1
|
Peng Q, Zhang H, Li Z. Methyltransferase-like 16 drives diabetic nephropathy progression via epigenetic suppression of V-set pre-B cell surrogate light chain 3. Life Sci 2025; 374:123694. [PMID: 40348175 DOI: 10.1016/j.lfs.2025.123694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
AIMS This study aims to elucidate how Methyltransferase-like 16 (METTL16), as a key m6A methyltransferase, contributes to the pathogenesis of diabetic nephropathy by regulating oxidative stress and gene expression through epigenetic mRNA methylation. MATERIALS AND METHODS In the present study, in vivo and in vitro DN models were established to investigate the role of METTL16 in disease progression. RNA-seq and m6A-seq were employed to identify downstream targets of METTL16 and validate its regulatory mechanisms. Intervention experiments were conducted to further elucidate the impact of this axis on DN progression. KEY FINDINGS In DN models, METTL16 expression was significantly upregulated, accompanied by an increase in m6A modification levels and enhanced YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated recognition activity. Transcriptomic analysis identified v-set pre-B cell surrogate light chain (Vpreb3) as a downstream target of METTL16. In the DN model, Vpreb3 expression was suppressed through METTL16-mediated m6A modification and YTHDF2-mediated m6A-dependent mRNA degradation. Silencing METTL16 restored Vpreb3 expression and alleviated oxidative stress-induced kidney injury. The results of the present study indicated that METTL16 epigenetically suppresses Vpreb3 expression, exacerbating the progression of DN. SIGNIFICANCE This suggests that targeting this pathway could serve as a potential therapeutic strategy to mitigate oxidative stress and alleviate DN-associated renal injury.
Collapse
Affiliation(s)
- Qunyong Peng
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hanyong Zhang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial first-class applied discipline (pharmacy), Changsha 410000, China
| | - Zhenyu Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
2
|
Xu X, Wang M, Geng Z, Jin Y, Bai G, Dawn B, Gong F, Zhao L. Identification of m 6A-related biomarkers in Kawasaki disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167744. [PMID: 39988181 DOI: 10.1016/j.bbadis.2025.167744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/26/2024] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
Kawasaki disease (KD) is a widely prevalent acute vasculitis in children that often leads to cardiovascular complications. Although m6A modification plays a crucial role in various cardiovascular diseases, m6A-related biomarkers for KD remain unknown. We utilized GEO datasets to perform WGCNA to identify m6A-related differentially expressed genes in KD. Feature genes associated with m6A and key immune cells were identified using RF and SVM-RFE algorithms, and CIBERSORT, and the correlation was evaluated using CytoHubba and ROC analysis. The expression of hub genes was assessed in blood from patients with KD and in mice with CAWS-induced vasculitis. Our analysis identified four m6A-related hub genes: SNRK, PCCB, PIGP, and PRPS1, which exhibited significant negative correlation with M2 macrophages. A total of 477 microRNAs, 22 lncRNAs, and 3 snRNAs were identified as potential regulators of these hub genes. The ROC analysis demonstrated a robust diagnostic accuracy of these hub genes for KD. The expression of these hub genes was reduced in blood from patients with KD and in mice with vasculitis. In conclusion, SNRK, PCCB, PIGP, and PRPS1 demonstrate significant diagnostic value for KD and may also be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| | - Min Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| | - Zhimin Geng
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yihua Jin
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China
| | - Guannan Bai
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV, USA
| | - Fangqi Gong
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, China.
| | - Lin Zhao
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Zhejiang, China.
| |
Collapse
|
3
|
Gu L, Zhou Z. Unlocking the therapeutic potential of lncRNA FENDRR in DCM: novel targets and insights via the miR-296-5p/HMGA1 axis. J Cardiothorac Surg 2025; 20:254. [PMID: 40450345 DOI: 10.1186/s13019-025-03477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 05/18/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) holds considerable promise in mitigating the onset and progression of diabetic cardiomyopathy (DCM). FENDRR was selected due to its reported involvement in cardiac apoptosis and inflammatory regulation, key pathways in DCM pathogenesis. This study investigated role and underlying mechanisms of FENDRR in DCM. METHODS Type 2 diabetes mellitus (T2DM) patients were included and stratified by DCM status. One group was T2DM patients without DCM (n = 49), and the other was T2DM patients with DCM (n = 47).. Clinical data from both groups were compared. qRT-PCR was utilized to quantify serum FENDRR expression, with ROC analysis assessing its diagnostic value. A DCM cell model was established using high glucose-treated H9c2 cells. Flow cytometry and ELISA assays measured apoptosis, myocardial enzyme levels, antioxidant enzyme levels, and inflammatory. Dual-luciferase assays confirmed FENDRR-miR-296-5p and miR-296-5p-HMGA1 interactions. RESULTS FENDRR was upregulated in DCM patients and high glucose-treated H9c2s (AUC = 0.888). si-FENDRR mitigated apoptosis in high glucose-stimulated H9c2 cells by inhibiting Bax and promoting Bcl-2 expression. si-FENDRR reduced myocardial enzymes release and inflammatory, and restored antioxidant enzyme levels. miR-296-5p was validated as a target of FENDRR, exhibiting an expression pattern opposite to that of FENDRR. miR-296-5p knockdown negated the positive effects of si-FENDRR on cardiomyocytes. HMGA1, a target gene of miR-296-5p, was upregulated in DCM patients and high glucose environments. CONCLUSIONS This preliminary study uncovers the potential diagnostic value of FENDRR in DCM and explores its molecular mechanisms regulating myocardial cell injury via the miR-296-5p/HMGA1 axis.
Collapse
Affiliation(s)
- Lei Gu
- Department of Endocrinology,, Yangpu Hospital, School of Medicine, Tongji University, No. 450, Teng Yue Road, Yangpu District, Shanghai, 200092, China
| | - Zunhai Zhou
- Department of Endocrinology,, Yangpu Hospital, School of Medicine, Tongji University, No. 450, Teng Yue Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
4
|
Fan D, Shang Y, Cong Y, Jiao Y, Li N, Zhao H. Reciprocal regulation between m6 A modifications and non-coding RNAs: emerging roles in cancer therapeutic resistance. Discov Oncol 2025; 16:920. [PMID: 40413672 DOI: 10.1007/s12672-025-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
In recent years, the interplay between N6-methyladenosine (m6A) modifications and non-coding RNAs (ncRNAs) has emerged as a pivotal research area, owing to their crucial involvement in the pathophysiological mechanisms underlying various diseases. A significant hurdle in cancer therapy is therapeutic resistance, which frequently contributes to adverse patient outcomes. Recent investigations have underscored the vital role that interactions between m6A modifications and ncRNAs play in mediating cancer therapeutic resistance via the MAPK, PI3K/Akt/mTOR, Wnt/β-catenin, HIPPO, and NF-κB pathways. This review elucidates how these interactions drive tumor therapeutic resistance by modulating these pathways. By dissecting the regulatory dynamics between m6A and ncRNAs in the context of cancer therapeutic resistance, this review aims to deepen the understanding of m6A-ncRNA interaction in cancer therapeutic resistance and identify potential therapeutic targets to improve cancer treatment efficacy.
Collapse
Affiliation(s)
- Dan Fan
- Nanshan Class, The First Clinical Institute, Zunyi Medical University, Zunyi, 563000, China
| | - Yan Shang
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, China
| | - Yating Cong
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, China
| | - Yanlin Jiao
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, China
| | - Na Li
- The First Clinical Institute, Zunyi Medical University, Zunyi, 563000, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
5
|
Li L, Zha H, Miao W, Li C, Wang A, Qin S, Gao S, Sheng L, Wang Y. LncRNA MEG3 promotes pyroptosis via miR-145-5p/TLR4/NLRP3 axis and aggravates cerebral ischemia-reperfusion injury. Metab Brain Dis 2025; 40:201. [PMID: 40358637 PMCID: PMC12075370 DOI: 10.1007/s11011-025-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025]
Abstract
Long noncoding RNA (lncRNA) MEG3 has been considered as a novel target for alleviating the brain tissue damage during cerebral ischemia-reperfusion injury (CIRI). Numerous studies have reported that pyroptosis is involved in the pathogenesis of CIRI. This study focused on whether MEG3 modulates CIRI via pyroptosis and its underlying mechanism. The middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model and the oxygen glucose deprivation/reoxygenation (OGD/R) cell model were established. si-MEG3 and miR-145-5p inhibitor were transfected to inhibit MEG3 and miR-145-5p, respectively. As a TLR4 inhibitor, Resatorvid inhibits the TLR4 signaling pathway. TTC and TUNEL staining were used for infarction volume and cell death detection. The differential expression of MGE3, miR-145-5p, TLR4, NLRP3, Caspase-1, IL-1β, and IL-18 was determined using real-time PCR and western blot. The interaction between MEG3 and miR-145-5p, as well as between miR-145-5p and TLR4 was confirmed by the dual-luciferase reporter assay. This study confirmed that the elevated expression of MEG3 during CIRI, and it contributes to pyroptosis by regulating miR-145-5p/TLR4 axis. The knockdown of MEG3 reduced the expression of TLR4, NLRP3, Caspase-1, IL-1β, and IL-18, thereby preventing pyroptosis. Inhibition of miR-145-5p reversed the effect of MEG3 knockdown and promoted pyroptosis. Resatorvid, the inhibitor of TLR4, counteracted the effect of miR-145-5p inhibitor and suppressed pyroptosis. Our findings reveal that MEG3 promotes pyroptosis via miR-145-5p/TLR4/NLRP3 axis and aggravates CIRI, suggesting a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China
| | - Hao Zha
- Department of Reproductive Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Wei Miao
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China
| | - Chunyan Li
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China
| | - Aimei Wang
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China
| | - Shiyuan Qin
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China
| | - Shuang Gao
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China
| | - Lingli Sheng
- Department of Geriatrics, Baoshan People's Hospital, Baoshan, 678000, China
| | - Ying Wang
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Avenue, Wuhua District, Kunming, 650032, Yunnan, China.
| |
Collapse
|
6
|
Meng Q, Huang Y, Long X, Liu L, Tang Y, He J, Luo Y. Scutellarin mitigates high glucose-induced pyroptosis in diabetic atherosclerosis: Role of Nrf2-FBXL2-mediated NLRP3 degradation. Endocr J 2025; 72:495-507. [PMID: 40010729 PMCID: PMC12086276 DOI: 10.1507/endocrj.ej24-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
This study investigated the role of scutellarin (Scu) and Nrf2 in diabetic atherosclerosis, focusing on their effects on FBXL2 and NLRP3 ubiquitination. Human umbilical vein endothelial cells were treated with high glucose (HG) to model diabetic atherosclerosis in vitro. Cell viability, cytotoxicity, pyroptosis, and inflammatory cytokine levels were assessed, and gene interactions were examined by dual-luciferase reporter assays. Ubiquitination and protein levels were analyzed through immunoprecipitation and western blotting. The results revealed that HG treatment decreased Nrf2 and FBXL2 levels and enhanced NLRP3-mediated pyroptosis. However, Scu treatment increased Nrf2 expression, improved cell viability, and inhibited pyroptosis. Nrf2 knockdown downregulated FBXL2 and reversed the protective effects of Scu. Additionally, FBXL2 promoted the ubiquitination-mediated degradation of NLRP3 and suppressed pyroptosis. The activation of NLRP3 reversed the protective effects of Scu on diabetic atherosclerosis. These findings suggest that Scu alleviated diabetic atherosclerosis by increasing Nrf2 and FBXL2 expression, promoting NLRP3 ubiquitination-mediated degradation, and suppressing pyroptosis.
