1
|
Cheng S, Luo W, Zhang Z, Li J, Li X, Wang Y, Weng X, Dong Z. Shexiang Baoxin Pill alleviates atherosclerosis by inhibiting macrophage-mediated inflammation via suppressing KMT5A mediated Irf7 transcription. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119833. [PMID: 40252984 DOI: 10.1016/j.jep.2025.119833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shexiang Baoxin Pill (SBP) is a traditional compound formulation composed of seven Chinese medicinal ingredients. Although SBP has shown promising clinical outcomes in the treatment of cardiovascular diseases, its role and underlying mechanisms in alleviating atherosclerosis remain insufficiently studied. AIM OF THE STUDY This study aims to investigate the effects and mechanisms of SBP in epigenetic modulating macrophage inflammatory responses to mitigate atherosclerosis. MATERIALS AND METHODS ApoE-/- mice were treated with high fat diet (HFD) following varying concentrations of SBP. Oil Red O staining, hematoxylin-eosin (HE) staining, and ELISA were used to assess the anti-atherosclerotic and anti-inflammatory efficiency of SBP. Subsequently, RNA sequencing (RNA-seq), RT-PCR, Western blot (WB), immunofluorescence (IF) and chromatin immunoprecipitation (ChIP) were employed in bone marrow derived macrophages (BMDMs) to elucidate the epigenetic mechanisms of SBP in alleviating macrophage inflammatory responses. Lysine methyltransferase 5A (KMT5A) was overexpressed in vivo and in vitro for further validation. RESULTS SBP significantly attenuated atherosclerosis in HFD treated ApoE-/- mice by decreasing plaque areas, serum inflammation levels and macrophages infiltration in the aortic root and plaques. SBP treatment reduced BMDMs inflammatory responses following oxidized low-density lipoprotein (oxLDL) treatment. Mechanistically, SBP inhibited interferon regulatory factor 7 (IRF7) expression by reducing KMT5A-mediated mono-methylation of histone H4 lysine 20 (H4K20), thus decreasing the secretion of multiple pro-inflammatory cytokines, including interferon (IFN)-α, IFN-β, TNF-α. Overexpression of KMT5A abolished the anti-atherosclerotic and anti-inflammatory effects of SBP, further confirming that KMT5A/H4K20me/IRF7 axis is a key target for SBP exerting therapeutic effect. CONCLUSION SBP exerts anti-atherosclerotic effects by inhibiting macrophage inflammatory responses through downregulation of the H4K20 methylase KMT5A, thereby suppressing the transcription of Irf7. Our findings provide a novel epigenetic mechanism by which SBP alleviates atherosclerosis.
Collapse
Affiliation(s)
- Shuo Cheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Luo
- State Key Laboratory of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Beijing, 100029, China
| | - Zhonghua Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiang Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yidan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinyu Weng
- State Key Laboratory of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Zheng Dong
- Department of Cardiology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, No. 321 Zhongshan Road, Nanjing, 210008, China; Nanjing Drum Towel Hospital, Clinical Collage, Nanjing University of Chinese medicine, China; State Key Laboratory of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| |
Collapse
|
2
|
Guo L, Yang Y, Yang L, Sun P, He J, Fu S, Ye C, Zong B, Qiu Y. Comparative study of the effects of baicalin and probenecid on microRNA expression profiles in porcine aortic vascular endothelial cells infected by Glaesserella parasuis. BMC Vet Res 2025; 21:237. [PMID: 40176019 PMCID: PMC11963612 DOI: 10.1186/s12917-025-04702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Glaesserella parasuis elicits severe inflammatory responses and vascular damage, thus resulting in high mortality and morbidity in pigs; consequently, early diagnosis and treatment are critical to controlling economic losses. MicroRNAs (miRNAs) have been demonstrated to be involved in vascular endothelial inflammation. Baicalin is an effective Chinese medicinal herb with anti-microbial, anti-inflammatory, and anti-oxidant activity. Probenecid has activity toward multiple mammalian biological processes. Herein, we compared the effects of baicalin and probenecid on the miRNA expression profiles of porcine aortic vascular endothelial cells (PAVECs) infected with G. parasuis. RESULTS We identified 277 known miRNAs and 540 novel miRNAs. Twelve miRNAs were significantly differentially expressed in PAVECs after G. parasuis infection. Both baicalin and probenecid affected the miRNA expression profiles in G. parasuis-infected PAVECs but showed different modulation patterns. Ssc-miR-27b-5p and ssc-miR-1842 were the top differentially expressed miRNAs (DEmiRNAs) in baicalin group comparing to control group. Ssc-miR-9851-3p and ssc-miR-1296-5p were the top DEmiRNAs in probenecid group. And Ssc-miR-127, ssc-miR-1842, and ssc-miR-9810-3p were the top DEmiRNAs between the baicalin group and probenecid group, as validated by qRT-PCR. The target genes of DEmiRNAs between various groups were subjected to KEGG and GO enrichment analyses. Hematopoietic cell lineage, insulin resistance, and AMPK signaling pathway were the top significantly enriched pathways associated with the target genes of DEmiRNAs in G. parasuis-infected PAVECs pretreated with baicalin; in contrast, B cell receptor, T cell receptor, and HIF-1 signaling pathways predominated in G. parasuis-infected PAVECs treated with probenecid. We additionally constructed co-expression and protein-protein interaction networks based on the differentially expressed target genes of miR-127, miR-1842, and miR-9810-3p. CONCLUSION Our findings suggested that baicalin and probenecid regulated miRNAs associated with vascular inflammation and damage, but showed different modulation patterns. This report provided the first comparison of the effects of baicalin and probenecid on G. parasuis-infected PAVECs, and might aid in the development of novel biomarkers and therapeutic targets to control G. parasuis infection.
