patterns. In summary, liver injury and regeneration is a complex and dynamic process. A better understanding of the cellular and molecular mechanisms driving this phenomenon could lead to the development of new therapies for liver diseases and improve patient outcomes.
Collapse
Affiliation(s)
- Shainan Hora
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore;
| | - Torsten Wuestefeld
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore;
- National Cancer Centre Singapore, Singapore 168583, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
20
|
Huang J, Huang H, Wang Y, Xu B, Lin M, Han S, Yuan Y, Wang Y, Shuai X. Retinol-binding protein-hijacking nanopolyplex delivering siRNA to cytoplasm of hepatic stellate cell for liver fibrosis alleviation. Biomaterials 2023; 299:122134. [PMID: 37167895 DOI: 10.1016/j.biomaterials.2023.122134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Activated hepatic stellate cell (aHSC) is mainly responsible for deposition of extracellular collagen matrix that causes liver fibrosis. Although several siRNAs adequately inhibited HSC activation in vitro, they were demonstrated poor RNAi efficiency in vivo. Developing HSC-targeting and cytoplasmic delivery nanocarrier is highly essential to acquire a desirable siRNA therapeutic index for anti-liver fibrosis. Here, we developed a unique crosslinking nanopolyplex (called T-C-siRNA) modified by vitamin A (VA) with the well-designed natures, including the negative charge, retinol-binding protein (RBP) hijacking, and cytoplasmic siRNA release in response to ROS and cis diol molecules. The nanopolyplex was given a yolk-shell-like shape, camouflage ability in blood, and HSC-targeting capability by hijacking the endogenous ligand RBP via surface VA. PDGFR-β siRNA (siPDGFR-β) supplied via T-C-siPDGFR-β nanopolyplex dramatically reduced HSC activation and its production of pro-fibrogenic proteins in vitro and in vivo. Furthermore, T-C-siPDGFR-β nanopolyplex effectively alleviated CCl4-induced liver injury, decreased hepatic collagen sediment, and recovered liver function in mice. This study provides a sophisticated method for HSC-targeting cytoplasmic RNA delivery using endogenous ligand hijacking and dual sensitivity of ROS and cis diol compounds.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Huiling Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Bin Xu
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Minzhao Lin
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
21
|
Papaioannou I, Owen JS, Yáñez‐Muñoz RJ. Clinical applications of gene therapy for rare diseases: A review. Int J Exp Pathol 2023; 104:154-176. [PMID: 37177842 PMCID: PMC10349259 DOI: 10.1111/iep.12478] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
Rare diseases collectively exact a high toll on society due to their sheer number and overall prevalence. Their heterogeneity, diversity, and nature pose daunting clinical challenges for both management and treatment. In this review, we discuss recent advances in clinical applications of gene therapy for rare diseases, focusing on a variety of viral and non-viral strategies. The use of adeno-associated virus (AAV) vectors is discussed in the context of Luxturna, licenced for the treatment of RPE65 deficiency in the retinal epithelium. Imlygic, a herpes virus vector licenced for the treatment of refractory metastatic melanoma, will be an example of oncolytic vectors developed against rare cancers. Yescarta and Kymriah will showcase the use of retrovirus and lentivirus vectors in the autologous ex vivo production of chimeric antigen receptor T cells (CAR-T), licenced for the treatment of refractory leukaemias and lymphomas. Similar retroviral and lentiviral technology can be applied to autologous haematopoietic stem cells, exemplified by Strimvelis and Zynteglo, licenced treatments for adenosine deaminase-severe combined immunodeficiency (ADA-SCID) and β-thalassaemia respectively. Antisense oligonucleotide technologies will be highlighted through Onpattro and Tegsedi, RNA interference drugs licenced for familial transthyretin (TTR) amyloidosis, and Spinraza, a splice-switching treatment for spinal muscular atrophy (SMA). An initial comparison of the effectiveness of AAV and oligonucleotide therapies in SMA is possible with Zolgensma, an AAV serotype 9 vector, and Spinraza. Through these examples of marketed gene therapies and gene cell therapies, we will discuss the expanding applications of such novel technologies to previously intractable rare diseases.