Collapse
Affiliation(s)
- Qingxin Meng
- School of Medicine, Changsha Social Work College, Changsha, Hunan Province 410004, China
| | - Yongpan Huang
- School of Medicine, Changsha Social Work College, Changsha, Hunan Province 410004, China
| | - Xian Long
- School of Medicine, Changsha Social Work College, Changsha, Hunan Province 410004, China
| | - Lijing Liu
- School of Medicine, Changsha Social Work College, Changsha, Hunan Province 410004, China
| | - Yani Tang
- School of Medicine, Changsha Social Work College, Changsha, Hunan Province 410004, China
| | - Jingjing He
- School of Medicine, Changsha Social Work College, Changsha, Hunan Province 410004, China
| | - Yayuan Luo
- Department of Neurology, Hunan Aerospace Hospital, Changsha, Hunan Province 410205, China
| |
Collapse
|
7
|
Shang W, Geng X, Sun X, Fan X, Li A, Zhang C, Kang Y, Liang Y, Zhang J. Non-coding RNAs modulate pyroptosis in diabetic cardiomyopathy: A comprehensive review. Int J Biol Macromol 2025; 309:142865. [PMID: 40188918 DOI: 10.1016/j.ijbiomac.2025.142865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/07/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a leading cause of heart failure (HF) among individuals with diabetes, presenting a significant medical challenge due to its complex pathophysiology and the lack of targeted therapies. Pyroptosis, a pro-inflammatory form of programmed cell death (PCD), is the predominant mode of cell death in the primary resident cells involved in DCM. It has been reported to be critical in DCM's onset, progression, and pathogenesis. Non-coding RNAs (ncRNAs), diverse transcripts lacking protein-coding potential, are essential for cellular physiology and the progression of various diseases. Increasing evidence indicates that ncRNAs are pivotal in the pathogenesis of DCM by regulating pyroptosis. This observation suggests that targeting the regulation of pyroptosis by ncRNAs may offer a novel therapeutic approach for DCM. However, a comprehensive review of this topic is currently lacking. Our objective is to elucidate the regulatory role of ncRNAs in pyroptosis associated with DCM and to elucidate the relationships among these factors. Additionally, we explored how ncRNAs influence pyroptosis and contribute to the pathophysiology of DCM. By doing so, we aim to identify new research targets for the clinical diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Wenyu Shang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xiaofei Geng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xitong Sun
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xinbiao Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Aolin Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Chi Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yuxin Kang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yongchun Liang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Junping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China.
| |
Collapse
|
8
|
Zhang H, Wang J, Liu C, Yan K, Wang X, Sheng X. Interactions between long non-coding RNAs and m6 A modification in cancer. Discov Oncol 2025; 16:579. [PMID: 40253659 PMCID: PMC12009795 DOI: 10.1007/s12672-025-02387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of transcripts exceeding 200 nucleotides (nt) in length, which are broadly implicated in a broad spectrum of physiological and pathological processes, including allelic imprinting, genome packaging, chromatin remodeling, transcriptional activation and disruption, as well as the occurrence and progression of oncogenesis. N6-methyladenosine (m6 A) methylation stands as the most prevalent RNA modification, affecting multiple facets of RNA biology such as stability, splicing, transport, translation, degradation, and tertiary structure. Aberrant m6 A modifications are intimately implicated in cancer progression. In recent years, there has been a growing number of studies illuminating the dynamic interplay between lncRNAs and m6 A modifications, revealing that lncRNAs can modulate the activity of m6 A regulators, while m6 A not only affects the structural integrity but also the translational efficiency and stability of lncRNAs. Together, the interactions between lncRNAs and m6 A modifications significantly impact downstream oncogenes, cancer suppressor genes, cellular metabolism, epithelial-mesenchymal transition, angiogenesis, drug transport, DNA homology repair, and epigenetics, subsequently influencing tumorigenesis, metastasis, and drug resistance. This article endeavors to clarify the functions and mechanisms of lncRNAs and m6 A modifications interaction in cancer to provide promising insights for cancer diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Han Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Junjie Wang
- Department of Pathophysiology, Jiangsu University School of Medicine, Zhenjiang, 212013, Jiangsu, China
| | - Chunyi Liu
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Kaiqin Yan
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Xiaomeng Wang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Xiumei Sheng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
9
|
Cheng M, Jin J, Zhang D, Xiao M, Zhao H, Zhao X, Zhang S, Bai Y, Xu J. METTL3 obstructs vascular smooth muscle cells osteogenic reprogramming by methylating Runx2 in chronic kidney disease. Commun Biol 2025; 8:582. [PMID: 40200050 PMCID: PMC11978862 DOI: 10.1038/s42003-025-07972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
The reprogrammed osteogenic phenotype of vascular smooth muscle cells (VSMCs) is considered a critical mechanism of vascular calcification (VC) in chronic kidney disease (CKD). Currently, the RNA N6-methyladenosine (m6A) modification is deciphered to be dynamically and reversibly participated in functional regulation of VSMCs. Here, we discover that serum m6A levels in RNA are dramatically reduced as VC progressed in patients with CKD, and this m6A demethylation is mainly due to the downregulation of methyltransferaselike-3 (METTL3). Functionally, METTL3 depletion exacerbates, whereas its overexpression attenuates calcification progression and osteogenic reprogramming. Mechanistically, Runx2, a crucial osteogenic gene, is identified as a key downstream target of METTL3-mediated m6A methylation. METTL3 negatively regulates Runx2 expression through the m6A modification. Overexpression of METTL3 exacerbates Runx2 mRNA degradation, which is orchestrated by the m6A reader YT521-B homology domain family 2 (YTHDF2) through specifically recognizing its m6A sites in the 3'UTR region. Finally, in vivo METTLs inhibitor SAH treatment aggravates VC and osteogenic conversion in aortas of CKD rats, accompanied by Runx2 expression upregulation. These above data reveal an underlying mechanism by which the m6A writer METTL3 regulates Runx2 expression through YTHDF2-mediated mRNA degradation and suggest a potential therapeutic strategy to reverse the osteogenic reprogramming of VSMCs.
Collapse
MESH Headings
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/pathology
- Osteogenesis/genetics
- Rats
- Humans
- Male
- Myocytes, Smooth Muscle/metabolism
- Methylation
- Rats, Sprague-Dawley
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/pathology
- Cellular Reprogramming
- Adenosine/analogs & derivatives
- Adenosine/metabolism
Collapse
Affiliation(s)
- Meijuan Cheng
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Jingjing Jin
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Dongxue Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Mei Xiao
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Hairong Zhao
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Xiaoying Zhao
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
- Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China.
- Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China.
| |
Collapse
|
10
|
Zhuo S, Liu Y, Wang S, Chen Z, Shi X, Zhang Y, Xu D, Hu J, Wang Y, Qu X. LncRNA MEG3 exacerbates diabetic cardiomyopathy via activating pyroptosis signaling pathway. Front Pharmacol 2025; 16:1538059. [PMID: 40242439 PMCID: PMC12000004 DOI: 10.3389/fphar.2025.1538059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is a prevalent complication observed in diabetic patients. The long non-coding RNA maternally expressed gene 3 (lncMEG3) has been found to be intricately associated with myocardial infarction and heart failure. However, the role of lncMEG3 in DCM remains unclear. The present study was designed to investigate the role of lncMEG3 in DCM and elucidate the underlying molecular mechanisms. Methods: The diabetic mouse model was established through intraperitoneal injection streptozotocin (STZ). The heart-targeted adeno-associated virus carrying lncMEG3 interfering RNA (AAV9-shMEG3) was administered via tail-vein injection to induce silencing of lncMEG3 in diabetic mice. Echocardiography was performed to evaluate cardiac function, while hematoxylin and eosin (H&E) staining and Masson trichrome staining were employed for the detection of cardiac remodeling. The underlying mechanisms were investigated using Western blot and real-time PCR (qPCR). Results: The expression of lncMEG3 was increased in hearts with DCM and in AC16 cardiomyocytes treated with high glucose. The knockout of lncMEG3 reduced inflammation, cardiac fibrosis and myocardial hypertrophy, and improved cardiac dysfunction in diabetic mice. In diabetic mice, the activation of the nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3)-inflammasome was observed, whereas silencing of lncMEG3 resulted in a reduction in NLRP3 inflammasome activation. Mechanistically, we discovered that lncMEG3 specifically functions as a competitive inhibitor of miR-223. Moreover, the use of miR-223 antisense oligonucleotide (AMO) counteracted the suppressive effects of lncMEG3 knockdown on NLRP3 inflammasome activation induced by high glucose in vitro. Conclusion: LncMEG3 exacerbates DCM by enhancing NLRP3 inflammasome activation through attenuating miR-223-mediated degradation of NLRP3 in the hearts of individuals with diabetes.
Collapse
Affiliation(s)
- Shengnan Zhuo
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yifeng Liu
- Department of Health Monitoring, Bazhong Center for Disease Control and Prevention, Bazhong, Sichuan, China
| | - Siyuan Wang
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhuoling Chen
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xuran Shi
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yangjunna Zhang
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dengfeng Xu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingjin Hu
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yin Wang
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xuefeng Qu
- School of Pharmacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Han G, Hu K, Luo T, Wang W, Zhang D, Ouyang L, Liu X, Liu J, Wu Y, Liang J, Ling J, Chen Y, Xuan R, Zhang J, Yu P. Research progress of non-coding RNA regulating the role of PANoptosis in diabetes mellitus and its complications. Apoptosis 2025; 30:516-536. [PMID: 39755822 DOI: 10.1007/s10495-024-02066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
Diabetes is a chronic metabolic disease that is endemic worldwide and is characterized by persistent hyperglycemia accompanied by multiple severe complications, including cardiovascular disease, kidney dysfunction, neuropathy, and retinopathy. The pathogenesis of diabetes mellitus and its complications is multifactorial, involving various molecular and cellular pathways. In recent years, research has indicated that mechanisms of cell death play a significant role in the advancement of diabetes and its complications. PANoptosis is a complex phenomenon caused by three cell death pathways: programmed apoptosis, necroptosis and pyroptosis. The contribution of PANoptosis to diabetes and its complications remains incompletely understood. Non-coding RNA, an important molecule in gene expression regulation, has shown significant regulatory functions in a variety of diseases. This paper reviews the underlying mechanisms of diverse types of non-coding RNAs (including lncRNA, miRNA and circRNA) in regulating PANoptosis and their specific contributions in diabetes, aiming to explore how non-coding RNAs influence PANoptosis and their effects in diabetes.