Collapse
Affiliation(s)
- Ling Guo
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, Hubei, 430023, People's Republic of China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, Hubei, 430023, PR China
| | - Yaqiong Yang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, Hubei, 430023, People's Republic of China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, Hubei, 430023, PR China
| | - Linrong Yang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, Hubei, 430023, People's Republic of China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, Hubei, 430023, PR China
| | - Peiyan Sun
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, Hubei, 430023, People's Republic of China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, Hubei, 430023, PR China
| | - Jing He
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Bingbing Zong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China.
| |
Collapse
|
3
|
Qu P, Li L, Jin Q, Liu D, Qiao Y, Zhang Y, Sun Q, Ran S, Li Z, Liu T, Peng L. Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review). Int J Mol Med 2024; 54:104. [PMID: 39301658 DOI: 10.3892/ijmm.2024.5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end‑stage renal disease, and is characterized by persistent proteinuria and decreased glomerular filtration rate. Despite extensive efforts, the increasing incidence highlights the urgent need for more effective treatments. Histone methylation is a crucial epigenetic modification, and its alteration can destabilize chromatin structure, thereby regulating the transcriptional activity of specific genes. Histone methylation serves a substantial role in the onset and progression of various diseases. In patients with DKD, changes in histone methylation are pivotal in mediating the interactions between genetic and environmental factors. Targeting these modifications shows promise in ameliorating renal histological manifestations, tissue fibrosis and proteinuria, and represents a novel therapeutic frontier with the potential to halt DKD progression. The present review focuses on the alterations in histone methylation during the development of DKD, systematically summarizes its impact on various renal parenchymal cells and underscores the potential of targeted histone methylation modifications in improving DKD outcomes.
Collapse
Affiliation(s)
- Peng Qu
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Lanfang Li
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China
| | - Donghai Liu
- China‑Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P.R. China
| | - Yuan Qiao
- China‑Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P.R. China
| | - Yijia Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qiuyue Sun
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China
| | - Shuman Ran
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zecheng Li
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
4
|
Zhou Y, Yao Z, Lin Y, Zhang H. From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond. Pharmaceutics 2024; 16:888. [PMID: 39065585 PMCID: PMC11279542 DOI: 10.3390/pharmaceutics16070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are responsible for the dephosphorylation of tyrosine residues and play a role in countering PTK overactivity. As widespread oncogenes, PTKs were once considered to be promising targets for therapy. However, tyrosine kinase inhibitors (TKIs) now face a number of challenges, including drug resistance and toxic side effects. Treatment strategies now need to be developed from a new perspective. In this review, we assess the current state of TKIs and highlight the role of PTPs in cancer and other diseases. With the advances of allosteric inhibition and the development of multiple alternative proprietary drug strategies, the reputation of PTPs as "undruggable" targets has been overturned, and they are now considered viable therapeutic targets. We also discuss the strategies and prospects of PTP-targeted therapy, as well as its future development.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
- Zhuhai Institute of Jinan University, Zhuhai 511436, China
| |
Collapse
|
5
|
Lu L, Zhu M, Wu Q, Sun Z, Chen X, Miao C. Sirt7/HIC1 complex participates in hyperglycaemia-mediated EndMT via modulation of SDC1 expression in diabetic kidney disease and metabolic memory. J Cell Mol Med 2024; 28:e18336. [PMID: 38686489 PMCID: PMC11058670 DOI: 10.1111/jcmm.18336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Diabetic kidney disease (DKD), a primary microvascular complication arising from diabetes, may result in end-stage renal disease. Epigenetic regulation of endothelial mesenchymal transition (EndMT) has been recently reported to exert function in metabolic memory and DKD. Here, we investigated the mechanism which Sirt7 modulated EndMT in human glomerular endothelial cells (HGECs) in the occurrence of metabolic memory in DKD. Lower levels of SDC1 and Sirt7 were noted in the glomeruli of both DKD patients and diabetes-induced renal injury rats, as well as in human glomerular endothelial cells (HGECs) with high blood sugar. Endothelial-to-mesenchymal transition (EndMT) was sustained despite the normalization of glycaemic control. We also found that Sirt7 overexpression associated with glucose normalization promoted the SDC1 expression and reversed EndMT in HGECs. Furthermore, the sh-Sirt7-mediated EndMT could be reversed by SDC1 overexpression. The ChIP assay revealed enrichment of Sirt7 and H3K18ac in the SDC1 promoter region. Furthermore, hypermethylated in cancer 1 (HIC1) was found to be associated with Sirt7. Overexpression of HIC1 with normoglycaemia reversed high glucose-mediated EndMT in HGECs. The knockdown of HIC1-mediated EndMT was reversed by SDC1 upregulation. In addition, the enrichment of HIC1 and Sirt7 was observed in the same promoter region of SDC1. The overexpressed Sirt7 reversed EndMT and improved renal function in insulin-treated diabetic models. This study demonstrated that the hyperglycaemia-mediated interaction between Sirt7 and HIC1 exerts a role in the metabolic memory in DKD by inactivating SDC1 transcription and mediating EndMT despite glucose normalization in HGECs.
