1
|
Salemi M, Di Stefano V, Schillaci FA, Marchese G, Salluzzo MG, Cordella A, De Leo I, Perrotta CS, Nibali G, Lanza G, Ferri R. Transcriptome Study in Sicilian Patients with Huntington's Disease. Diagnostics (Basel) 2025; 15:409. [PMID: 40002561 PMCID: PMC11854416 DOI: 10.3390/diagnostics15040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of the CAG nucleotide repeat in the first exon of the huntingtin (HTT) gene. The disease typically manifests between the second and third decades of life and progresses gradually. The pathogenesis of HD involves the dysregulation of gene expression, influenced by various molecular processes ranging from transcription to protein stability. Methods: To investigate potential variations in gene expression associated with HD, a transcriptome study was conducted using peripheral blood mononuclear cell samples from 15 HD patients and 15 controls, all of Sicilian origin. Results: The analysis identified 7179 statistically significant differentially expressed genes between the two groups. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) terms were applied to identify the pathways affected by these differentially expressed mRNAs. The GSEA results highlighted significant associations between HD and GO pathways related to ribosomal functions and structure. These pathways were predominantly characterized by negative expression, with a substantial number of genes showing dysregulation. This suggests that the molecular processes leading to protein translation via ribosomes may be impaired in HD. Furthermore, dysregulation was observed in genes and non-coding RNAs involved in regulatory roles across various transcriptional processes. Conclusions: These findings support the hypothesis that the entire process, from transcription to translation, is disrupted in HD patients carrying the CAG repeat expansion in the first exon of the HTT gene.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, PA, Italy;
| | - Francesca A. Schillaci
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
| | - Giovanna Marchese
- Genomix4Life S.r.l., 84081 Baronissi, SA, Italy; (G.M.); (A.C.); (I.D.L.)
- Genome Research Center for Health-CRGS, 84081 Baronissi, SA, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
| | - Angela Cordella
- Genomix4Life S.r.l., 84081 Baronissi, SA, Italy; (G.M.); (A.C.); (I.D.L.)
- Genome Research Center for Health-CRGS, 84081 Baronissi, SA, Italy
| | - Ilenia De Leo
- Genomix4Life S.r.l., 84081 Baronissi, SA, Italy; (G.M.); (A.C.); (I.D.L.)
| | | | - Giuseppe Nibali
- U.O.S.D. Neurology and Stroke Unit, P.O. Umberto I, 96100 Siracusa, SR, Italy;
| | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, CT, Italy
| | - Raffaele Ferri
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
| |
Collapse
|
2
|
Solem MA, Pelzel RG, Rozema NB, Brown TG, Reid E, Mansky RH, Gomez-Pastor R. Absence of hippocampal pathology persists in the Q175DN mouse model of Huntington's disease despite elevated HTT aggregation. J Huntingtons Dis 2025; 14:59-84. [PMID: 39973391 PMCID: PMC11974504 DOI: 10.1177/18796397251316762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundHuntington's disease (HD) is a neurodegenerative disorder causing motor, cognitive, and psychiatric impairments, with the striatum being the most affected brain region. However, the role of other regions, such as the hippocampus, in HD remains less understood.ObjectiveHere, we study the comparative impact of enhanced mHTT aggregation and neuropathology in the striatum and hippocampus of two HD mouse models.MethodsWe utilized the zQ175 as a control HD mouse model and the Q175DN mice lacking the PGK-Neomycin cassette generated in house. We performed a comparative characterization of the neuropathology between zQ175 and Q175DN mice in the striatum and the hippocampus by assessing HTT aggregation, neuronal and glial pathology, chaperone expression, and synaptic density.ResultsWe showed that Q175DN mice presented enhanced mHTT aggregation in both striatum and hippocampus compared to zQ175. Striatal neurons showed a greater susceptibility to enhanced accumulation of mHTT in Q175DN. On the contrary, no signs of hippocampal pathology were found in zQ175 and absence of hippocampal pathology persisted in Q175DN mice despite higher levels of mHTT. In addition, Q175DN hippocampus presented increased synaptic density, decreased Iba1+ microglia density and enhanced HSF1 levels in specific subregions of the hippocampus compared to zQ175.ConclusionsQ175DN mice are a valuable tool to understand the fundamental susceptibility differences to mHTT toxicity between striatal neurons and other neuronal subtypes. Furthermore, our findings also suggest that cognitive deficits observed in HD animals might arise from either striatum dysfunction or other regions involved in cognitive processes but not from hippocampal degeneration.