Collapse
Affiliation(s)
| | - James S. Owen
- Division of MedicineUniversity College LondonLondonUK
| | - Rafael J. Yáñez‐Muñoz
- AGCTlab.orgCentre of Gene and Cell TherapyCentre for Biomedical SciencesDepartment of Biological SciencesSchool of Life Sciences and the EnvironmentRoyal Holloway University of LondonEghamUK
| |
Collapse
|
22
|
Bakrania A, To J, Zheng G, Bhat M. Targeting Wnt-β-Catenin Signaling Pathway for Hepatocellular Carcinoma Nanomedicine. GASTRO HEP ADVANCES 2023; 2:948-963. [PMID: 39130774 PMCID: PMC11307499 DOI: 10.1016/j.gastha.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/17/2023] [Indexed: 08/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a high-fatality cancer with a 5-year survival of 22%. The Wnt/β-catenin signaling pathway presents as one of the most upregulated pathways in HCC. However, it has so far not been targetable in the clinical setting. Therefore, studying new targets of this signaling cascade from a therapeutic aspect could enable reversal, delay, or prevention of hepatocarcinogenesis. Although enormous advancement has been achieved in HCC research and its therapeutic management, since HCC often occurs in the context of other liver diseases such as cirrhosis leading to liver dysfunction and/or impaired drug metabolism, the current therapies face the challenge of safely and effectively delivering drugs to the HCC tumor site. In this review, we discuss how a targeted nano drug delivery system could help minimize the off-target toxicities of conventional HCC therapies as well as enhance treatment efficacy. We also put forward the current challenges in HCC nanomedicine along with some potential therapeutic targets from the Wnt/β-catenin signaling pathway that could be used for HCC therapy. Overall, this review will provide an insight to the current advances, limitations and how HCC nanomedicine could change the landscape of some of the undruggable targets in the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey To
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
- Department of Medical Sciences, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Geisler A, Dieringer B, Elsner L, Klingel K, Klopfleisch R, Vornlocher HP, Kurreck J, Fechner H. Lipid nanoparticle-encapsulated, chemically modified anti-adenoviral siRNAs inhibit hepatic adenovirus infection in immunosuppressed Syrian hamsters. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:923-936. [PMID: 37346978 PMCID: PMC10280093 DOI: 10.1016/j.omtn.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
RNA interference has demonstrated its potential as an antiviral therapy for treatment of human adenovirus (hAd) infections. The only existing viral vector-based system for delivery of anti-adenoviral artificial microRNAs available for in vivo use, however, has proven to be inefficient in therapeutic applications. In this study, we investigated the potential of stabilized small interfering RNA (siRNA) encapsulated in lipid nanoparticles (LNPs) for treatment of hepatic hAd serotype 5 (hAd5) infection in an hAd infection model using immunosuppressed Syrian hamsters. The siRNA sipTPmod directed against the adenoviral pre-terminal protein (pTP) and containing 2'-O-methyl modifications as well as phosphorothioate linkages effectively inhibited hAd5 infection in vitro. In light of this success, sipTPmod was encapsulated in LNPs containing the cationic lipid XL-10, which enables hepatocyte-specific siRNA transfer, and injected intravenously into hAd5-infected immunosuppressed Syrian hamsters. This resulted in a significant reduction of liver hAd5 titers, a trend toward reduced liver injury and inflammation, and reduction of viral titers in the blood and spleen compared with hAd5-infected animals that received a non-silencing siRNA. These effects were demonstrated in animals infected with low and moderate doses of hAd5. These data demonstrate that hepatic hAd5 infection can be successfully treated with anti-adenoviral sipTPmod encapsulated in LNPs.
Collapse
Affiliation(s)
- Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Leslie Elsner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany
| | | | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
24
|
Recio-López P, Valladolid-Acebes I, Hadwiger P, Hossbach M, Krampert M, Prata C, Berggren PO, Juntti-Berggren L. Treatment of the metabolic syndrome by siRNA targeting apolipoprotein CIII. Biofactors 2023; 49:153-172. [PMID: 36039858 DOI: 10.1002/biof.1885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/05/2022] [Indexed: 11/06/2022]
Abstract
Apolipoprotein CIII (apoCIII) is increased in obesity-induced insulin resistance and type-2 diabetes. Emerging evidences support the advantages of small interfering RNAs (siRNAs) to target disease-causing genes. The aim of this study was to develop siRNAs for in vivo silencing of apoCIII and investigate if this results in metabolic improvements comparable to what we have seen using antisense oligonucelotides against apoCIII. Twenty-four siRNAs were synthesized and tested in a dual luciferase reporter assay. The eight best were selected, based on knockdown at 20 nM, and of these, two were selected based on IC50 values. In vivo experiments were performed in ob/ob mice, an obese animal model for diabetes. To determine the dose-dependency, efficacy, duration of effect and therapeutic dose we used a short protocol giving the apoCIII-siRNA mix for three days. To evaluate long-term metabolic effects mice were treated for three days, every second week for eight weeks. The siRNA mix effectively and selectively reduced expression of apoCIII in liver in vivo. Treatment had to be repeated every two weeks to maintain a suppression of apoCIII. The reduction of apoCIII resulted in increased LPL activity, lower triglycerides, reduced liver fat, ceased weight gain, enhanced insulin sensitivity, and improved glucose homeostasis. No off-target or side effects were observed during the eight-week treatment period. These results suggest that in vivo silencing of apoCIII with siRNA, is a promising approach with the potential to be used in the battle against obesity-induced metabolic disorders.