Collapse
Affiliation(s)
- Lihong Lu
- Department of Anesthesiology, Zhongshan HospitalFudan UniversityShanghaiChina
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Minmin Zhu
- Department of Anesthesiology, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qichao Wu
- Department of Anesthesiology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zhirong Sun
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xiangyuan Chen
- Department of Anesthesiology, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
6
|
Wu M, Hao Y, Wu X, Zhu M, Chen X, Qi J, Yu Z, Xu H. SirT7-mediated transcription of fascin in hyperglycemic glomerular endothelial cells contributes to EndMT in diabetic nephropathy. Acta Biochim Biophys Sin (Shanghai) 2024; 56:586-596. [PMID: 38449390 DOI: 10.3724/abbs.2024002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease worldwide. It is reported that the endothelial-to-mesenchymal transition (EndMT) in glomerular endothelial cells plays an important role in DN. As a specific form of epithelial-to-mesenchymal transition, EndMT may involve common regulators of epithelial-to-mesenchymal transition. Fascin has been shown to mediate epithelial-to-mesenchymal transition. In addition, SirT7 has been confir med to contribute to inflammation in hyperglycemic endothelial cells via the modulation of gene transcription. In this study, we speculate that SirT7 modulates fascin transcription and is thus involved in EndMT in hyperglycemic glomerular endothelial cells. Our data indicate that α-smooth muscle actin (α-SMA) and fascin levels are increased, while CD31 levels are decreased in the kidneys of DN rats. Consistently, our cellular experiments reveal that high glucose treatment elevates fascin levels and induces EndMT in human glomerular endothelial cells (HGECs). Moreover, silencing of fascin inhibits EndMT in hyperglycaemic HGECs. In addition, SirT7 is found to be decreased in hyperglycemic cells and in the kidneys of DN mice. Moreover, the inhibition of SirT7 increases fascin level and mediates EndMT. An increase in SirtT7 expression decreases fascin expression, inhibits EndMT, and improves renal function in hyperglycemic cells and DN mice. SirT7 is found to bind to the promoter region of fascin. In summary, the present study indicates that SirT7 transcribes fascin to contribute to hyperglycemia-induced EndMT in DN patients.
Collapse
Affiliation(s)
- Mengchen Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yingxiang Hao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xinwan Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Minmin Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Department of Anesthesiology, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangyuan Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jie Qi
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhuang Yu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Hongjiao Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
7
|
Liu XR, Li SF, Mei WY, Liu XD, Zhou RB. Isorhamnetin Downregulates MMP2 and MMP9 to Inhibit Development of Rheumatoid Arthritis through SRC/ERK/CREB Pathway. Chin J Integr Med 2024; 30:299-310. [PMID: 38212502 DOI: 10.1007/s11655-023-3753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To investigate the effect of isorhamnetin on the pathology of rheumatoid arthritis (RA). METHODS Tumor necrosis factor (TNF)- α -induced fibroblast-like synoviocytes (FLS) was exposed to additional isorhamnetin (10, 20 and 40 µ mol/L). Overexpression vectors for matrix metalloproteinase-2 (MMP2) or MMP9 or SRC were transfected to explore their roles in isorhamnetin-mediated RA-FLS function. RA-FLS viability, migration, and invasion were evaluated. Moreover, a collagen-induced arthritis (CIA) rat model was established. Rats were randomly divided to sham, CIA, low-, medium-, and high-dosage groups using a random number table (n=5 in each group) and administed with normal saline or additional isorhamnetin [2, 10, and 20 mg/(kg·day)] for 4 weeks, respectively. Arthritis index was calculated and synovial tissue inflammation was determined in CIA rats. The levels of MMP2, MMP9, TNF-α, interleukin-6 (IL-6), and IL-1 β, as well as the phosphorylation levels of SRC, extracellular regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding (CREB), were detected in RA-FLS and synovial tissue. Molecular docking was also used to analyze the binding of isorhamnetin to SRC. RESULTS In in vitro studies, isorhamnetin inhibited RA-FLS viability, migration and invasion (P<0.05). Isorhamnetin downregulated the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 β in RA-FLS (P<0.05). The overexpression of either MMP2 or MMP9 reversed isorhamnetin-inhibited RA-FLS migration and invasion, as well as the levels of TNF-α, IL-6, and IL-1 β (P<0.05). Furthermore, isorhamnetin bound to SRC and reduced the phosphorylation of SRC, ERK, and CREB (P<0.05). SRC overexpression reversed the inhibitory effect of isorhamnetin on RA-FLS viability, migration and invasion, as well as the negative regulation of MMP2 and MMP9 (P<0.05). In in vivo studies, isorhamnetin decreased arthritis index scores (P<0.05) and alleviated synovial inflammation. Isorhamnetin reduced the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 β, as well as the phosphorylation of SRC, ERK, and CREB in synovial tissue (P<0.05). Notably, the inhibitory effect of isorhamnetin was more pronounced at higher concentrations (P<0.05). CONCLUSION Isorhamnetin exhibited anti-RA effects through modulating SRC/ERK/CREB and MMP2/MMP9 signaling pathways, suggesting that isorhamnetin may be a potential therapeutic agent for RA.
Collapse
Affiliation(s)
- Xiao-Rong Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Shuo-Fu Li
- Department of Orthopaedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Wen-Ya Mei
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiang-Dan Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ri-Bao Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
8
|
Li Y, Cheng M, Jin J, Zhang D, Zhang S, Bai Y, Xu J. Interaction of Sp1 and Setd8 promotes vascular smooth muscle cells apoptosis by activating Mark4 in vascular calcification. Aging (Albany NY) 2024; 16:2438-2456. [PMID: 38301049 PMCID: PMC10911351 DOI: 10.18632/aging.205492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Vascular calcification (VC) is directly related to high mortality in chronic kidney disease (CKD), and cellular apoptosis of vascular smooth muscle cells (VSMCs) is a crucial process in the initiation of VC. Microtubule affinity-regulating kinase 4 (Mark4), known as a serine/threonine protein kinase, can induce cell apoptosis and autophagy by modulating Akt phosphorylation. However, the potential functions and molecular mechanisms of Mark4 in VSMCs apoptosis and calcification need to be further explored. Initially, our data indicated that the mRNA expression of Mark4 was prominently elevated in high phosphorus-stimulated human VSMCs compared with the other members in Marks. Consistently, Mark4 expression was found to be significantly increased in the calcified arteries of both CKD patients and rats. In vitro, silencing Mark4 suppressed apoptosis-specific marker expression by promoting Akt phosphorylation, finally attenuating VSMCs calcification induced by high phosphate. Mechanically, the transcription factor Sp1 was enriched in the Mark4 promoter region and modulated Mark4 transcription. Moreover, SET domain-containing protein 8 (Setd8) was proved to interact with Sp1 and jointly participated in the transcriptional regulation of Mark4. Finally, rescue experiments revealed that Setd8 contributed to VSMCs apoptosis and calcification by modulating Mark4 expression. In conclusion, these findings reveal that Mark4 is transcriptionally activated by Sp1, which is interacted with Setd8, to promote VSMCs calcification through Akt-mediated antiapoptotic effects, suggesting that Mark4 represents a potent and promising therapeutic target for VC in CKD.