Collapse
Affiliation(s)
- Melissa A Solem
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ross G Pelzel
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas B Rozema
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Taylor G Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Emma Reid
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rachel H Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Zhao J, Xing W, Ji C, Hu H, Zhang Y, Wang Z, Liu J. Nucleophosmin 1 overexpression enhances neuroprotection by attenuating cellular stress in traumatic brain injury. Exp Neurol 2024; 383:115019. [PMID: 39428041 DOI: 10.1016/j.expneurol.2024.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/08/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Traumatic Brain Injury (TBI) is a multifaceted injury that can cause a wide range of symptoms and impairments, leading to significant effects on brain function. Nucleophosmin 1 (NPM1), a versatile phosphoprotein located in the nucleolus, is being recognized as a possible controller of cellular stress reactions and could be important in reducing neuro dysfunction caused by TBI. However the critical roles of NPM1 in cellular stress in TBI remains unclear. METHODS We employed a control cortical impact mouse model and a scratch-induced primary neuronal culture model. Hematoxylin and eosin staining was used to evaluate tissue damage and cellular changes, with NPM1 expression in the cortical area assessed through immunofluorescence staining and Western blot analysis. Neuronal morphology was assessed using Nissl staining. Behavioral assessments were performed to evaluate the impact of NPM1 overexpression on neurobehavioral results in TBI mice. Mitochondrial function was assessed using an Extracellular Flux Analyzer. RESULTS Following TBI, an increase in NPM1 expression was observed, with a peak at 72 h post-injury. Increased levels of NPM1 resulted in decreased neuronal cell death, as shown by Nissl staining, and lower levels of Caspase 8, APE1, H2AX, and 8-OHDG expression, indicating a reduction in DNA damage. NPM1 overexpression also resulted in improved neurobehavioral outcomes, characterized by decreased neurological deficits and enhanced motor function post-TBI. Additionally, in vitro, scratch-induction experiments revealed that NPM1 overexpression mitigated mitochondrial damage, as evidenced by the downregulation of P53, BCL2, and Cyto C expression levels and improvements in mitochondrial respiratory function. CONCLUSION These findings suggest NPM1 as a promising target for developing interventions to alleviate TBI-related cellular stress and promote neuronal survival.
Collapse
Affiliation(s)
- Jiashuo Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China; Department of Neurosurgery, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu Province, 215000, China
| | - Weixin Xing
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China; Department of Neurosurgery, The 928th Hospital of People's Liberation Army Joint Logistic Support Force, Haikou, Hainan Province, 570000, China
| | - Chengyuan Ji
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Hongwei Hu
- Department of Neurosurgery, Changzhou Jintan First People's Hospital Affiliated to Jiangsu University, 500 Jintan Avenue, Jintan 210036, China
| | - Yuanqing Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China.
| | - Jiangang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China.
| |
Collapse
|
4
|
Solem MA, Pelzel R, Rozema NB, Brown TG, Reid E, Mansky RH, Gomez-Pastor R. Enhanced Hippocampal Spare Capacity in Q175DN Mice Despite Elevated mHTT Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618355. [PMID: 39464002 PMCID: PMC11507687 DOI: 10.1101/2024.10.14.618355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Huntington's disease (HD) is a neurodegenerative disease resulting in devastating motor, cognitive, and psychiatric deficits. The striatum is a brain region that controls movement and some forms of cognition and is most significantly impacted in HD. However, despite well-documented deficits in learning and memory in HD, knowledge of the potential implication of other brain regions such as the hippocampus remains limited. Objective Here, we study the comparative impact of enhanced mHTT aggregation and neuropathology in the striatum and hippocampus of two HD mouse models. Methods We utilized the zQ175 as a control HD mouse model and the Q175DN mice lacking the PGK-Neomycin cassette generated in house. We performed a comparative characterization of the neuropathology between zQ175 and Q175DN mice in the striatum and the hippocampus by assessing HTT aggregation, neuronal and glial pathology, chaperone expression, and synaptic density. Results We showed that Q175DN mice presented enhanced mHTT aggregation in both striatum and hippocampus compared to zQ175. Striatal neurons showed a greater susceptibility to enhanced accumulation of mHTT than hippocampal neurons in Q175DN despite high levels of mHTT in both regions. Contrary to the pathology seen in the striatum, Q175DN hippocampus presented enhanced spare capacity showing increased synaptic density, decreased Iba1+ microglia density and enhanced HSF1 levels in specific subregions of the hippocampus compared to zQ175. Conclusions Q175DN mice are a valuable tool to understand the fundamental susceptibility differences to mHTT toxicity between striatal neurons and other neuronal subtypes. Furthermore, our findings also suggest that cognitive deficits observed in HD animals might arise from either striatum dysfunction or other regions involved in cognitive processes but not from hippocampal degeneration.