Collapse
Affiliation(s)
- Guangyu Han
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Tianfeng Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Wenting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 571199, China
| | - Deju Zhang
- Ood and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liu Ouyang
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA, 30303, USA
| | - Xiao Liu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jianqi Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Rui Xuan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
12
|
Zheng YY, Shen DN, Peng XL, San WQ, Zhou QY, Yang SJ, Meng GL, Shi JH, Chen Y. TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy. Acta Pharmacol Sin 2025; 46:940-950. [PMID: 39753984 PMCID: PMC11950311 DOI: 10.1038/s41401-024-01450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/29/2024] [Indexed: 03/17/2025]
Abstract
Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis. However, no direct relationship between TRADD and pyroptosis has been identified. In this study, we investigated the role and mechanisms of TRADD in pyroptosis during DCM. We established a streptozotocin (STZ)-induced diabetic mouse model and high glucose (HG)-treated cardiomyocytes model. We showed that the expression levels of TRADD were significantly increased in the hearts of diabetic mice and HG-treated cardiomyocytes. Knockdown of TRADD did not affect blood glucose and triglyceride levels, but significantly improved cardiac function, and attenuated myocardial hypertrophy, fibrosis, and pyroptosis in the heart of diabetic mice. Furthermore, both knockdown of TRADD and application of TRADD inhibitor apostatin-1 (Apt-1, 10 μM) significantly ameliorated cell injury and pyroptosis in HG-treated cardiomyocytes. We demonstrated that HG treatment increased the expression of X-box binding protein 1 (XBP1) and enhanced the binding of XBP1 to the TRADD promoter to elevate TRADD expression in the cardiomyocytes. Collectively, this study provides evidence that TRADD-mediated pyroptosis contributes to DCM, suggesting that strategies to inhibit TRADD activity may be a novel approach for DCM treatment.
Collapse
Affiliation(s)
- Yang-Yang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China
- Department of Pharmacy, Xuzhou Oriental Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221004, China
| | - Dan-Ning Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Xiao-Lu Peng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Wen-Qing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Qian-You Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Sheng-Ju Yang
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Guo-Liang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Jia-Hai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China.
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
13
|
Huang X, Wang Y, Wan R, You Z, Huang L. Identification of lipid metabolism-related genes in dapagliflozin treated rats with diabetic cardiomyopathy by bioinformatics. Front Endocrinol (Lausanne) 2025; 16:1525831. [PMID: 40182633 PMCID: PMC11965135 DOI: 10.3389/fendo.2025.1525831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Background Diabetic cardiomyopathy (DCM) is a heart disease caused by the metabolic disorders of glucose and lipids associated with diabetes, leading to heart failure and death in diabetic patients. Dapagliflozin (DAPA) serves as a treatment for managing blood glucose levels in individuals with type 2 diabetes mellitus (DM). However, the specific mechanisms by which DAPA treats DCM are not yet fully understood. Methods Sprague-Dawley (SD) rats (n = 5/group) were randomly divided into control, model, and intervention groups. Lipid metabolism-related genes (LMRGs) were gotten from publicly available database. Differential expression analysis of model vs. control and intervention vs. model samples was performed to obtain differentially expressed genes (DEGs), and the result was recorded as DEGs-Model and DEGs-Intervention. The intersection of genes with opposing expression trends between DEGs-Model and DEGs-Intervention were considered as candidate genes. Subsequently, candidate genes and LMRGs were intersected to acquire hub genes, and the expression of hub genes was analyzed in each group of samples. Then, the mechanism of action of these hub genes were investigated through functional enrichment analysis, gene set enrichment analysis (GSEA), and predictive of m6A binding sites. Results Ultimately, 68 candidate genes and 590 LMRGs were intersected to derive 2 hub genes (Acsbg1 and Etnppl). Acsbg1 was significantly increase in model group compared with control group. RT-qPCR results confirmed Acsbg1 was obviously higher expression in model group, while Etnppl was significantly lower expression in model group compare to control groups and intervention group. While the expression of Etnppl was significantly increase in intervention group compared with model group. Functional enrichment analyses indicated that Acsbg1 and Etnppl were associated with fatty acid metabolism. The findings of GSEA indicated that Acsbg1 and Etnppl might affect the occurrence and progression of DCM through lysosome. And the Acsbg1 and Etnppl were located at UCAGG in the RNA secondary structure. Conclusion This study identified 2 hub genes (Acsbg1 and Etnppl) as potential new focal points for diagnosing and treating DCM.
Collapse
Affiliation(s)
- Xun Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunhong Wang
- Department of Cardiology, Ningdu County People’s Hospital, Ganzhou, Jiangxi, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhigang You
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lin Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Roy D, Bhattacharya B, Chakravarti R, Singh P, Arya M, Kundu A, Patil A, Siva B, Mehta S, Kazi TA, Ghosh D. LncRNAs in oncogenic microenvironment: from threat to therapy. Front Cell Dev Biol 2025; 12:1423279. [PMID: 40176927 PMCID: PMC11962222 DOI: 10.3389/fcell.2024.1423279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/09/2024] [Indexed: 04/05/2025] Open
Abstract
LncRNAs are RNA molecules of more than 200 nucleotides in length and participate in cellular metabolism and cellular responses through their diverse interactomedespite having no protein-coding capabilities. Such significant interactions also implicate the presence of lncRNAs in complex pathobiological pathways of various diseases, affecting cellular survival by modulating autophagy, inflammation and apoptosis. Proliferating cells harbour a complex microenvironment that mainly stimulate growth-specific activities such as DNA replication, repair, and protein synthesis. They also recognise damages at the macromolecular level, preventing them from reaching the next-generation. LncRNAs have shown significant association with the events occurring towards proliferation, regulating key events in dividing cells, and dysregulation of lncRNA transcriptome affects normal cellular life-cycle, promoting the development of cancer. Furthermore, lncRNAs also demonstrated an association with cancer growth and progression by regulating key pathways governing cell growth, epithelial-mesenchymal transition and metastasis. This makes lncRNAs an attractive target for the treatment of cancer and can also be used as a marker for the diagnosis and prognosis of diseases due to their differential expression in diseased samples. This review delves into the correlation of the lncRNA transcriptome with the fundamental cellular signalling and how this crosstalk shapes the complexity of the oncogenic microhabitat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, India
| |
Collapse
|
15
|
Huang R, Tang X, Liu S, Sun L. Decoding CKD-induced muscle atrophy through the critical role of lncRNA GAS5 and pyroptosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102451. [PMID: 39974290 PMCID: PMC11835621 DOI: 10.1016/j.omtn.2025.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025]
Abstract
Skeletal muscle atrophy is a prevalent complication of chronic kidney disease (CKD) and serves as an indicator of adverse prognosis and poor quality of life; however, the underlying mechanisms remain ambiguous. Emerging evidence has shown that long non-coding RNAs (lncRNAs) are involved in the pathogenesis of skeletal muscle atrophy. Using RNA sequencing (RNA-seq), we discerned elevated GAS5 expression in the muscles of CKD mice and verified these findings by real-time qPCR. Transmission electron microscopy confirmed morphological signs of pyroptosis, a potentially causal cellular death form. Additionally, elevated levels of pyroptosis markers, such as NLRP3, cleaved caspase-1, and GSDMD-N, were observed in CKD mouse models and lipopolysaccharide (LPS)/ATP-stimulated C2C12 myotubes. Intriguingly, the knockdown of GAS5 reduced these markers, alleviating pyroptosis and enhancing myofiber size, both in vitro and in vivo. Furthermore, we pinpointed an interaction between GAS5 and the mitochondrial translation elongation factor (TUFM) through RNA pull-down and mass spectrometry. This interaction amplified NLRP3 activity, contributing to pyroptosis and muscle atrophy. Notably, overexpressing TUFM counterbalanced this effect. Fundamentally, the interaction between GAS5 and TUFM appears to compromise the anti-pyroptosis capacity of TUFM. Consequently, this amplifies the activation of the NLRP3 pathway, which may underpin the crucial mechanism driving pyroptosis-mediated muscle atrophy. Our findings provide new evidence for GAS5's role in regulating cellular pyroptosis in CKD-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Rong Huang
- Department of Nephrology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xinying Tang
- Department of Nephrology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Shuang Liu
- Department of Nephrology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lijing Sun
- Department of Nephrology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
16
|
Cui LG, Wang SH, Komal S, Yin JJ, Zhai MM, Zhou YJ, Yu QW, Wang C, Wang P, Wang ZM, Zafar AM, Shakeel M, Zhang LR, Han SN. ALKBH5 promotes cardiac fibroblasts pyroptosis after myocardial infarction through Notch1/NLRP3 pathway. Cell Signal 2025; 127:111574. [PMID: 39710090 DOI: 10.1016/j.cellsig.2024.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Through bioinformatics screening, we previously found that AlkB homolog 5 (ALKBH5) expression, an m6A demethylase, was higher in patients with heart failure than in the normal population. This study aimed to investigate the molecular mechanisms by which ALKBH5 regulates heart failure. We established a myocardial infarction (MI)-induced heart failure model in rats in vivo and an in vitro hypoxia model using rat primary cardiac fibroblasts (RCFs). M6A sequencing, RNA immunoprecipitation assay, RNA pull-down assay, proximity ligation assay, gain-of-function and loss-of-function experiments, and transcriptomic analysis were performed to confirm the pyroptosis-promoting effects of ALKBH5. The effects of two small-molecule inhibitors (ZINC78774792 and ZINC00546946) on ALKBH5 expression were examined. The expression of m6A demethyltransferase ALKBH5 was significantly elevated in hypoxia-induced RCFs. Transcriptional profiling revealed Notch receptor 1 (Notch1) as an m6A modification target of ALKBH5, and Notch1 mRNA m6A modifications were increased in ALKBH5-deficient RCFs. Moreover, Notch1 and NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) are associated. ALKBH5 knockdown alleviated hypoxia-induced RCF cell pyroptosis by inhibiting Notch1, NLRP3 inflammasome activation, and pyroptosis-associated protein (N-GSDMD), whereas ALKBH5 overexpression had the opposite effect. Targeting ALKBH5 with two small-molecule inhibitors (ZINC78774792 and ZINC00546946) reduced hypoxia-induced RCF pyroptosis, and ZINC00546946 alleviated cell pyroptosis after myocardial infarction in mice. Our results indicate that ALKBH5 promotes cardiac fibroblast pyroptosis after myocardial infarction through the Notch1/NLRP3 pathway. Therefore, inhibiting ALKBH5 may be a strategy for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Liu-Gen Cui
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shu-Hui Wang
- Department of Ultrasound, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jian-Jian Yin
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Miao-Miao Zhai
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yue-Jiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qing-Wen Yu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Cong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhi-Mo Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Aliza Muhammad Zafar
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
17
|
Radmehr E, Yazdanpanah N, Rezaei N. Non-coding RNAs affecting NLRP3 inflammasome pathway in diabetic cardiomyopathy: a comprehensive review of potential therapeutic options. J Transl Med 2025; 23:249. [PMID: 40022088 PMCID: PMC11871836 DOI: 10.1186/s12967-025-06269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025] Open
Abstract
Cardiomyopathies are a heterogeneous group of disorders that can lead to fulminant heart failure and sudden cardiac death. In recent years, the prevalence of all types of cardiomyopathies has shown an upward trend globally. Up to 40% of patients with cardiomyopathy-related heart failure have diabetes mellitus (DM). With the fast global spread of DM, the prevalence of DCM is increasing accordingly and it remains the leading cause of morbidity and mortality in chronic diabetic patients. NLRP3 inflammasome significantly contributes to the development and pathological progression of DCM. Targeting the inflammasome or any of the mediators along its activation pathway provides new potential therapeutic targets for developing specialized drugs to treat DCM.In this comprehensive review, we sought to introduce and summarize the non-coding RNAs with potential therapeutic effects targeting NLRP3 inflammasome signaling in DCM. We hope this general overview can aid future research in developing new therapies for DCM.