Collapse
Affiliation(s)
- Yun Li
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Meijuan Cheng
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Jingjing Jin
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Dongxue Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, People’s Republic of China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, People’s Republic of China
| |
Collapse
|
9
|
Fang H, Xu S, Wang Y, Yang H, Su D. Endogenous stimuli-responsive drug delivery nanoplatforms for kidney disease therapy. Colloids Surf B Biointerfaces 2023; 232:113598. [PMID: 37866237 DOI: 10.1016/j.colsurfb.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Kidney disease is one of the most life-threatening health problems, affecting millions of people in the world. Commonly used steroids and immunosuppressants often fall exceptionally short of outcomes with inescapable systemic toxicity. With the booming research in nanobiotechnology, stimuli-responsive nanoplatform has come an appealing therapeutic strategy for kidney disease. Endogenous stimuli-responsive materials have shown profuse promise owing to their enhanced spatiotemporal control and precise to the location of the lesion. This review focuses on recent advances stimuli-responsive drug delivery nano-architectonics for kidney disease. First, a brief introduction of pathogenesis of kidney disease and pathological microenvironment were provided. Then, various endogenous stimulus involved in drug delivery nanoplatforms including pH, ROS, enzymes, and glucose were categorized based on the pathological mechanisms of kidney disease. Next, we separately summarized literature examples of endogenous stimuli-responsive nanomaterials, and outlined the design strategies and response mechanisms. Finally, the paper was concluded by discussing remaining challenges and future perspectives of endogenous stimuli-responsive drug delivery nanoplatform for expediting the speed of development and clinical applications.
Collapse
Affiliation(s)
- Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Yu Wang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| |
Collapse
|
10
|
AL-Qabbaa SM, Qaboli SI, Alshammari TK, Alamin MA, Alrajeh HM, Almuthnabi LA, Alotaibi RR, Alonazi AS, Bin Dayel AF, Alrasheed NM, Alrasheed NM. Sitagliptin Mitigates Diabetic Nephropathy in a Rat Model of Streptozotocin-Induced Type 2 Diabetes: Possible Role of PTP1B/JAK-STAT Pathway. Int J Mol Sci 2023; 24:ijms24076532. [PMID: 37047505 PMCID: PMC10095069 DOI: 10.3390/ijms24076532] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus. This study examined the therapeutic effects of sitagliptin, a dipeptidyl peptidase inhibitor, on DN and explored the underlying mechanism. Male Wistar albino rats (n = 12) were intraperitoneally administered a single dose of streptozotocin (30 mg/kg) to induce diabetes. Streptozotocin-treated and untreated rats (n = 12) were further divided into normal control, normal sitagliptin-treated control, diabetic control, and sitagliptin-treated diabetic groups (n = 6 in each). The normal and diabetic control groups received normal saline, whereas the sitagliptin-treated control and diabetic groups received sitagliptin (100 mg/kg, p.o.). We assessed the serum levels of DN and inflammatory biomarkers. Protein tyrosine phosphatase 1 B (PTP1B), phosphorylated Janus kinase 2 (P-JAK2), and phosphorylated signal transducer activator of transcription (P-STAT3) levels in kidney tissues were assessed using Western blotting, and kidney sections were examined histologically. Sitagliptin reduced DN and inflammatory biomarkers and the expression of PTP1B, p-JAK2, and p-STAT3 (p < 0.001) and improved streptozotocin-induced histological changes in the kidney. These results demonstrate that sitagliptin ameliorates inflammation by inhibiting DPP-4 and consequently modulating the PTP1B-related JAK/STAT axis, leading to the alleviation of DN.
Collapse
|
11
|
Wang J, Feng Y, Zhang Y, Liu J, Gong L, Zhang X, Liao H. TNF-α and IL-1β Promote Renal Podocyte Injury in T2DM Rats by Decreasing Glomerular VEGF/eNOS Expression Levels and Altering Hemodynamic Parameters. J Inflamm Res 2022; 15:6657-6673. [PMID: 36532651 PMCID: PMC9748123 DOI: 10.2147/jir.s391473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 07/01/2024] Open
Abstract
PURPOSE Diabetic nephropathy (DN) is a serious microvascular complication in those with type 2 diabetes mellitus (T2DM). Evidence confirms that serum tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the T2DM stage are proposed as prognostic markers for DN development, but it is unclear how they affect renal podocyte-associated nephrin and WT-1 expression. In the presence of podocyte injury, glomerular vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS) and hemodynamic parameters are dysregulated. The current research aimed to clarify the relationship of TNF-α and IL-1β with podocyte injury by altering VEGF/eNOS expression and hemodynamic parameters. METHODS A high-fat diet/streptozotocin-induced DN rat model was established. Serum TNF-α and IL-1β levels were tracked in the pre-T2DM, T2DM and DN stages. In the DN stage, the mRNA and protein expression levels of renal TNF-α, IL-1β, VEGF, eNOS, nephrin and WT-1 were studied. Renal hemodynamic parameters, including peak systolic velocity, end-diastolic flow velocity and mean velocity were measured with a color Doppler ultrasound technique. RESULTS Compared to those in the normal control (CTL) group, serum TNF-α and IL-1β levels increased significantly in the pre-T2DM stage (obesity, insulin resistance and hyperlipidemia), T2DM stage (hyperglycemia) and DN stage (abnormal renal functions) (all: P < 0.05) in the DN group. Serum TNF-α and IL-1β levels in the T2DM stage were significantly higher than those in the pre-T2DM stage (two: P < 0.05). Compared to the CTL group, renal nephrin, WT-1, TNF-α, IL-1β, eNOS and VEGF expression and hemodynamic parameters in the DN stage all showed significant differences separately (all: P < 0.05). CONCLUSION Increased serum and renal TNF-α and IL-1β levels played important roles in reducing renal nephrin and WT-1 expression levels, which may be related to the fact that the former affected renal VEGF/eNOS expression and blood flow parameters in the DN rats.