Collapse
Affiliation(s)
- Melissa A Solem
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ross Pelzel
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Nicholas B. Rozema
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Taylor G. Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Emma Reid
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Rachel H. Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - R Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Wagner M, Zhu G, Khalid F, Phan T, Maity P, Lupu L, Agyeman-Duah E, Wiese S, Lindenberg KS, Schön M, Landwehrmeyer GB, Penzo M, Kochanek S, Scharffetter-Kochanek K, Mulaw M, Iben S. General loss of proteostasis links Huntington disease to Cockayne syndrome. Neurobiol Dis 2024; 201:106668. [PMID: 39284372 DOI: 10.1016/j.nbd.2024.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Cockayne syndrome (CS) is an autosomal recessive disorder of developmental delay, multiple organ system degeneration and signs of premature ageing. We show here, using the RNA-seq data from two CS mutant cell lines, that the CS key transcriptional signature displays significant enrichment of neurodegeneration terms, including genes relevant in Huntington disease (HD). By using deep learning approaches and two published RNA-Seq datasets, the CS transcriptional signature highly significantly classified and predicted HD and control samples. Neurodegeneration is one hallmark of CS disease, and fibroblasts from CS patients with different causative mutations display disturbed ribosomal biogenesis and a consecutive loss of protein homeostasis - proteostasis. Encouraged by the transcriptomic data, we asked whether this pathomechanism is also active in HD. In different HD cell-culture models, we showed that mutant Huntingtin impacts ribosomal biogenesis and function. This led to an error-prone protein synthesis and, as shown in different mouse models and human tissue, whole proteome instability, and a general loss of proteostasis.
Collapse
Affiliation(s)
- Maximilian Wagner
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany; Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Gaojie Zhu
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Fatima Khalid
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Tamara Phan
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Ludmila Lupu
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Eric Agyeman-Duah
- Unit for Single-Cell Genomics, Medical Faculty, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Katrin S Lindenberg
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Michael Schön
- Department of Anatomy, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | | | - Marianna Penzo
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Stefan Kochanek
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Medhanie Mulaw
- Unit for Single-Cell Genomics, Medical Faculty, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany.
| | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany.
| |
Collapse
|
6
|
Deo A, Ghosh R, Ahire S, Marathe S, Majumdar A, Bose T. Two novel DnaJ chaperone proteins CG5001 and P58IPK regulate the pathogenicity of Huntington's disease related aggregates. Sci Rep 2024; 14:20867. [PMID: 39242711 PMCID: PMC11379882 DOI: 10.1038/s41598-024-71065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disease caused due to aggregation of Huntingtin (HTT) protein. This study involves the cloning of 40 DnaJ chaperones from Drosophila, and overexpressing them in yeasts and fly models of HD. Accordingly, DnaJ chaperones were catalogued as enhancers or suppressors based on their growth phenotypes and aggregation properties. 2 of the chaperones that came up as targets were CG5001 and P58IPK. Protein aggregation and slow growth phenotype was rescued in yeasts, S2 cells, and Drosophila transgenic lines of HTT103Q with these overexpressed chaperones. Since DnaJ chaperones have protein sequence similarity across species, they can be used as possible tools to combat the effects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ankita Deo
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Rishita Ghosh
- Indian Institute of Science and Educational Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Snehal Ahire
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sayali Marathe
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Amitabha Majumdar
- National Centre for Cell Sciences, Inside Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India.