Collapse
Affiliation(s)
- Elahe Radmehr
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Cui LG, Zhai MM, Yin JJ, Wang ZM, Wang SH, Zhou YJ, Li PP, Wang Y, Xia L, Wang P, Cha XX, Zhang LR, Han SN. Targeting the ALKBH5-NLRP3 positive feedback loop alleviates cardiomyocyte pyroptosis after myocardial infarction. Eur J Pharmacol 2025; 989:177247. [PMID: 39746531 DOI: 10.1016/j.ejphar.2024.177247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Several studies have associated the epitranscriptomic RNA modification of N6-methyladenosine (m6A) with cardiovascular diseases; however, how m6A modification affects cardiomyocyte pyroptosis after myocardial infarction (MI) remains unknown. Here, we showed that AlkB homolog 5 (ALKBH5), an m6A demethylase, is crucial in cardiomyocyte pyroptosis after MI. We used MI rat and mouse models, a cell hypoxia model of rat primary cardiomyocytes (RCMs), and rat embryonic ventricle cell line (H9c2) to explore the functional role of m6A modification and ALKBH5 in the heart and cardiomyocytes. Using plasmids and small interfering RNAs, the expressions of ALKBH5 and NOD-like receptor family pyrin domain-containing 3 (NLRP3) were determined to study their functions in regulating cardiomyocyte m6A and pyroptosis, respectively. We characterized the role of ALKBH5, which exhibited elevated expression in the ischemic heart tissue of rats and mice and hypoxic cardiomyocytes (RCMs and H9c2 cells). ALKBH5 knockdown alleviated hypoxia-induced H9c2 cell pyroptosis by inhibiting NLRP3 inflammasome activation, whereas ALKBH5 overexpression had the opposite effect. NLRP3 knockdown alleviated hypoxia-induced H9c2 cardiomyocyte pyroptosis by inhibiting ALKBH5 expression, whereas NLRP3 overexpression had the opposite effect. Mechanistically, ALKBH5 mediated m6A modification of NLRP3 mRNA in an IGF2BP2-dependent manner, and NLRP3, as a nuclear transcription factor, regulated the ALKBH5 transcription process. Targeting the ALKBH5-NLRP3 loop with the small-molecule inhibitors alleviated cardiomyocyte pyroptosis. Our results highlight that ALKBH5-NLRP3 forms a positive feedback loop that promotes cardiomyocyte pyroptosis after MI. Therefore, inhibiting the ALKBH5-NLRP3 loop is a potential strategy for treating cardiovascular diseases.
Collapse
MESH Headings
- Animals
- Pyroptosis/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Rats
- AlkB Homolog 5, RNA Demethylase/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- AlkB Homolog 5, RNA Demethylase/antagonists & inhibitors
- Myocardial Infarction/pathology
- Myocardial Infarction/metabolism
- Mice
- Male
- Feedback, Physiological/drug effects
- Cell Line
- Mice, Inbred C57BL
- Cell Hypoxia
- Rats, Sprague-Dawley
- Adenosine/analogs & derivatives
- Adenosine/metabolism
Collapse
Affiliation(s)
- Liu-Gen Cui
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Miao-Miao Zhai
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian-Jian Yin
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Zhi-Mo Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shu-Hui Wang
- Department of Ultrasound, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yue-Jiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Pei-Pei Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Xia
- Department of Anesthesiology in Surgery Branch, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue-Xiang Cha
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
19
|
Yan L, Guo L. The role and mechanism of m6A methylation in diabetic nephropathy. Life Sci 2025; 363:123355. [PMID: 39778764 DOI: 10.1016/j.lfs.2024.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus, characterized by progressive deterioration of renal structure and function, which may eventually lead to end-stage kidney disease (ESKD). The N6-methyladenosine (m6A) methylation, an important modality of RNA modification, involves three classes of key regulators, writers (e.g., METTL3), erasers (e.g., FTO, ALKBH5) and readers (e.g., YTHDF2), which play important roles in DN. Writers are responsible for introducing m6A modifications on RNAs, erasers remove m6A modifications and readers recognize and bind m6A-modified RNAs to regulate RNAs functions, such as mRNA stability, translation and localization. In DN, abnormal m6A modification may promote kidney injury and proteinuria by regulating key pathways involved in multiple processes, including lipid metabolism and inflammatory response, in kidney cells such as podocytes. Therefore, an in-depth study of the role and mechanism of m6A methylation that are regulated by "writers", "erasers" and "readers" in DN is expected to provide new targets and strategies for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Linjing Yan
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China.
| |
Collapse
|
20
|
Wang H, Han J, Kong H, Ma C, Zhang XA. The Emerging Role of m6A and Programmed Cell Death in Cardiovascular Diseases. Biomolecules 2025; 15:247. [PMID: 40001550 PMCID: PMC11853213 DOI: 10.3390/biom15020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal chemical modification in eukaryotic messenger RNA (mRNA), significantly impacting its lifecycle through dynamic and reversible processes involving methyltransferase, demethylase, and binding proteins. These processes regulate mRNA stability, splicing, nuclear export, translation, and degradation. Programmed cell death (PCD), a tightly controlled process encompassing apoptosis, pyroptosis, ferroptosis, autophagy, and necroptosis, plays a crucial role in maintaining cellular homeostasis, tissue development, and function. Recently, m6A modification has emerged as a significant research area due to its role in regulating PCD and its implications in cardiovascular diseases (CVDs). In this review, we delve into the intricate relationship between various PCD types and m6A modification, emphasizing their pivotal roles in the initiation and progression of CVDs such as myocardial ischemia-reperfusion (I/R), atherosclerosis (AS), pulmonary hypertension (PH), cardiomyopathy, doxorubicin (Dox)-induced cardiotoxicity (DIC), heart failure (HF), and myocardial infarction (MI). Our findings underscore the potential of elucidating the roles of m6A and PCD in CVD to pave new pathways for prevention and treatment strategies.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| | - Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
- College of Exercise and Health, Shanghai Sport University, Shanghai 200438, China
| | - Ce Ma
- Sports Training Teaching and Research Office, Shenyang Sport University, Shenyang 110102, China;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| |
Collapse
|
21
|
Zhang Y, Zhang L, Li P, Qiu L, Qu Y, Wu Y, Song H. Extracellular vesicles from adipose-derived stem cell alleviate diabetic cardiomyopathy by regulating Chit1/NLRP3/Caspase-1-Mediated pyroptosis. Int Immunopharmacol 2025; 146:113860. [PMID: 39700960 DOI: 10.1016/j.intimp.2024.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/17/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
It is well-established that chronic hyperglycemia progressively destroys the heart structure, weakening function and leading to diabetic cardiomyopathy (DCM). Extracellular vesicles derived from adipose-derived stem cell (ADSC-EVs) have been reported to have anti-inflammatory and immune-modulating effects, but their role in DCM is still poorly understood. Therefore, this study investigated the impact of ADSC-EVs on DCM and potential mechanisms. ADSC-EVs were isolated from the conditioned media of ADSCs. DCM rat models were established using streptozotocin (STZ) in vivo, and high glucose (HG) stimulated H9c2 cardiomyocytes to establish in vitro model. Then mRNA sequencing identified Chit1 as a key gene. Both in vivo and in vitro experiments demonstrated that chitinase 1 (Chit1) and NLRP3/Caspase-1-mediated pyroptosis levels were significantly upregulated in myocardial tissue of rat diabetic cardiomyopathy and hyperglycemic cardiomyocytes, which was reversed by ADSC-EVs treatment. We next observed that in hyperglycemic cardiomyocytes, downregulating Chit1 also resulted in a decrease in NLRP3/Caspase-1-mediated pyroptosis proteins. To a certain extent, the inhibitory effect of ADSC-EVs on the NLRP3/Caspase-1 signaling pathway was reversed by Chit1 overexpression. Taken together, we identified a novel mechanism by which ADSC-EVs regulate NLRP3/Caspase-1-mediated pyroptosis through Chit1 to alleviate diabetic cardiomyopathy, offering an innovative strategy for DCM treatment.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, PR China
| | - Liao Zhang
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, PR China
| | - Pengjie Li
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, PR China
| | - Lili Qiu
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, PR China
| | - Ying Qu
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, PR China
| | - Yunhe Wu
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, PR China
| | - Haiyan Song
- Department of Endocrinology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, PR China.
| |
Collapse
|
22
|
Li L, Xie S, Deng W. RNA binding proteins: Mechanistic considerations and perspectives in controlling cardiovascular diseases. Eur J Pharmacol 2025; 987:177101. [PMID: 39613174 DOI: 10.1016/j.ejphar.2024.177101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) are becoming serious disease that endangering human health due to the increasing morbidity and mortality, and many molecular targets are involved in this complex pathologic process. Recently, RNA-binding proteins (RBPs) have received potential attention as a promising targets for preventing CVDs, including myocardial hypertrophy, dilated cardiomyopathy (DCM), myocardial fibrosis, and pulmonary hypertension (PH). As important regulators of RNA metabolism, RBPs play important roles in all steps of the gene expression cascade,and affect the occurrence and development of various diseases. In this review, we discuss the regulatory role of RBPs on various CVDs at the post transcriptional modification level based on current research. We also highlight the existing and potential RNA-based therapeutics that could impact future CVD treatments.