Collapse
Affiliation(s)
- Patricia Recio-López
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | | | | | | | | | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Lisa Juntti-Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| |
Collapse
|
25
|
Ferraresso F, Strilchuk AW, Juang LJ, Poole LG, Luyendyk JP, Kastrup CJ. Comparison of DLin-MC3-DMA and ALC-0315 for siRNA Delivery to Hepatocytes and Hepatic Stellate Cells. Mol Pharm 2022; 19:2175-2182. [PMID: 35642083 PMCID: PMC9621687 DOI: 10.1021/acs.molpharmaceut.2c00033] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ionizable cationic lipids are essential for efficient in vivo delivery of RNA by lipid nanoparticles (LNPs). DLin-MC3-DMA (MC3), ALC-0315, and SM-102 are the only ionizable cationic lipids currently clinically approved for RNA therapies. ALC-0315 and SM-102 are structurally similar lipids used in SARS-CoV-2 mRNA vaccines, while MC3 is used in siRNA therapy to knock down transthyretin in hepatocytes. Hepatocytes and hepatic stellate cells (HSCs) are particularly attractive targets for RNA therapy because they synthesize many plasma proteins, including those that influence blood coagulation. While LNPs preferentially accumulate in the liver, evaluating the ability of different ionizable cationic lipids to deliver RNA cargo into distinct cell populations is important for designing RNA-LNP therapies with minimal hepatotoxicity. Here, we directly compared LNPs containing either ALC-0315 or MC3 to knock-down coagulation factor VII (FVII) in hepatocytes and ADAMTS13 in HSCs. At a dose of 1 mg/kg siRNA in mice, LNPs with ALC-0315 achieved a 2- and 10-fold greater knockdown of FVII and ADAMTS13, respectively, compared to LNPs with MC3. At a high dose (5 mg/kg), ALC-0315 LNPs increased markers of liver toxicity (ALT and bile acids), while the same dose of MC3 LNPs did not. These results demonstrate that ALC-0315 LNPs achieves potent siRNA-mediated knockdown of target proteins in hepatocytes and HSCs, in mice, though markers of liver toxicity can be observed after a high dose. This study provides an initial comparison that may inform the development of ionizable cationic LNP therapeutics with maximal efficacy and limited toxicity.