| | - Tania Bose
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
7
|
Shlapakova PS, Dobrynina LA, Kalashnikova LA, Gubanova MV, Danilova MS, Gnedovskaya EV, Grigorenko AP, Gusev FE, Manakhov AD, Rogaev EI. Peripheral Blood Gene Expression Profiling Reveals Molecular Pathways Associated with Cervical Artery Dissection. Int J Mol Sci 2024; 25:5205. [PMID: 38791244 PMCID: PMC11121660 DOI: 10.3390/ijms25105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Cervical artery dissection (CeAD) is the primary cause of ischemic stroke in young adults. Monogenic heritable connective tissue diseases account for fewer than 5% of cases of CeAD. The remaining sporadic cases have known risk factors. The clinical, radiological, and histological characteristics of systemic vasculopathy and undifferentiated connective tissue dysplasia are present in up to 70% of individuals with sporadic CeAD. Genome-wide association studies identified CeAD-associated genetic variants in the non-coding genomic regions that may impact the gene transcription and RNA processing. However, global gene expression profile analysis has not yet been carried out for CeAD patients. We conducted bulk RNA sequencing and differential gene expression analysis to investigate the expression profile of protein-coding genes in the peripheral blood of 19 CeAD patients and 18 healthy volunteers. This was followed by functional annotation, heatmap clustering, reports on gene-disease associations and protein-protein interactions, as well as gene set enrichment analysis. We found potential correlations between CeAD and the dysregulation of genes linked to nucleolar stress, senescence-associated secretory phenotype, mitochondrial malfunction, and epithelial-mesenchymal plasticity.
Collapse
Affiliation(s)
- Polina S. Shlapakova
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Larisa A. Dobrynina
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Ludmila A. Kalashnikova
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Mariia V. Gubanova
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Maria S. Danilova
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Elena V. Gnedovskaya
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Anastasia P. Grigorenko
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia (F.E.G.)
| | - Fedor E. Gusev
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia (F.E.G.)
- Department of Genetics, Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi 354340, Russia; (A.D.M.)
| | - Andrey D. Manakhov
- Department of Genetics, Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi 354340, Russia; (A.D.M.)
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Evgeny I. Rogaev
- Department of Genetics, Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi 354340, Russia; (A.D.M.)
- Department of Psychiatry, UMass Chan Medical School, 222 Maple Ave, Reed-Rose-Gordon Building, Shrewsbury, MA 01545, USA
| |
Collapse
|
8
|
Kumari A, Vertii A. Perspective: "Current understanding of NADs dynamics and mechanisms of Disease". Gene 2024; 894:147960. [PMID: 37923094 DOI: 10.1016/j.gene.2023.147960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Chromatin architecture is essential for gene regulation, and multiple levels of the 3D chromatin organization exhibit dynamic changes during organismal development and cell differentiation. Heterochromatin, termed compartment B in Hi-C datasets, is a phase-separating gene-silencing form of chromatin, preferentially located at the two nuclear sites, nuclear (lamina-associate chromatin domains, LADs) and nucleoli (nucleoli-associated chromatin domains, NADs) peripheries. LADs and NADs contain both interchangeable and location-specific chromatin domains. Recent studies suggest striking dynamics in LADs and NADs during the differentiation of embryonic stem cells into neural progenitors and neurons. Here we discuss recent advances in understanding NADs changes during neuronal differentiation and future questions on how NADs integrity can contribute to healthy neurodevelopment and neurodevelopment diseases.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 1605, US
| | - Anastassiia Vertii
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 1605, US.
| |
Collapse
|
9
|
Volik PI, Kopeina GS, Zhivotovsky B, Zamaraev AV. Total recall: the role of PIDDosome components in neurodegeneration. Trends Mol Med 2023; 29:996-1013. [PMID: 37716905 DOI: 10.1016/j.molmed.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/18/2023]
Abstract
The PIDDosome is a multiprotein complex that includes p53-induced protein with a death domain 1 (PIDD1), receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD), and caspase-2, the activation of which is driven by PIDDosome assembly. In addition to the key role of the PIDDosome in the regulation of cell differentiation, tissue homeostasis, and organogenesis and regeneration, caspase-2, RAIDD and PIDD1 engagement in neuronal development was shown. Here, we focus on the involvement of PIDDosome components in neurodegenerative disorders, including retinal neuropathies, different types of brain damage, and Alzheimer's disease (AD), Huntington's disease (HD), and Lewy body disease. We also discuss pathogenic variants of PIDD1, RAIDD, and caspase-2 that are associated with intellectual, behavioral, and psychological abnormalities, together with prospective PIDDosome inhibition strategies and their potential clinical application.