Collapse
Affiliation(s)
- Lanlan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
23
|
Hu J, Miao X, Yu LH. Long Non-Coding RNAs in Diabetic Cardiomyopathy: Potential Function as Biomarkers and Therapeutic Targets of Exercise Training. J Cardiovasc Transl Res 2025:10.1007/s12265-024-10586-8. [PMID: 39786669 DOI: 10.1007/s12265-024-10586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Recent studies emphasize the beneficial effects of exercise on diabetic cardiomyopathy (DCM), adding to the growing body of evidence that underscores the role of exercise in improving health outcomes. Despite this, a notable gap persists in the number of healthcare providers who actively prescribe exercise as a therapeutic intervention for DCM management. In addition, exercise modulates the expression of lncRNAs, which play a pivotal role in DCM progression. Further investigation into this relationship may facilitate the identification of novel biomarkers and therapeutic targets for DCM. This review consolidates recent advances in identifying lncRNAs biomarkers in DCM, summarizing the current knowledge on dysregulated lncRNAs and their molecular mechanisms. Additionally, it offers new insights into the mechanistic roles of lncRNAs, highlighting their potential as biomarkers and therapeutic targets for DCM. Overall, this review aims to inform future research and reinforce the significance of addressing diabetes-related cardiovascular diseases to potentially improve clinical outcomes.
Collapse
Affiliation(s)
- Jie Hu
- GuangZhou Sport University, 1268 Guangzhou Dadao Middle, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Xinwen Miao
- Weihai Municipal Hospital Affiliated to Shandong University, No.70 Heping RoadHuancui District, Weihai, Shandong Province, China
| | - Li-Hua Yu
- College of Sports, YanShan University, No.438, West Hebei Street, Qinhuangdao City, Hebei Province, China.
| |
Collapse
|
24
|
Meng W, Li L. N6-methyladenosine modification of SPOP relieves ferroptosis and diabetic cardiomyopathy by enhancing ubiquitination of VDAC3. Free Radic Biol Med 2025; 226:216-229. [PMID: 39549880 DOI: 10.1016/j.freeradbiomed.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Understanding the pathogenesis of diabetic cardiomyopathy (DCM), a common microvascular complication affecting the heart, is crucial for identifying new therapeutic targets and intervention strategies for DCM. Our study revealed a significant downregulation in Speckle-type POZ protein (SPOP) expression in DCM, while the overexpression of SPOP improved DCM-induced myocardial dysfunction, injury, fibrosis, hypertrophy, and ferroptosis. Mechanistically, SPOP facilitated the degradation of voltage-dependent anion channel 3 (VDAC3) by enhancing its ubiquitination. M6A demethylase AlkB homolog 5 (ALKBH5) reduced the mRNA stability of SPOP by decreasing m6A modification in its 3'UTR. The m6A reader insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) enhanced the stability of SPOP mRNA through recognition of m6A-modified SPOP 3'UTR. Furthermore, ALKBH5 promoted ferroptosis by inhibiting SPOP-induced VDAC3 degradation, while IGF2BP2 inhibited ferroptosis via activation of SPOP-induced VDAC3 degradation in high glucose-treated neonatal mouse ventricular cardiomyocytes (NMVCs). Overall, our study has unveiled a novel role of SPOP in the pathogenesis of ferroptosis and DCM, thereby significantly advancing our understanding of the involvement of ferroptosis during the progression of DCM. Moreover, this discovery offers promising potential therapeutic interventions targeting DCM.
Collapse
Affiliation(s)
- Wei Meng
- Department of Geriatric, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, 646000, China
| | - Linghua Li
- Department of Electrocardiography and Electroencephalography, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, 646000, China.
| |
Collapse
|
25
|
Shi B, Wang J, Zhang J, Li J, Hao Y, Lin X, Zhao R. Dapagliflozin Suppresses High Glucose-Induced Proliferation, Oxidative Stress, and Fibrosis by Reducing Mettl3-Induced m6A Modification in Marcks mRNA. Cardiovasc Toxicol 2025; 25:110-120. [PMID: 39560681 DOI: 10.1007/s12012-024-09945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a common and severe complication of Diabetes mellitus (DM). Dapagliflozin (DAPA) is an oral anti-diabetic drug worldwide for the treatment of type 2 DM. However, the action and mechanism of DAPA in cardiac fibrosis during DCM remain vague. Primary cardiac fibroblasts (CFs) were incubated with high glucose (HG) in vitro. Cell proliferation was detected by MTT and EdU assays. Oxidative stress was evaluated by determining the production of reactive oxygen species and malondialdehyde. Cell fibrosis was assessed by detecting fibrosis-related proteins by western blotting. Levels of Mettl3 (Methyltransferase 3) and Marcks (myristoylated alanine-rich C kinase substrate) were measured using qRT-PCR and western blotting. The m6A modification profile was determined by methylated RNA immunoprecipitation assay and the interaction between Mettl3 and Marcks was verified using dual-luciferase reporter and RIP assays. DAPA treatment alleviated HG-induced proliferation, oxidative stress, and fibrosis in CFs. HG promoted the expression of Mettl3 in CFs. Knockdown of Mettl3 reversed HG-induced proliferation, oxidative stress, and fibrosis in CFs; moreover, forced expression of Mettl3 abolished the protective effects of DAPA on CFs under HG condition. Mechanistically, Mettl3 interacted with Marcks in CFs and induced Marcks mRNA m6A modification. HG induced high expression of Marcks in CFs. The overexpression of Marcks could counteract DAPA or Mettl3 knockdown-evoked inhibitory effects on CF proliferation, oxidative stress, and fibrosis under HG condition. Dapagliflozin suppressed HG-induced proliferation, oxidative stress, and fibrosis by reducing Mettl3-induced m6A modification in Marcks mRNA.
Collapse
Affiliation(s)
- Binhao Shi
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
- Department of Cardiology, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
| | - Jianfei Wang
- Department of Cardiology, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
| | - Jing Zhang
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
| | - Ji Li
- Department of Cardiology, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
- Graduate School of Bengbu Medical University, Bengbu, 233030, Anhui, China
| | - Yancheng Hao
- Department of Cardiology, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
- Graduate School of Bengbu Medical University, Bengbu, 233030, Anhui, China
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
| |
Collapse
|
26
|
Qiu Y, Xu Q, Xie P, He C, Li Q, Yao X, Mao Y, Wu X, Zhang T. Epigenetic modifications and emerging therapeutic targets in cardiovascular aging and diseases. Pharmacol Res 2025; 211:107546. [PMID: 39674563 DOI: 10.1016/j.phrs.2024.107546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
The complex mechanisms underlying the development of cardiovascular diseases remain not fully elucidated. Epigenetics, which modulates gene expression without DNA sequence changes, is shedding light on these mechanisms and their heritable effects. This review focus on epigenetic regulation in cardiovascular aging and diseases, detailing specific epigenetic enzymes such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs), which serve as writers or erasers that modify the epigenetic landscape. We also discuss the readers of these modifications, such as the 5-methylcytosine binding domain proteins, and the erasers ten-eleven translocation (TET) proteins. The emerging role of RNA methylation, particularly N6-methyladenosine (m6A), in cardiovascular pathogenesis is also discussed. We summarize potential therapeutic targets, such as key enzymes and their inhibitors, including DNMT inhibitors like 5-azacytidine and decitabine, HDAC inhibitors like belinostat and givinotide, some of which have been approved by the FDA for various malignancies, suggesting their potential in treating cardiovascular diseases. Furthermore, we highlight the role of novel histone modifications and their associated enzymes, which are emerging as potential therapeutic targets in cardiovascular diseases. Thus, by incorporating the recent studies involving patients with cardiovascular aging and diseases, we aim to provide a more detailed and updated review that reflects the advancements in the field of epigenetic modification in cardiovascular diseases.
Collapse
Affiliation(s)
- Yurou Qiu
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qing Xu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Peichen Xie
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Chenshuang He
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qiuchan Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xin Yao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Yang Mao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xiaoqian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| | - Tiejun Zhang
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
27
|
Xu H, Yu Z, Zhu J, Liu H, Chen X, Jiang J, Zhu M, Li J. Types of cell death in diabetic cardiomyopathy: insights from animal models. Acta Biochim Biophys Sin (Shanghai) 2024; 57:681-689. [PMID: 39719881 DOI: 10.3724/abbs.2024213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Approximately one-tenth of the global population is affected by diabetes mellitus, and its incidence continues to rise each year. In China, 1.4 million patients die of diabetes-related complications every year. Additionally, approximately 26% of patients with diabetes develop diabetic cardiomyopathy, with heart failure being one of the main causes of death in these patients. However, early detection of diabetic cardiomyopathy has proven to be difficult in a clinical setting; furthermore, there are limited guidelines and targeted means of prevention and treatment for this disease. In recent years, several studies have provided evidence for the occurrence of various forms of regulated cell death in diabetic myocardial cells, including apoptosis, necroptosis, ferroptosis, and cuproptosis, which are closely linked to the pathological progression of diabetic cardiomyopathy. Although most research on diabetic cardiomyopathy is currently in the animal trial phase, the inhibition of these regulatory cell death processes can limit or slow down the progression of diabetic cardiomyopathy. Therefore, this review discusses the appropriate animal experimental models currently available for diabetic cardiomyopathy and evaluates the roles of apoptosis, necroptosis, ferroptosis, and cuproptosis in diabetic cardiomyopathy. We hope to provide new methods and ideas for future research in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Hongjiao Xu
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Zhuang Yu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haoran Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiangyuan Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jihong Jiang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Minmin Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
28
|
Mao J, Zhao Q, Guo M, Zhang S, Zhou J. Connecting the dots: Involvement of methyltransferase-like 3, N6-methyladenosine modification, and ferroptosis in the pathogenesis of intracerebral hemorrhage pathogenesis. Exp Neurol 2024; 382:114948. [PMID: 39260591 DOI: 10.1016/j.expneurol.2024.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
Intracerebral hemorrhage is a profoundly detrimental acute cerebrovascular condition with a low overall survival rate and a high post-onset disability rate. Secondary brain injury that ensues post-ICH is the primary contributor to fatality and disability. Hence, the mitigation of brain injury during intracerebral hemorrhage progression has emerged as a crucial aspect of clinical management. N6-methyladenosine is the most pervasive, abundant, and conserved internal co-transcriptional modification of eukaryotic ribonucleic acid and is predominantly expressed in the nervous system. Methyltransferase-like 3 is a key regulatory protein that is strongly associated with the development of the nervous system and numerous neurological diseases. Ferroptosis, a form of iron-associated cell death, is a typical manifestation of neuronal apoptosis in neurological diseases and plays an important role in secondary brain damage following intracerebral hemorrhage. Therefore, this review aimed to elucidate the connection between m6A modification (particularly methyltransferase-like 3) and ferroptosis in the context of intracerebral hemorrhage to provide new insights for future intracerebral hemorrhage management approaches.