Collapse
Affiliation(s)
- Francesca Ferraresso
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Amy W Strilchuk
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Lih Jiin Juang
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Lauren G. Poole
- Department of Pathobiology and Diagnostic Investigation, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, United States
| | - James P. Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, United States
| | - Christian J Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z4, Canada,Blood Research Institute, Versiti, Milwaukee, WI 53226, United States,Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, United States,Corresponding author: Dr. Christian J Kastrup, Versiti Blood Research Institute and Medical College of Wisconsin, 8727 W Watertown Plank Rd, Milwaukee, WI, USA; ., Phone: 1-414-937-6805, Fax: N/A
| |
Collapse
|
26
|
Chakraborty E, Sarkar D. Emerging Therapies for Hepatocellular Carcinoma (HCC). Cancers (Basel) 2022; 14:2798. [PMID: 35681776 PMCID: PMC9179883 DOI: 10.3390/cancers14112798] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 01/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) arises from hepatocytes and accounts for 90% of primary liver cancer. According to Global Cancer Incidence, Mortality and Prevalence (GLOBOCAN) 2020, globally HCC is the sixth most common cancer and the third most common cause of cancer-related deaths. Reasons for HCC prognosis remaining dismal are that HCC is asymptomatic in its early stages, leading to late diagnosis, and it is markedly resistant to conventional chemo- and radiotherapy. Liver transplantation is the treatment of choice in early stages, while surgical resection, radiofrequency ablation (RFA) and trans arterial chemoembolization (TACE) are Food and Drug Administration (FDA)-approved treatments for advanced HCC. Additional first line therapy for advanced HCC includes broad-spectrum tyrosine kinase inhibitors (TKIs), such as sorafenib and lenvatinib, as well as a combination of immunotherapy and anti-angiogenesis therapy, namely atezolizumab and bevacizumab. However, these strategies provide nominal extension in the survival curve, cause broad spectrum toxic side effects, and patients eventually develop therapy resistance. Some common mutations in HCC, such as in telomerase reverse transcriptase (TERT), catenin beta 1 (CTNNB1) and tumor protein p53 (TP53) genes, are still considered to be undruggable. In this context, identification of appropriate gene targets and specific gene delivery approaches create the potential of gene- and immune-based therapies for the safe and effective treatment of HCC. This review elaborates on the current status of HCC treatment by focusing on potential gene targets and advanced techniques, such as oncolytic viral vectors, nanoparticles, chimeric antigen receptor (CAR)-T cells, immunotherapy, and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), and describes future prospects in HCC treatment.
Collapse
Affiliation(s)
- Eesha Chakraborty
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
27
|
Targeting Subviral Particles: A Critical Step in Achieving HBV Functional Cure but Where Are We with Current Agents in Clinical Development? Viruses 2022; 14:v14061193. [PMID: 35746664 PMCID: PMC9227515 DOI: 10.3390/v14061193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
|
28
|
Morán L, Woitok MM, Bartneck M, Cubero FJ. Hepatocyte-Directed Delivery of Lipid-Encapsulated Small Interfering RNA. Methods Mol Biol 2022; 2544:95-106. [PMID: 36125712 DOI: 10.1007/978-1-0716-2557-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipid formulations for cell transfection are among the most efficient systems for nucleic acid delivery. During the COVID-19 pandemic, lipid-encapsulated RNA (lipid nanoparticles, LNP) has succeeded as a superior vaccine. Moreover, other similar lipid nanocarriers for siRNA are approved and many are on the pipelines. While lipid encapsulation required several devices for the mixing of components, lipoplex technology allows to rapidly mix nucleic acids and positively charged lipids for cell transfection. In vivo, hepatocytes are important target cells of lipid formulated RNAi. This chapter describes the state-of-the-art lipoplex and LPN manufacturing for treating primary hepatocytes with lipid formulations. Furthermore, protocols for isolating murine hepatocytes and for transfecting these cells with pharmaceutically relevant lipid formulations are provided and discussed.
Collapse
Affiliation(s)
- Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | | | - Matthias Bartneck
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
29
|
Sharma R, Porterfield JE, An HT, Jimenez AS, Lee S, Kannan S, Sharma A, Kannan RM. Rationally Designed Galactose Dendrimer for Hepatocyte-Specific Targeting and Intracellular Drug Delivery for the Treatment of Liver Disorders. Biomacromolecules 2021; 22:3574-3589. [PMID: 34324818 DOI: 10.1021/acs.biomac.1c00649] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over two million people die of liver disorders every year globally. Hepatocytes are the key cells affected in several acute and chronic liver diseases. The current clinical outcomes of liver-targeted nanoparticles are limited, necessitating the need to develop smart hepatocyte-targeted drug delivery systems. Here, we present the rational design and development of a hepatocyte-targeting glycodendrimer (GAL-24) built from biocompatible building blocks, using expedite and facile chemical methodology. GAL-24 is designed to inherently target asialoglycoprotein receptor 1 (ASGP-R) on hepatocytes and shows significant accumulation in the liver (20% of injected dose), just 1 h after systemic administration. This is highly specific to hepatocytes, with over 80% of hepatocytes showing GAL-24-Cy5 signal at 24 h. GAL-24-Cy5 maintains hepatocyte-targeting capabilities in both a mouse model of severe acetaminophen poisoning-induced hepatic necrosis and a rat model of nonalcoholic steatohepatitis (NASH). This GAL-24 nanoplatform holds great promise for improved drug delivery to hepatocytes to combat many liver disorders.