Collapse
Affiliation(s)
- Pavel I Volik
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia
| | - Gelina S Kopeina
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia; Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.
| | - Alexey V Zamaraev
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia.
| |
Collapse
|
10
|
Gastelum S, Michael AF, Bolger TA. Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1814. [PMID: 37671427 DOI: 10.1002/wrna.1814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023]
Abstract
The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Stephanie Gastelum
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Allison F Michael
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Timothy A Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Nam J, Gwon Y. Neuronal biomolecular condensates and their implications in neurodegenerative diseases. Front Aging Neurosci 2023; 15:1145420. [PMID: 37065458 PMCID: PMC10102667 DOI: 10.3389/fnagi.2023.1145420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Biomolecular condensates are subcellular organizations where functionally related proteins and nucleic acids are assembled through liquid-liquid phase separation, allowing them to develop on a larger scale without a membrane. However, biomolecular condensates are highly vulnerable to disruptions from genetic risks and various factors inside and outside the cell and are strongly implicated in the pathogenesis of many neurodegenerative diseases. In addition to the classical view of the nucleation-polymerization process that triggers the protein aggregation from the misfolded seed, the pathologic transition of biomolecular condensates can also promote the aggregation of proteins found in the deposits of neurodegenerative diseases. Furthermore, it has been suggested that several protein or protein-RNA complexes located in the synapse and along the neuronal process are neuron-specific condensates displaying liquid-like properties. As their compositional and functional modifications play a crucial role in the context of neurodegeneration, further research is needed to fully understand the role of neuronal biomolecular condensates. In this article, we will discuss recent findings that explore the pivotal role of biomolecular condensates in the development of neuronal defects and neurodegeneration.
Collapse
Affiliation(s)
| | - Youngdae Gwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
12
|
Sun Y, Hu X, Qiu D, Zhang Z, Lei L. rDNA Transcription in Developmental Diseases and Stem Cells. Stem Cell Rev Rep 2023; 19:839-852. [PMID: 36633782 DOI: 10.1007/s12015-023-10504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2023] [Indexed: 01/13/2023]
Abstract
As the first and rate-limiting step in ribosome biogenesis, rDNA transcription undergoes significant dynamic changes during cell pluripotency alteration. Over the past decades, rDNA activity has demonstrated dynamic changes, but most people view it as passive compliance with cellular needs. The evidence for rDNA transcriptional activity determining stem cell pluripotency is growing as research advances, resulting in the arrest of embryonic development and impairment of stem cell lines stemness by rDNA transcription inhibition. The exact mechanism by which rDNA activation influences pluripotency remains unknown. The first objective of this opinion article is to describe rDNA changes in the pathological and physiological course of life, including developmental diseases, tumor genesis, and stem cell differentiation. After that, we propose three hypotheses regarding rDNA regulation of pluripotency: 1) Specialized ribosomes synthesized from rDNA variant, 2) Nucleolar stress induced by the drop of rDNA transcription, 3) Interchromosomal interactions between rDNA and other genes. The pluripotency regulatory center is expected to focus strongly on rDNA. A small molecule inhibitor of rDNA is used to treat tumors caused by abnormal pluripotency activation. By understanding how rDNA regulates pluripotency, we hope to treat developmental diseases and safely apply somatic cell reprogramming in clinical settings.