Collapse
Affiliation(s)
- Junxiang Mao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Quantang Zhao
- Department of Neurosurgery, The Chinese People's Liberation Army Joint Logistics Support Force, No. 940 Hospital, Lanzhou City, Gansu Province, China
| | - Man Guo
- Department of Neurosurgery, The Chinese People's Liberation Army Joint Logistics Support Force, No. 940 Hospital, Lanzhou City, Gansu Province, China
| | - Shenghao Zhang
- Department of Neurosurgery, The Chinese People's Liberation Army Joint Logistics Support Force, No. 940 Hospital, Lanzhou City, Gansu Province, China
| | - Jie Zhou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
29
|
Cai M, Li X, Luan X, Zhao P, Sun Q. Exploring m6A methylation in skin Cancer: Insights into molecular mechanisms and treatment. Cell Signal 2024; 124:111420. [PMID: 39304098 DOI: 10.1016/j.cellsig.2024.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
N6-methyladenosine (m6A) is the most common and prevalent internal mRNA modification in eukaryotes. m6A modification is a dynamic and reversible process regulated by methyltransferases, demethylases, and m6A binding proteins. Skin cancers, including melanoma and nonmelanoma skin cancers (NMSCs), are among the most commonly diagnosed cancers worldwide. m6A methylation is involved in the regulation of RNA splicing, translation, degradation, stability, translocation, export, and folding. Aberrant m6A modification participates in the pathophysiological processes of skin cancers and is associated with tumor cell proliferation, invasion, migration, and metastasis during cancer progression. In this review, we provide a comprehensive summary of the biological functions of m6A and the most up-to-date evidence related to m6A RNA modification in skin cancer. We also emphasize the potential clinical applications in the diagnosis and treatment of skin cancers.
Collapse
Affiliation(s)
- Mingjun Cai
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Xueqing Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Xueyu Luan
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Pengyuan Zhao
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
30
|
Jiang R, Jia Q, Li C, Gan X, Zhou Y, Pan Y, Fu Y, Chen X, Liang L, Jia E. Integrated analysis of differentially m6A modified and expressed lncRNAs for biomarker identification in coronary artery disease. Cell Biol Int 2024; 48:1664-1679. [PMID: 39004874 DOI: 10.1002/cbin.12224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals. However, limited research has been conducted on the role of m6A in coronary artery disease (CAD). We conducted methylated RNA immunoprecipitation sequencing and RNA sequencing to obtain a genome-wide profile of m6A-modified long noncoding RNAs (lncRNAs) in human coronary artery smooth muscle cells either exposed to oxidized low-density lipoprotein treatment or not, and the characteristics of the expression profiles were explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The predictive effects of seven selected lncRNAs on CAD were evaluated in peripheral blood mononuclear cells (PBMCs). The differentially m6A-modified and expressed lncRNAs related genes were predominantly enriched in small GTPase-mediated signal transduction, ErbB signaling, and Rap1 signaling. Additionally, the expression levels of uc003pes.1, ENST00000422847, and NR_110155 were significantly associated with CAD, with uc003pes.1 identified as an independent risk factor and NR_110155 as an independent protective factor for CAD. NR_110155 and uc003pes.1 in PBMCs have the potential to serve as biomarkers for predicting CAD.
Collapse
Affiliation(s)
- Rongli Jiang
- Department of Geriatric, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaqing Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yang Pan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiumei Chen
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lanyu Liang
- Department of Geriatric, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
31
|
Bi F, Gao C, Guo H. Epigenetic regulation of cardiovascular diseases induced by behavioral and environmental risk factors: Mechanistic, diagnostic, and therapeutic insights. FASEB Bioadv 2024; 6:477-502. [PMID: 39512842 PMCID: PMC11539034 DOI: 10.1096/fba.2024-00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
Behavioral and environmental risk factors are critical in the development and progression of cardiovascular disease (CVD). Understanding the molecular mechanisms underlying these risk factors will offer valuable insights for targeted preventive and therapeutic strategies. Epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNA (ncRNA) expression, and epitranscriptomic modifications, have emerged as key mediators connecting behavioral and environmental risk factors to CVD risk and progression. These epigenetic alterations can profoundly impact on cardiovascular health and susceptibility to CVD by influencing cellular processes, development, and disease risk over an individual's lifetime and potentially across generations. This review examines how behavioral and environmental risk factors affect CVD risk and health outcomes through epigenetic regulation. We review the epigenetic effects of major behavioral risk factors (such as smoking, alcohol consumption, physical inactivity, unhealthy diet, and obesity) and environmental risk factors (including air and noise pollution) in the context of CVD pathogenesis. Additionally, we explore epigenetic biomarkers, considering their role as causal or surrogate indicators, and discuss epigenetic therapeutics targeting the mechanisms through which these risk factors contribute to CVD. We also address future research directions and challenges in leveraging epigenetic insights to reduce the burden of CVD related to behavioral and environmental factors and improve public health outcomes. This review aims to provide a comprehensive understanding of behavioral and environmental epigenetics in CVD and offer valuable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Feifei Bi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| | - Chen Gao
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Hongchao Guo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
32
|
Thangavelu L, Goyal A, Afzal M, Moglad E, Rawat S, Kazmi I, Alzarea SI, Almalki WH, Rani R, Madhubabu P, Rajput P, Bansal P. Pyroptosis in lung cancer: The emerging role of non-coding RNAs. Pathol Res Pract 2024; 263:155619. [PMID: 39357188 DOI: 10.1016/j.prp.2024.155619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Lung cancer remains an intractable malignancy worldwide, prompting novel therapeutic modalities. Pyroptosis, a lethal form of programmed cell death featured by inflammation, has been involved in cancer progression and treatment response. Simultaneously, non-coding RNA has been shown to have important roles in coordinating pattern formation and oncogenic pathways, including long non-coding RNA (lncRNAs), microRNA (miRNAs), circular RNA (circRNAs), and small interfering RNA (siRNAs). Recent studies have revealed that ncRNAs can promote or inhibit pyroptosis by interacting with key molecular players such as NLRP3, GSDMD, and various transcription factors. This dual role of ncRNAs offers a unique therapeutic potential to manipulate pyroptosis pathways, providing opportunities for innovative cancer treatments. In this review, we integrate current research findings to propose novel strategies for leveraging ncRNA-mediated pyroptosis as a therapeutic intervention in lung cancer. We explore the potential of ncRNAs as biomarkers for predicting patient response to treatment and as targets for overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Sushama Rawat
- Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Richa Rani
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India
| | | | - Pranchal Rajput
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - Pooja Bansal
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
| |
Collapse
|
33
|
Yang W, Huang X, Lv W, Jin Y, Zhu Y. LINC00365 promotes miR-221-5p to inhibit pyroptosis via Dicer in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 57:529-541. [PMID: 39439418 PMCID: PMC12040748 DOI: 10.3724/abbs.2024173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/24/2024] [Indexed: 10/25/2024] Open
Abstract
Pyroptosis, a newly discovered form of programmed cell death, is involved in the occurrence, development and drug resistance of a variety of tumors and has attracted increasing attention in recent years. LINC00365 is a novel lncRNA that has rarely been reported before. We previously reported that LINC00365 expression in colorectal cancer is closely associated with poor patient outcomes. Additionally, LINC00365 was confirmed to be positively correlated with miR-221-5p, and miR-221-5p is negatively correlated with gasdermin-D (GSDMD) in colorectal cancer tissues. Bioinformatics analysis and luciferase reporter gene experiments revealed that GSDMD is the target gene of miR-221-5p. Cell function experiments and nude mouse tumor transplantation assays confirmed that LINC00365 could regulate the expressions of pyroptosis-related proteins such as Caspase-1, Caspase-11, NLRP3 and GSDMD. RNA pulldown and RNA immunoprecipitation experiments further elucidated the mechanism by which LINC00365 regulates miR-221-5p. In the present study, we observe that LINC00365 promotes the expression of miR-221-5p by binding to the Dicer enzyme to inhibit GSDMD and plays an antipyroptotic role. Our findings suggest that LINC00365 may serve as a molecular biomarker for estimating the prognosis of patients with colorectal cancer and as a potential therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Weiqing Yang
- School of Graduate StudiesWannan Medical CollegeWuhu241002China
- Department of Oncologythe First Affiliated Hospital of Wannan Medical CollegeWuhu241002China
| | - Xiang Huang
- School of Public HealthWannan Medical CollegeWuhu241002China
| | - Weibin Lv
- School of Graduate StudiesWannan Medical CollegeWuhu241002China
- Department of Oncologythe First Affiliated Hospital of Wannan Medical CollegeWuhu241002China
| | - Yuelong Jin
- School of Public HealthWannan Medical CollegeWuhu241002China
| | - Yiping Zhu
- Department of Oncologythe First Affiliated Hospital of Wannan Medical CollegeWuhu241002China
| |
Collapse
|
34
|
Rai AK, Muthukumaran NS, Nisini N, Lee T, Kyriazis ID, de Lucia C, Piedepalumbo M, Roy R, Uchida S, Drosatos K, Bisserier M, Katare R, Goukassian D, Kishore R, Garikipati VNS. Transcriptome wide changes in long noncoding RNAs in diabetic ischemic heart disease. Cardiovasc Diabetol 2024; 23:365. [PMID: 39420368 PMCID: PMC11488282 DOI: 10.1186/s12933-024-02441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
More than 10% of adults in the United States have type 2 diabetes mellitus (DM) with a 2-4 times higher prevalence of ischemic heart disease than the non-diabetics. Despite extensive research approaches to limit this life-threatening condition have proven unsuccessful, highlighting the need for understanding underlying molecular mechanisms. Long noncoding RNAs (lncRNAs), which regulate gene expression by acting as signals, decoys, guides, or scaffolds have been implicated in diverse cardiovascular conditions. However, their role in ischemic heart disease in DM remains poorly understood. We provide new insights into the lncRNA expression profile after ischemic heart disease in DM mice. We performed unbiased RNA sequencing of well-characterized type 2 DM model db/db mice or its control db/+ subjected to sham or MI surgery. Computational analysis of the RNA sequencing of these LV tissues identified several differentially expressed lncRNAs between (db/db sham vs. db/db MI) including Gm19522 and Gm8075. lncRNA Gm-19522 may regulate DNA replication via DNA protein kinases, while lncRNA Gm-8075 is associated with cancer gene dysregulation and PI3K/Akt pathways. Thus, the downregulation of lncRNAs Gm19522 and Gm8075 post-MI may serve as potential biomarkers or novel therapeutic targets to improve cardiac repair/recovery in diabetic ischemic heart disease.
Collapse
Affiliation(s)
- Amit Kumar Rai
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Natarajaseenivasan Suriya Muthukumaran
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Noemi Nisini
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Tiffany Lee
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Ioannis D Kyriazis
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Laboratory of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Claudio de Lucia
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- ASL (Azienda Sanitaria Locale-Local Health Authority), Napoli 1 Centro, Naples, Italy
- ASL (Azienda Sanitaria Locale-Local Health Authority), Salerno, D.S. 60, Nocera Inferiore, SA, Italy
| | - Michela Piedepalumbo
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- ASL (Azienda Sanitaria Locale-Local Health Authority, Napoli 3 Sud, Naples, Italy
| | - Rajika Roy
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Shizuka Uchida
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Frederikskaj 10B, 2. (Building C), Copenhagen SV, 2450, Denmark
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Department of Pharmacology and Systems Physiology, Cardiovascular Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Raj Kishore
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA.