Collapse
Affiliation(s)
- Jufang Wang
- Department of Ultrasonic Diagnosis, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| | - Yating Feng
- School of Pharmacy, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yan Zhang
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| | - Jing Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Le Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaohong Zhang
- Department of Ultrasonic Diagnosis, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| | - Hui Liao
- Department of Pharmacy, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, People’s Republic of China
| |
Collapse
|
12
|
Ni Y, Zheng L, Nan S, Ke L, Fu Z, Jin J. Enterorenal crosstalks in diabetic nephropathy and novel therapeutics targeting the gut microbiota. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1406-1420. [PMID: 36239349 PMCID: PMC9827797 DOI: 10.3724/abbs.2022140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022] Open
Abstract
The role of gut-kidney crosstalk in the progression of diabetic nephropathy (DN) is receiving increasing concern. On one hand, the decline in renal function increases circulating uremic toxins and affects the composition and function of gut microbiota. On the other hand, intestinal dysbiosis destroys the epithelial barrier, leading to increased exposure to endotoxins, thereby exacerbating kidney damage by inducing systemic inflammation. Dietary inventions, such as higher fiber intake, prebiotics, probiotics, postbiotics, fecal microbial transplantation (FMT), and engineering bacteria and phages, are potential microbiota-based therapies for DN. Furthermore, novel diabetic agents, such as glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-dependent glucose transporter-2 (SGLT-2) inhibitors, may affect the progression of DN partly through gut microbiota. In the current review, we mainly summarize the evidence concerning the gut-kidney axis in the advancement of DN and discuss therapies targeting the gut microbiota, expecting to provide new insight into the clinical treatment of DN.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Liujie Zheng
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Sujie Nan
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Lehui Ke
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Zhengwei Fu
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Juan Jin
- Urology & Nephrology CenterDepartment of NephrologyZhejiang Provincial People’s Hospital (Affiliated People’s HospitalHangzhou Medical College)Hangzhou310014China
| |
Collapse
|
13
|
Li X, Liu J, Lu L, Huang T, Hou W, Wang F, Yu L, Wu F, Qi J, Chen X, Meng Z, Zhu M. Sirt7 associates with ELK1 to participate in hyperglycemia memory and diabetic nephropathy via modulation of DAPK3 expression and endothelial inflammation. Transl Res 2022; 247:99-116. [PMID: 35470010 DOI: 10.1016/j.trsl.2022.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 02/08/2023]
Abstract
Diabetic nephropathy (DN) is one of the most serious complications of advanced diabetes, and increases patient mortality. Recently, epigenetics-mediated hyperglycemic memory in pathological process of DN has received attention. The purpose of this study was to determine the underlying mechanism by which sirt7 modulates hyperglycemic memory in DN. In glomerular endothelial cells (GECs) cultured in high glucose and glomeruli of DN patients and rats, an increase in p65 phosphorylation and endothelial adhesion molecule levels persisted after glucose normalization but was reversed by glucose normalization associated with death-associated protein kinase-3 (DAPK3) knockout or DAPK3 inhibitor. High glucose-mediated decrease in sirt7, the deacetylase modulating H3K18-acetylation (H3K18ac), was sustained after normoglycemia. Sirt7 overexpression accompanied by glucose normalization suppressed DAPK3 expression and inflammation in GECs. Moreover, sh-sirt7-induced inflammation was inhibited by si-DAPK3. Furthermore, sirt7 and H3K18ac were located at the DAPK3 promoter region. ELK1 was found to combine with sirt7. si-ELK1 supplemented with normoglycemia inhibited high glucose-induced DAPK3 expression and inflammation in GECs. ELK1 overexpression-mediated inflammation was inhibited by si-DAPK3. In addition, ELK1 and sirt7 were located at the same promoter region of DAPK3. ELK1 overexpression enhanced DAPK3 promoter activity, which disappeared after specific binding site mutation. In vivo, sirt7 overexpression decreased inflammation and improved renal function during insulin treatment of DN rats, whereas insulin alone did not work. Our data demonstrated high glucose-mediated mutual inhibition between sirt7 and ELK1 induced DAPK3 transcription and inflammation despite normoglycemia in GECs, thus forming a vicious cycle and participating in the occurrence of hyperglycemic memory in DN.
Collapse
Affiliation(s)
- Xue Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Department of Anaesthesiology, Huzhou Maternal & Child Health Care Hospital, Huzhou, Zhejiang, China
| | - Lihong Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ting Huang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Hou
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lang Yu
- Department of Anaesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China
| | - Fengfeng Wu
- Department of Orthopedics and Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China
| | - Jie Qi
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhipeng Meng
- Department of Anaesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China.