Collapse
Affiliation(s)
- Yuchen Sun
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Dan Qiu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Zhijing Zhang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081.
| |
Collapse
|
13
|
Florio D, Roviello V, La Manna S, Napolitano F, Maria Malfitano A, Marasco D. Small molecules enhancers of amyloid aggregation of C-terminal domain of Nucleophosmin 1 in acute myeloid leukemia. Bioorg Chem 2022; 127:106001. [DOI: 10.1016/j.bioorg.2022.106001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
14
|
Nucleolus and Nucleolar Stress: From Cell Fate Decision to Disease Development. Cells 2022; 11:cells11193017. [PMID: 36230979 PMCID: PMC9563748 DOI: 10.3390/cells11193017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Besides the canonical function in ribosome biogenesis, there have been significant recent advances towards the fascinating roles of the nucleolus in stress response, cell destiny decision and disease progression. Nucleolar stress, an emerging concept describing aberrant nucleolar structure and function as a result of impaired rRNA synthesis and ribosome biogenesis under stress conditions, has been linked to a variety of signaling transductions, including but not limited to Mdm2-p53, NF-κB and HIF-1α pathways. Studies have uncovered that nucleolus is a stress sensor and signaling hub when cells encounter various stress conditions, such as nutrient deprivation, DNA damage and oxidative and thermal stress. Consequently, nucleolar stress plays a pivotal role in the determination of cell fate, such as apoptosis, senescence, autophagy and differentiation, in response to stress-induced damage. Nucleolar homeostasis has been involved in the pathogenesis of various chronic diseases, particularly tumorigenesis, neurodegenerative diseases and metabolic disorders. Mechanistic insights have revealed the indispensable role of nucleolus-initiated signaling in the progression of these diseases. Accordingly, the intervention of nucleolar stress may pave the path for developing novel therapies against these diseases. In this review, we systemically summarize recent findings linking the nucleolus to stress responses, signaling transduction and cell-fate decision, set the spotlight on the mechanisms by which nucleolar stress drives disease progression, and highlight the merit of the intervening nucleolus in disease treatment.
Collapse
|
15
|
Barut J, Rafa-Zabłocka K, Jurga AM, Bagińska M, Nalepa I, Parlato R, Kreiner G. Genetic lesions of the noradrenergic system trigger induction of oxidative stress and inflammation in the ventral midbrain. Neurochem Int 2022; 155:105302. [PMID: 35150790 DOI: 10.1016/j.neuint.2022.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/07/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits caused by the loss of dopaminergic neurons in the substantia nigra (SN) and ventral tegmental area (VTA). However, clinical data revealed that not only the dopaminergic system is affected in PD. Postmortem studies showed degeneration of noradrenergic cells in the locus coeruleus (LC) to an even greater extent than that observed in the SN/VTA. Pharmacological models support the concept that modification of noradrenergic transmission can influence the PD-like phenotype induced by neurotoxins. Nevertheless, there are no existing data on animal models regarding the distant impact of noradrenergic degeneration on intact SN/VTA neurons. The aim of this study was to create a transgenic mouse model with endogenously evoked progressive degeneration restricted to noradrenergic neurons and investigate its long-term impact on the dopaminergic system. To this end, we selectively ablated the transcription initiation factor-IA (TIF-IA) in neurons expressing dopamine β-hydroxylase (DBH) by the Cre-loxP system. This mutation mimics a condition of nucleolar stress affecting neuronal survival. TIF-IADbhCre mice were characterized by selective, progressive degeneration of noradrenergic neurons, followed by phenotypic alterations associated with sympathetic system impairment. Our studies did not show any loss of tyrosine hydroxylase (TH)-positive cells in the SN/VTA of mutant mice; however, we observed increased indices of oxidative stress, enhanced markers of glial cell activation, inflammatory processes and isolated degenerating cells positive for FluoroJade C. These results were supported by gene expression profiling of VTA and SN from TIF-IADbhCre mice, revealing that 34 out of 246 significantly regulated genes in the SN/VTA were related to PD. Overall, our results shed new light on the possible negative influence of noradrenergic degeneration on dopaminergic neurons, reinforcing the neuroprotective role of noradrenaline.
Collapse
Affiliation(s)
- Justyna Barut
- Dept. Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, Smętna 12, Poland
| | - Katarzyna Rafa-Zabłocka
- Dept. Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, Smętna 12, Poland
| | - Agnieszka M Jurga
- Dept. Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, Smętna 12, Poland
| | - Monika Bagińska
- Dept. Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, Smętna 12, Poland
| | - Irena Nalepa
- Dept. Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, Smętna 12, Poland
| | - Rosanna Parlato
- Division of Neurodegenerative Disorders, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim Heidelberg University, Mannheim, Germany; Institute of Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Grzegorz Kreiner
- Dept. Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, Smętna 12, Poland.
| |
Collapse
|