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA.
| |
Collapse
|
35
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
36
|
Geng XF, Shang WY, Qi ZW, Zhang C, Li WX, Yan ZP, Fan XB, Zhang JP. The mechanism and promising therapeutic strategy of diabetic cardiomyopathy dysfunctions: Focus on pyroptosis. J Diabetes Complications 2024; 38:108848. [PMID: 39178624 DOI: 10.1016/j.jdiacomp.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, and myocardial damage caused by hyperglycemia is the main cause of heart failure. However, there is still a lack of systematic understanding of myocardial damage caused by diabetes. At present, we believe that the cellular inflammatory damage caused by hyperglycemia is one of the causes of diabetic cardiomyopathy. Pyroptosis, as a proinflammatory form of cell death, is closely related to the occurrence and development of diabetic cardiomyopathy. Therefore, this paper focuses on the important role of inflammation in the occurrence and development of diabetic cardiomyopathy. From the perspective of pyroptosis, we summarize the pyroptosis of different types of cells in diabetic cardiomyopathy and its related signaling pathways. It also summarizes the treatment of diabetic cardiomyopathy, hoping to provide methods for the prevention and treatment of diabetic cardiomyopathy by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Xiao-Fei Geng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Wen-Yu Shang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhong-Wen Qi
- Postdoctoral Research Station of China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Chi Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Wen-Xiu Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhi-Peng Yan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xin-Biao Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jun-Ping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
37
|
Satheesan A, Kumar J, Leela KV, Murugesan R, Chaithanya V, Angelin M. Review on the role of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome pathway in diabetes: mechanistic insights and therapeutic implications. Inflammopharmacology 2024; 32:2753-2779. [PMID: 39160391 DOI: 10.1007/s10787-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
This review explores the pivotal role of the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome in the pathogenesis of diabetes and its complications, highlighting the therapeutic potential of various oral hypoglycemic drugs targeting this pathway. NLRP3 inflammasome activation, triggered by metabolic stressors like hyperglycemia, hyperlipidemia, and free fatty acids (FFAs), leads to the release of pro-inflammatory cytokines interleukin-1β and interleukin-18, driving insulin resistance, pancreatic β-cell dysfunction, and systemic inflammation. These processes contribute to diabetic complications such as nephropathy, neuropathy, retinopathy, and cardiovascular diseases (CVD). Here we discuss the various transcriptional, epigenetic, and gut microbiome mediated regulation of NLRP3 activation in diabetes. Different classes of oral hypoglycemic drugs modulate NLRP3 inflammasome activity through various mechanisms: sulfonylureas inhibit NLRP3 activation and reduce inflammatory cytokine levels; sodium-glucose co-transporter 2 inhibitors (SGLT2i) suppress inflammasome activity by reducing oxidative stress and modulating intracellular signaling pathways; dipeptidyl peptidase-4 inhibitors mitigate inflammasome activation, protecting against renal and vascular complications; glucagon-like peptide-1 receptor agonists attenuate NLRP3 activity, reducing inflammation and improving metabolic outcomes; alpha-glucosidase inhibitors and thiazolidinediones exhibit anti-inflammatory properties by directly inhibiting NLRP3 activation. Agents that specifically target NLRP3 and inhibit their activation have been identified recently such as MCC950, Anakinra, CY-09, and many more. Targeting the NLRP3 inflammasome, thus, presents a promising strategy for managing diabetes and its complications, with oral hypoglycemic drugs offering dual benefits of glycemic control and inflammation reduction. Further research into the specific mechanisms and long-term effects of these drugs on NLRP3 inflammasome activity is warranted.
Collapse
Affiliation(s)
- Abhishek Satheesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Janardanan Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| | - Kakithakara Vajravelu Leela
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Ria Murugesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Venkata Chaithanya
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Matcha Angelin
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| |
Collapse
|
38
|
Jiao A, Liu H, Wang H, Yu J, Gong L, Zhang H, Fu L. piR112710 attenuates diabetic cardiomyopathy through inhibiting Txnip/NLRP3-mediated pyroptosis in db/db mice. Cell Signal 2024; 122:111333. [PMID: 39102928 DOI: 10.1016/j.cellsig.2024.111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are involved in the regulation of hypertrophic cardiomyopathy, heart failure and myocardial methylation. However, their functions and the underlying molecular mechanisms in diabetic cardiomyopathy (DCM) have yet to be fully elucidated. In the present study, a pyroptosis-associated piRNA (piR112710) was identified that ameliorates cardiac remodeling through targeting the activation of inflammasomes and mitochondrial dysfunction that are mediated via the thioredoxin-interacting protein (Txnip)/NLRP3 signaling axis. Subsequently, the cardioprotective effects of piR112710 on both the myocardium from db/db mice and cardiomyocytes from neonatal mice that were incubated with a high concentration of glucose combined with palmitate were examined. piR112710 was found to significantly improve cardiac dysfunction in db/db mice, characterized by improved echocardiography, lower levels of fibrosis, attenuated expression levels of inflammatory factors and pyroptosis-associated proteins (namely, Txnip, ASC, NLRP3, caspase-1 and GSDMD-N), and enhanced myocardial mitochondrial respiratory functions. In cultured neonatal mice cardiomyocytes, piR112710 deficiency and high glucose along with palmitate treatment led to significantly upregulated expression levels of pyroptosis associated proteins and collagens, oxidative stress, mitochondrial dysfunction and increased levels of inflammatory factors. Supplementation with piR112710, however, led to a reversal of the aforementioned changes induced by high glucose and palmitate. Mechanistically, the cardioprotective effect of piR112710 appears to be dependent upon effective elimination of reactive oxygen species and inactivation of the Txnip/NLRP3 signaling axis. Taken together, the findings of the present study have revealed that the piRNA-mediated inhibitory mechanism involving the Txnip/NLRP3 axis may participate in the regulation of pyroptosis, which protects against DCM both in vivo and in vitro. piR112710 may therefore be a potential therapeutic target for the reduction of myocardial injury caused by cardiomyocyte pyroptosis in DCM.
Collapse
Affiliation(s)
- Ande Jiao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Huaxing Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Huihui Wang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, Heilongjiang 161041, China
| | - Jiaqi Yu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, China
| | - Lu Gong
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, China
| | - Honglian Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161003, China
| | - Lu Fu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
39
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
40
|
Dong S, Zhang J, Fu Y, Tang G, Chen J, Sun D, Qi Y, Zhou N. METTL3-mediated m6A modification of SIRT1 mRNA affects the progression of diabetic cataracts through cellular autophagy and senescence. J Transl Med 2024; 22:865. [PMID: 39334185 PMCID: PMC11429169 DOI: 10.1186/s12967-024-05691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The increasing incidence of diabetes mellitus has established diabetic cataracts (DC) as a significant worldwide public health issue. The mechanisms underlying DC remain unknown, and effective prevention and treatment strategies are lacking. Accordingly, we aimed to explore the role and mechanism behind N6-methyladenosine (m6A) in DC progression. METHODS Methyltransferase-like 3 (METTL3), p21, Beclin1, LC3, and p62 expression levels were measured in human tissues. This study assessed total m6A levels and common m6A-regulated biomarkers in both in vitro and in vivo DC models. Autophagy flux was detected in vitro through Ad-mCherry-GFP-LC3B and Monodansylcadaverine (MDC) staining. Cellular senescence was assessed utilizing the senescence-associated β-galactosidase (SA-β-Gal) assay. Furthermore, the effect of METTL3 on SIRT1 mRNA modification was demonstrated, and its mechanism was elucidated using RT-qPCR, western blot, RNA stability assays, and RIP analysis. RESULTS METTL3, p21, and p62 expression levels were elevated in lens epithelial cells (LECs) from DC patients, while Beclin1 and LC3 levels were reduced. Silencing METTL3-mediated m6A modifications restored high-glucose-induced autophagy inhibition and prevented premature senescence in LECs. Notably, SIRT1720 and Metformin significantly enhanced autophagosome generation and delayed cellular senescence. The m6A-reading protein YTHDF2 bound to m6A modifications, and YTHDF2 silencing significantly reduced METTL3-mediated SIRT1 inactivation. CONCLUSIONS METTL3 induces senescence in DC by destabilizing SIRT1 mRNA in an m6A-YTHDF2-dependent manner. The METTL3-YTHDF2-SIRT1 axis is a key target and potential pathogenic mechanism in DC.
Collapse
Affiliation(s)
- Su Dong
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jiajia Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yushan Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Gege Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jianfeng Chen
- Laboratory Animal Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Yanhua Qi
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Nan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
41
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|
42
|
Zhang X, Dong X, Jie H, Li S, Li H, Su Y, Li L, Kang L, Dong B, Zhang Y. Downregulation of the (pro)renin receptor alleviates ferroptosis-associated cardiac pathological changes via the NCOA 4-mediated ferritinophagy pathway in diabetic cardiomyopathy. Int Immunopharmacol 2024; 138:112605. [PMID: 38963979 DOI: 10.1016/j.intimp.2024.112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Ferroptosis, characterized by the accumulation of reactive oxygen species and lipid peroxidation, is involved in various cardiovascular diseases. (Pro)renin receptor (PRR) in performs as ligands in the autophagic process, and its function in diabetic cardiomyopathy (DCM) is not fully understood. We investigated whether PRR promotes ferroptosis through the nuclear receptor coactivator 4 (NCOA 4)-mediated ferritinophagy pathway and thus contributes to DCM. We first established a mouse model of DCM with downregulated and upregulated PRR expression and used a ferroptosis inhibitor. Myocardial inflammation and fibrosis levels were then measured, cardiac function and ferroptosis-related indices were assessed. In vitro, neonatal rat ventricular primary cardiomyocytes were cultured with high glucose and transfected with recombinant adenoviruses knocking down or overexpressing the PRR, along with a ferroptosis inhibitor and small interfering RNA for the ferritinophagy receptor, NCOA4. Ferroptosis levels were measured in vitro. The results showed that the knockdown of PRR not only alleviated cardiomyocyte ferroptosis in vivo but also mitigated the HG-induced ferroptosis in vitro. Moreover, administration of Fer-1 can inhibit HG-induced ferroptosis. NCOA4 knockdown blocked the effect of PRR on ferroptosis and improved cell survival. Our result indicated that inhibition of PRR and NCOA4 expression provides a new therapeutic strategy for the treatment of DCM. The effect of PRR on the pathological process of DCM in mice may be in promoting cardiomyocyte ferroptosis through the NCOA 4-mediated ferritinophagy pathway.
Collapse
Affiliation(s)
- XinYu Zhang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - XueFei Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - HaiPeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - ShengNan Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - HuiXin Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China; Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan 250021, China
| | - YuDong Su
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China; Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan 250021, China
| | - Lei Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - Li Kang
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China; Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan 250021, China.