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Kushwaha K, Garg SS, Gupta J. Targeting epigenetic regulators for treating diabetic nephropathy. Biochimie 2022; 202:146-158. [PMID: 35985560 DOI: 10.1016/j.biochi.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Diabetes is accompanied by the worsening of kidney functions. The reasons for kidney dysfunction mainly include high blood pressure (BP), high blood sugar levels, and genetic makeup. Vascular complications are the leading cause of the end-stage renal disorder (ESRD) and death of diabetic patients. Epigenetics has emerged as a new area to explain the inheritance of non-mendelian conditions like diabetic kidney diseases. Aberrant post-translational histone modifications (PTHMs), DNA methylation (DNAme), and miRNA constitute major epigenetic mechanisms that progress diabetic nephropathy (DN). Increased blood sugar levels alter PTHMs, DNAme, and miRNA in kidney cells results in aberrant gene expression that causes fibrosis, accumulation of extracellular matrix (ECM), increase in reactive oxygen species (ROS), and renal injuries. Histone acetylation (HAc) and histone deacetylation (HDAC) are the most studied epigenetic modifications with implications in the occurrence of kidney disorders. miRNAs induced by hyperglycemia in renal cells are also responsible for ECM accumulation and dysfunction of the glomerulus. In this review, we highlight the role of epigenetic modifications in DN progression and current strategies employed to ameliorate DN.
Collapse
Affiliation(s)
- Kriti Kushwaha
- Department of Biotechnology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara, Punjab, India
| | - Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
15
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
16
|
Zhang Y, Guan Q, Wang Z. PTP1B inhibition ameliorates inflammatory injury and dysfunction in ox‑LDL‑induced HUVECs by activating the AMPK/SIRT1 signaling pathway via negative regulation of KLF2. Exp Ther Med 2022; 24:467. [PMID: 35747159 PMCID: PMC9204542 DOI: 10.3892/etm.2022.11394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/15/2022] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is a key pathogenic factor of cardiovascular diseases. However, the role of protein tyrosine phosphatase 1B (PTP1B) in oxidized low-density lipoprotein (ox-LDL)-treated vascular endothelial cells remains unclear. The aim of the present study was to explore the possible physiological roles and mechanism of PTP1B in atherosclerosis using HUVECs as an in vitro model. PTP1B expression was assessed by reverse transcription-quantitative PCR. Cell viability was measured using the Cell Counting Kit-8 and lactate dehydrogenase activity assays. Levels of inflammatory factors, including IL-1β, IL-6 and TNF-α, and oxidative stress factors, including malondialdehyde, superoxide dismutase and glutathione peroxidase, were assessed using ELISA and commercially available kits, respectively. Furthermore, TUNEL assay and western blotting were performed to assess the extent of apoptosis-related factors, including Bcl-2, Bax, Cleaved caspase-3 and Caspase-3. Tube formation assay was used to assess tubule formation ability and western blotting was to analyze VEGFA protein level. Binding sites for the transcription factor Kruppel-like factor 2 (KLF2) on the PTP1B promoter were predicted using the JASPAR database and verified using luciferase reporter assays and chromatin immunoprecipitation. The protein levels of phosphorylated 5'AMP-activated protein kinase (p-AMPK), AMPK and SIRT1 were measured using western blotting. The results demonstrated that the PTP1B mRNA and protein expression levels were significantly upregulated in oxidized low-density lipoprotein (ox-LDL)-induced HUVECs. In addition, ox-LDL-induced HUVECs transfected with short hairpin RNA against PTP1B exhibited a significant increase in cell viability, reduced inflammatory factor levels, apoptosis and oxidative stress, as well as increased tubule formation ability. KLF2 was found to negatively regulate the transcriptional activity of PTP1B. KLF2 knockdown reversed the protective effects of PTP1B knockdown on ox-LDL-induced HUVECs. KLF2 knockdown also abolished PTP1B knockdown-triggered AMPK/SIRT1 signaling pathway activation in ox-LDL-induced HUVECs. To conclude, the results of the present study suggested that PTP1B knockdown can prevent ox-LDL-induced inflammatory injury and dysfunction in HUVECs, which is regulated at least in part by the AMPK/SIRT1 signaling pathway through KLF2.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Qiang Guan
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Zhenfeng Wang
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
17
|
Cheng Y, Chen Y, Wang G, Liu P, Xie G, Jing H, Chen H, Fan Y, Wang M, Zhou J. Protein Methylation in Diabetic Kidney Disease. Front Med (Lausanne) 2022; 9:736006. [PMID: 35647002 PMCID: PMC9133329 DOI: 10.3389/fmed.2022.736006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) is defined by persistent urine aberrations, structural abnormalities, or impaired excretory renal function. Diabetes is the leading cause of CKD. Their common pathological manifestation is renal fibrosis. Approximately half of all patients with type 2 diabetes and one-third with type 1 diabetes will develop CKD. However, renal fibrosis mechanisms are still poorly understood, especially post-transcriptional and epigenetic regulation. And an unmet need remains for innovative treatment strategies for preventing, arresting, treating, and reversing diabetic kidney disease (DKD). People believe that protein methylation, including histone and non-histone, is an essential type of post-translational modification (PTM). However, prevalent reviews mainly focus on the causes such as DNA methylation. This review will take insights into the protein part. Furthermore, by emphasizing the close relationship between protein methylation and DKD, we will summarize the clinical research status and foresee the application prospect of protein methyltransferase (PMT) inhibitors in DKD treatment. In a nutshell, our review will contribute to a more profound understanding of DKD’s molecular mechanism and inspire people to dig into this field.