Collapse
Affiliation(s)
- Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Joshua E Porterfield
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hyoung-Tae An
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Ambar Scarlet Jimenez
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Seulki Lee
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
| |
Collapse
|
30
|
Bartneck M. Lipid nanoparticle formulations for targeting leukocytes with therapeutic RNA in liver fibrosis. Adv Drug Deliv Rev 2021; 173:70-88. [PMID: 33774114 DOI: 10.1016/j.addr.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023]
Abstract
Obesity and low-grade inflammation are promoters of a multitude of diseases including liver fibrosis. Activation of the mobile leukocytes has a major impact on the outcome of inflammatory disease and can hence foster or mitigate liver fibrosis. This renders immunological targets valuable for directed interventions using nanomedicines. Particularly, RNA-based drugs formulated as lipid nanoparticles (LNP) can open new avenues for the personalized treatment of liver fibrosis both through specific interference and via the induction of the expression of functional and therapeutic proteins. Using microfluidics technology, all components, including lipid-anchored targeting ligands, are assembled in a single-step mixing process. A highlight is set to immunologically relevant liver cell types that are most vulnerable for being reached by LNP. A selection of LNP from other therapeutic fields applicable for reaching these cells in liver fbrosis is summarized. Furthermore, recent proceedings and major obstacles in the field of these targeted LNP are presented.
Collapse
|
31
|
Salunkhe SA, Chitkara D, Mahato RI, Mittal A. Lipid based nanocarriers for effective drug delivery and treatment of diabetes associated liver fibrosis. Adv Drug Deliv Rev 2021; 173:394-415. [PMID: 33831474 DOI: 10.1016/j.addr.2021.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/02/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a cluster of several liver diseases like hepatic steatosis, non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver (NAFL), liver fibrosis, and cirrhosis which may eventually progress to liver carcinoma. One of the primary key factors associated with the development and pathogenesis of NAFLD is diabetes mellitus. The present review emphasizes on diabetes-associated development of liver fibrosis and its treatment using different lipid nanoparticles such as stable nucleic acid lipid nanoparticles, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, self-nanoemulsifying drug delivery systems, and conjugates including phospholipid, fatty acid and steroid-based. We have comprehensively described the various pathological and molecular events linking effects of elevated free fatty acid levels, insulin resistance, and diabetes with the pathogenesis of liver fibrosis. Various passive and active targeting strategies explored for targeting hepatic stellate cells, a key target in liver fibrosis, have also been discussed in detail in this review.
Collapse
|
32
|
Rosenblum D, Gutkin A, Kedmi R, Ramishetti S, Veiga N, Jacobi AM, Schubert MS, Friedmann-Morvinski D, Cohen ZR, Behlke MA, Lieberman J, Peer D. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. SCIENCE ADVANCES 2020; 6:6/47/eabc9450. [PMID: 33208369 PMCID: PMC7673804 DOI: 10.1126/sciadv.abc9450] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/02/2020] [Indexed: 05/19/2023]
Abstract
Harnessing CRISPR-Cas9 technology for cancer therapeutics has been hampered by low editing efficiency in tumors and potential toxicity of existing delivery systems. Here, we describe a safe and efficient lipid nanoparticle (LNP) for the delivery of Cas9 mRNA and sgRNAs that use a novel amino-ionizable lipid. A single intracerebral injection of CRISPR-LNPs against PLK1 (sgPLK1-cLNPs) into aggressive orthotopic glioblastoma enabled up to ~70% gene editing in vivo, which caused tumor cell apoptosis, inhibited tumor growth by 50%, and improved survival by 30%. To reach disseminated tumors, cLNPs were also engineered for antibody-targeted delivery. Intraperitoneal injections of EGFR-targeted sgPLK1-cLNPs caused their selective uptake into disseminated ovarian tumors, enabled up to ~80% gene editing in vivo, inhibited tumor growth, and increased survival by 80%. The ability to disrupt gene expression in vivo in tumors opens new avenues for cancer treatment and research and potential applications for targeted gene editing of noncancerous tissues.
Collapse
Affiliation(s)
- Daniel Rosenblum
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Anna Gutkin
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Ranit Kedmi
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Srinivas Ramishetti
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Nuphar Veiga
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Dinorah Friedmann-Morvinski
- Sagol School of Neuroscience, Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Zvi R Cohen
- Department of Neurosurgery, Sheba Medical Center, Ramat-Gan, and Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mark A Behlke
- Integrated DNA Technologies Inc., Coralville, IA 52241, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Peer
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel.
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|