Collapse
Affiliation(s)
- Ye Cheng
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanna Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guodong Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guiling Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, The Eighth People’s Hospital of Guangzhou, Guangzhou, China
| | - Youlin Fan
- Department of Anesthesiology, Guangzhou Panyu Central Hospital of Panyu District, Guangzhou, China
| | - Min Wang
- Department of Anesthesiology, The Gaoming People’s Hospital, Foshan, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Jun Zhou,
| |
Collapse
|
18
|
Zheng W, Guo J, Lu X, Qiao Y, Liu D, Pan S, Liang L, Liu C, Zhu H, Liu Z, Liu Z. cAMP-response element binding protein mediates podocyte injury in diabetic nephropathy by targeting lncRNA DLX6-AS1. Metabolism 2022; 129:155155. [PMID: 35093327 DOI: 10.1016/j.metabol.2022.155155] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Progressive proteinuria is one of the earliest clinical features of diabetic nephropathy (DN). In our previous study, lncRNA DLX6-AS1 (DLX6-AS1, Dlx6os1 in the mouse) was found to be associated with the extent of albuminuria in DN patients. Furthermore, the lack of Dlx6os1 was pivotal in switching off the inflammatory response in db/db mouse model. However, the regulatory factors responsible for elevated DLX6-AS1 in DN remains unknown. METHODS To identify potential regulatory factors for DLX6-AS1, JASPAR database and DNA pull down combined subsequent liquid chromatography-tandem mass spectrometry were used. Dual-luciferase reporter assay and chromatin immunoprecipitation were then performed to confirm binding sites. We also investigated the effects of the regulatory factors on DN progression in db/db mouse model and cultured human podocytes. RESULTS Our analyses demonstrated that cAMP-response element binding protein (CREB) was highly expressed and closely associated with DLX6-AS1 in DN. In db/db mouse and in cultured podocytes, CREB silencing significantly reduced the level of DLX6-AS1 or Dlx6os1 and attenuated renal damage. Mechanistically, CREB overexpression aggravated renal inflammation and destroyed the structure of podocytes by targeting DLX6-AS1. The damaging role of CREB in podocyte injury was also inhibited by 666-15, a selective inhibitor, in a dose-dependent manner. In vivo, the inhibition of CREB by 666-15 significantly attenuated albuminuria and ameliorated inflammatory infiltration in podocytes. CONCLUSIONS Our findings indicated that CREB is a key mediator of podocyte injury and acts by regulating DLX6-AS1. Thus, CREB may be an effective and potential therapeutic target for the treatment of DN.
Collapse
Affiliation(s)
- Wen Zheng
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Jia Guo
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Xiaoqing Lu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
| | - Yingjin Qiao
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
| | - Lulu Liang
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Chang Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
| | - Hongchao Zhu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China.
| |
Collapse
|
19
|
Miao J, Guo L, Cui H, Wang L, Zhu B, Lei J, Li P, Jia J, Zhang Z. Er-Chen Decoction Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Rats through Remodeling Gut Microbiota and Regulating the Serum Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6221340. [PMID: 35399623 PMCID: PMC8991405 DOI: 10.1155/2022/6221340] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Many studies have found that the dysfunction in gut microbiota and the metabolic dysfunction can promote nonalcoholic fatty liver disease (NAFLD) development. Er-Chen decoction (EC) can be used in the treatment of NAFLD. However, the mechanism of this hepatoprotection is still unknown. In this study, we constructed a rat model with NAFLD fed with high-fat chow and administered EC treatment. The therapeutic effects of EC on NAFLD were evaluated by measuring transaminases, blood lipid levels, and pathological changes in the liver. In addition, we measured the effects of EC on liver inflammatory response and oxidative stress. The changes in gut microbiota after EC treatment were studied using 16S rRNA sequencing. Serum untargeted metabolomics analysis was also used to study the metabolic regulatory mechanisms of EC on NAFLD. The results showed that EC decreased the serum transaminases and lipid levels and improved the pathological changes in NAFLD rats. Furthermore, EC enhanced the activities of SOD and GSH-Px and decreased MDA level in the liver. EC treatment also decreased the gene and protein levels of IL-6, IL-1β, and TNF-α in the liver and serum. The 16S rRNA sequencing and untargeted metabolomics indicated that EC treatment affected the gut microbiota and regulated serum metabolism. Correlation analysis showed that the effects of EC on taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways were associated with affecting in the abundance of Lactobacillus, Dubosiella, Lachnospiraceae, Desulfovibri, Romboutsia, Akkermansia, Intestinimonas, and Candidatus_saccharimonas in the gut. In conclusion, our study confirmed the protective effect of EC on NAFLD. EC could treat NAFLD by inhibiting oxidative stress, reducing inflammatory responses, and improving the dysbiosis of gut microbiota and the modulation of the taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways in serum.
Collapse
Affiliation(s)
- Jing Miao
- Tianjin Second People's Hospital, Tianjin, China
| | - Liying Guo
- Tianjin Second People's Hospital, Tianjin, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Li Wang
- Tianjin Second People's Hospital, Tianjin, China
| | - Bo Zhu
- Tianjin Second People's Hospital, Tianjin, China
| | - Jinyan Lei
- Tianjin Second People's Hospital, Tianjin, China
| | - Peng Li
- Tianjin Second People's Hospital, Tianjin, China
| | - Jianwei Jia
- Tianjin Second People's Hospital, Tianjin, China
| | - Zhaiyi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Wang F, Hou W, Li X, Lu L, Huang T, Zhu M, Miao C. SETD8 cooperates with MZF1 to participate in hyperglycemia-induced endothelial inflammation via elevation of WNT5A levels in diabetic nephropathy. Cell Mol Biol Lett 2022; 27:30. [PMID: 35350980 PMCID: PMC8962284 DOI: 10.1186/s11658-022-00328-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/22/2023] Open
Abstract
Objective Diabetic nephropathy (DN) is regarded as the main vascular complication of diabetes mellitus, directly affecting the outcome of diabetic patients. Inflammatory factors were reported to participate in the progress of DN. Wingless-type family member 5 (WNT5A), myeloid zinc finger 1 (MZF1), and lysine methyltransferase 8 (SETD8) have also been reported to elevate inflammatory factor levels and activate the nuclear factor kappa B (NF-κB) pathway to induce endothelial dysfunction. In the current study, it was assumed that MZF1 associates with SETD8 to regulate WNT5A transcription, thus resulting in hyperglycemia-induced glomerular endothelial inflammation in DN. Methods The present study recruited 25 diagnosed DN patients (type 2 diabetes) and 25 control participants (nondiabetic renal cancer patients with normal renal function, stage I–II) consecutively. Moreover, a DN rat and cellular model was constructed in the present study. Immunohistochemistry, Western blot, and quantitative polymerase chain reaction (qPCR) were implemented to determine protein and messenger RNA (mRNA) levels. Coimmunoprecipitation (CoIP) and immunofluorescence were implemented in human glomerular endothelial cells (HGECs). Chromatin immunoprecipitation assays and dual luciferase assays were implemented to determine transcriptional activity. Results The results of this study indicated that levels of WNT5A expression, p65 phosphorylation (p-p65), and inflammatory factors were all elevated in DN patients and rats. In vitro, levels of p-p65 and inflammatory factors increased along with the increase of WNT5A expression in hyperglycemic HGECs. Moreover, high glucose increased MZF1 expression and decreased SETD8 expression. MZF1 and SETD8 inhibit each other under the stimulus of high glucose, but cooperate to regulate WNT5A expression, thus influencing p-p65 and endothelial inflammatory factors levels. Overexpression of MZF1 and silencing of SETD8 induced endothelial p-p65 and inflammatory factors levels, which can be reversed by si-WNT5A. Mechanistic research indicated that MZF1, SETD8, and its downstream target histone H4 lysine 20 methylation (H4K20me1) all occupied the WNT5A promoter region. sh-SETD8 expanded the enrichment of MZF1 on WNT5A promoter. Our in vivo study proved that SETD8 overexpression inhibited levels of WNT5A, p-p65 expression, and inflammatory factors in DN rats. Conclusions MZF1 links with SETD8 to regulate WNT5A expression in HGECs, thus elevating levels of hyperglycemia-mediated inflammatory factors in glomerular endothelium of DN patients and rats. Trial registration ChiCTR, ChiCTR2000029425. 2020/1/31, http://www.chictr.org.cn/showproj.aspx?proj=48548 Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00328-6.
Collapse
Affiliation(s)
- Fei Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenting Hou
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xue Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lihong Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ting Huang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
ETS proto-oncogene 1 modulates PTP1B expression to participate in high glucose-mediated endothelial inflammation. Acta Biochim Biophys Sin (Shanghai) 2022; 54:565-573. [PMID: 35607953 PMCID: PMC9827757 DOI: 10.3724/abbs.2022021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia-induced endothelial inflammation participates in the pathogenesis of cardiovascular complications in diabetics. Previous studies showed that protein tyrosine phosphatase 1B (PTP1B) and ETS proto-oncogene 1 (ets1) are involved in hyperglycemia-induced endothelial inflammation. In this study, we hypothesized that ets1 modulates PTP1B expression, thus playing a crucial role in hyperglycemia-induced vascular endothelial inflammation. Our results indicated that high glucose increases monocyte/endothelial adhesion, vascular cell adhesion molecule-1 (VCAM-1) expression and p65 phosphorylation in human umbilical vein endothelial cells (HUVECs). Moreover, high glucose-mediated endothelial inflammation is reversed by PTP1B silencing. In addition, high glucose increases ets1 expression in HUVECs. silencing reverses high glucose-mediated endothelial inflammation. Furthermore, the effect of ets1 overexpression is similar to that of high glucose treatment, which is counteracted by si-PTP1B. The results from ChIP assays indicated that ets1 occupies the PTP1B promoter region. Ets1 overexpression enhances PTP1B promoter activity, which is disappeared after specific binding site mutation. experiments demonstrated that the expressions of VCAM-1, PTP1B, and ets1, as well as the phosphorylation of p65 are augmented in the aorta of diabetic rats. In conclusion, ets1 contributes to hyperglycemia-mediated endothelial inflammation via upregulation of PTP1B expression.
Collapse
|
22
|
Abstract
Diabetic nephropathy (DN), which is a common microvascular complication with a high incidence in diabetic patients, greatly increases the mortality of patients. With further study on DN, it is found that epigenetics plays a crucial role in the pathophysiological process of DN. Epigenetics has an important impact on the development of DN through a variety of mechanisms, and promotes the generation and maintenance of metabolic memory, thus ultimately leading to a poor prognosis. In this review we discuss the methylation of DNA, modification of histone, and regulation of non-coding RNA involved in the progress of cell dysfunction, inflammation and fibrosis in the kidney, which ultimately lead to the deterioration of DN.
Collapse
|
23
|
Zhan J, Chen C, Wang DW, Li H. Hyperglycemic memory in diabetic cardiomyopathy. Front Med 2021; 16:25-38. [PMID: 34921674 DOI: 10.1007/s11684-021-0881-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases account for approximately 80% of deaths among individuals with diabetes mellitus, with diabetic cardiomyopathy as the major diabetic cardiovascular complication. Hyperglycemia is a symptom that abnormally activates multiple downstream pathways and contributes to cardiac hypertrophy, fibrosis, apoptosis, and other pathophysiological changes. Although glycemic control has long been at the center of diabetes therapy, multicenter randomized clinical studies have revealed that intensive glycemic control fails to reduce heart failure-associated hospitalization and mortality in patients with diabetes. This finding indicates that hyperglycemic stress persists in the cardiovascular system of patients with diabetes even if blood glucose level is tightly controlled to the normal level. This process is now referred to as hyperglycemic memory (HGM) phenomenon. We briefly reviewed herein the current advances that have been achieved in research on the underlying mechanisms of HGM in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|