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China.
| |
Collapse
|
43
|
Zhao X, Zhang J, Xu F, Shang L, Liu Q, Shen C. TAK-242 alleviates diabetic cardiomyopathy via inhibiting pyroptosis and TLR4/CaMKII/NLRP3 pathway. Open Life Sci 2024; 19:20220957. [PMID: 39290498 PMCID: PMC11406225 DOI: 10.1515/biol-2022-0957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is identified as a progressive disease that may lead to irreparable heart failure. Toll-like receptor (TLR) signaling is believed to be implicated in the pathogenesis of DCM. This study intended to explore the potential impact of Toll-like receptor 4 (TLR4) on DCM in vitro and in vivo. Streptozotocin and HG medium were utilized to induce diabetes in animal and cell models, respectively. Selective TLR4 inhibitor TAK-242 and calcium/calmodulin-dependent protein kinase-II (CaMKII) inhibitor KN-93 were employed to explore the involvement of TLR4/CaMKII in DCM. TLR4 expression was increased in DCM hearts, while inhibition of TLR4 activation by TAK-242 improved cardiac function, attenuated heart hypertrophy, and fibrosis, as well as reduced oxidative stress and proinflammatory cytokine levels in rats, which were confirmed by Doppler echocardiography, hematoxylin and eosin staining, and Masson Trichome staining and specific enzyme-linked immunosorbent assay kits. Besides, the expression of hypertrophy-related molecules and oxidative stress damage were also inhibited by TAK-242. Furthermore, TAK-242 treatment reduced CaMKII phosphorylation accompanied by decreased expression of NOD-like pyrin domain-containing protein 3, gasdermin D (GSDMD), The N-terminal domain of Gasdermin D (GSDMD-N), apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and Caspase-1 both in vivo and in vitro. Similar positive impacts on HG-induced pyroptosis were also observed with KN-93 treatment, and this was achieved without affecting TLR4 expression. Collectively, our work suggested that TAK-242 demonstrated substantial benefits against DCM both in vivo and in vitro, potentially attributed to the suppression of the TLR4-mediated CaMKII/NLRP3 pathway activity.
Collapse
Affiliation(s)
- Xiaolong Zhao
- School of Graduates, Dalian Medical University, Dalian, China
| | - Jing Zhang
- Medical Department, The Second Hospital of Dalian Medical University, Dalian City, China
| | - Feng Xu
- School of Graduates, Dalian Medical University, Dalian, China
| | - Longqi Shang
- Department of Nursing, The Second Affiliated Hospital of Shenyang Medical College, Shenyang City, China
| | - Qingquan Liu
- Department of Cardiothoracic Surgery, The Fourth People's Hospital of Shenyang, No. 20 Huanghe South Street, Shenyang, 110000, Liaoning, China
| | - Chunjian Shen
- Department of Cardiothoracic Surgery, The Fourth People's Hospital of Shenyang, No. 20 Huanghe South Street, Shenyang, 110000, Liaoning, China
| |
Collapse
|
44
|
Tang H, Du Y, Tan Z, Li D, Xie J. METTL14-mediated HOXA5 m 6A modification alleviates osteoporosis via promoting WNK1 transcription to suppress NLRP3-dependent macrophage pyroptosis. J Orthop Translat 2024; 48:190-203. [PMID: 39280633 PMCID: PMC11393600 DOI: 10.1016/j.jot.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Background Osteoporosis is a commonly diagnosed metabolic bone disease. NLRP3 inflammasome activation and pyroptosis are observed during osteoporosis. However, the mechanism by which NLRP3-mediated pyroptosis contributes to osteoporosis remains largely undefined. Methods Ovariectomized (OVX) mice were employed as an in vivo model of osteoclastogenesis. H&E staining and micro-CT detected the histological changes and bone parameters in the femur tissues. RANKL-treated macrophages were used as the in vitro model of osteoclastogenesis, and LPS/ATP treatment was used as the macrophage pyroptosis model. The cytotoxicity, cytokine secretion and caspase-1 activity were assessed by LDH release assay, ELISA and flow cytometry, respectively. The osteoclast formation ability was detected by TRAP staining. qRT-PCR, IHC and Western blotting detected the expression and localization of METTL14, pyroptosis-related or osteoclast-specific molecules in femur tissues or macrophages. Mechanistically, MeRIP assessed the m6A modification of HOXA5. Luciferase and ChIP assays were employed to detect the direct association between HOXA5 and WNK1 promoter in macrophages. Results METTL14, HOXA5 and WNK1 were decreased in OVX mice, which was associated with pyroptosis. METTL14 or HOXA5 overexpression suppressed macrophage-osteoclast differentiation and pyroptosis, along with the upregulation of WNK1. METTL14-mediated m6A modification stabilized HOXA5 mRNA and increased its expression, and HOXA5 regulated WNK1 expression via direct binding to its promoter. Functional studies showed that WNK1 knockdown counteracted METTL14- or HOXA5-suppressed pyroptosis and macrophage-osteoclast differentiation. In OVX mice, overexpression of METTL14 or HOXA5 alleviated osteoporosis via suppressing WNK1-dependent NLRP3 signaling. Conclusion METTL14-mediated HOXA5 m6A modification increased its expression, thereby inducing WNK1 expression and suppressing NLRP3-dependent pyroptosis to alleviate osteoporosis. The combination of METTL14 or HOXA5 agonist with pyroptosis targeted therapy may be a promising therapeutic approach for osteoporosis. The Translational Potential of this Article· •METTL14 or HOXA5 overexpression suppressed macrophage-osteoclast differentiation and pyroptosis in macrophages.·•METTL14-mediated m6A modification stabilized HOXA5 mRNA and increased its expression.•HOXA5 regulated WNK1 expression via direct binding to its promoter.•Silencing of WNK1 reversed METTL14- or HOXA5-suppressed pyroptosis and macrophageosteoclast differentiation.·•METTL14 or HOXA5 overexpression alleviated osteoporosis via suppressing WNK1-dependent NLRP3 signaling in OVX mice.
Collapse
Affiliation(s)
- Hao Tang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yuxuan Du
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Zejiu Tan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Dongpeng Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jiang Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
45
|
Li W, Liu Y, Xu R, Zong Y, He L, Hu J, Li G. M 6A modification in cardiovascular disease: With a focus on programmed cell death. Genes Dis 2024; 11:101039. [PMID: 38988324 PMCID: PMC11233881 DOI: 10.1016/j.gendis.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2024] Open
Abstract
N6-methyladenosine (m6A) methylation is one of the most predominant internal RNA modifications in eukaryotes and has become a hot spot in the field of epigenetics in recent years. Cardiovascular diseases (CVDs) are a leading cause of death globally. Emerging evidence demonstrates that RNA modifications, such as the m6A modification, are associated with the development and progression of many diseases, including CVDs. An increasing body of studies has indicated that programmed cell death (PCD) plays a vital role in CVDs. However, the molecular mechanisms underlying m6A modification and PCD in CVDs remain poorly understood. Herein, elaborating on the highly complex connections between the m6A mechanisms and different PCD signaling pathways and clarifying the exact molecular mechanism of m6A modification mediating PCD have significant meaning in developing new strategies for the prevention and therapy of CVDs. There is great potential for clinical application.
Collapse
Affiliation(s)
- Wen Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yao Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ruiyan Xu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuan Zong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lu He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jun Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guohua Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
46
|
Li L, Gong J, Zhang W. Treatment of Intracerebral Hemorrhage with Traditional Chinese Medicine Monomer Wogonin by Modifying NLRP3 with METTL14 to Inhibit Neuronal Cell Pyroptosis. Appl Biochem Biotechnol 2024; 196:6174-6188. [PMID: 38224394 DOI: 10.1007/s12010-023-04849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
The aim of this study was to investigate the alleviating effect of wogonin on intracerebral hemorrhage (ICH) and its mechanism. The hemin-treated PC-12 cells were constructed to mimic ICH in vitro. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis was used for cell viability measurement and flow cytometry was for pyroptosis detection. Enzyme-linked immunosorbent assay (ELISA) assay and western blot were used to detect the protein levels of pyroptosis-related proteins. The modification level of N6-methyladenosine (m6A) methylation was detected by quantitative real-time polymerase chain reaction (qRT-PCR) combined with m6A dot blot assays. Molecular docking experiments analyzed the binding of wogonin and METTL14 protein. The correlation between METTL14 and NLRP3 was confirmed by bioinformatics analysis and dual luciferase reporter gene detection. ICH was induced in mice injected with collagenase into the basal ganglia, and the neurobehavioral damage was evaluated. Triphenyltetrazolium chloride monohydrate (TTC) staining and neurological scores were used to assess brain damage in mice. The results demonstrated that wogonin alleviated neuronal cell pyroptosis, and was molecularly docked with METTL14. Overexpression of METTL14 partly reversed the protecting effects of wogonin on brain in vitro and in vivo. Furthermore, NLRP3 was methylated by METTL14. Taken together, wogonin inhibits neuronal pyroptosis and thus treats IHC by inhibiting METTL14 and its methylated NLRP3.
Collapse
Affiliation(s)
- Libo Li
- Neurosurgery Department, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, China
| | - Jinbing Gong
- Neurosurgery Department, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, China
| | - Wenjia Zhang
- Neurosurgery Department, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, China.
| |
Collapse
|
47
|
Wang J, Wang S, Yang H, Wang R, Shi K, Liu Y, Dou L, Yu H. Methyltransferase like-14 suppresses growth and metastasis of non-small-cell lung cancer by decreasing LINC02747. Cancer Sci 2024; 115:2931-2946. [PMID: 38888105 PMCID: PMC11462971 DOI: 10.1111/cas.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Multiple epigenetic regulatory mechanisms exert critical roles in tumor development, and understanding the interactions and impact of diverse epigenetic modifications on gene expression in cancer is crucial for the development of precision medicine. We found that methyltransferase-like 14 (METTL14) was significantly downregulated in non-small-cell lung cancer (NSCLC) tissues. Functional experiments demonstrated that overexpression of METTL14 inhibited the proliferation and migration of NSCLC cells both in vivo and in vitro, and the colorimetric m6A quantification assay also showed that knockdown of METTL14 notably reduced global m6A modification levels in NSCLC cells. By using the methylated-RNA immunoprecipitation-qPCR and dual-luciferase reporter assays, we verified that long noncoding RNA LINC02747 was a target of METTL14 and was regulated by METTL14-mediated m6A modification, and silencing LINC02747 inhibited the malignant progression of NSCLC by modulating the PI3K/Akt and CDK4/Cyclin D1 signaling pathway. Further studies revealed that overexpression of METTL14 promoted m6A methylation and accelerated the decay of LINC02747 mRNA via increased recognition of the "GAACU" binding site by YTHDC2. Additionally, histone demethylase lysine-specific histone demethylase 5B (KDM5B) mediated the demethylation of histone H3 lysine 4 tri-methylation (H3K4me3) in the METTL14 promoter region and repressed its transcription. In summary, KDM5B downregulated METTL14 expression at the transcriptional level in a H3K4me3-dependent manner, while METTL14 modulated LINC02747 expression via m6A modification. Our results demonstrate a synergy of multiple mechanisms in regulating the malignant phenotype of NSCLC, revealing the complex regulation involved in the occurrence and development of cancer.
Collapse
Affiliation(s)
- Jiemin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Shu Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Haopeng Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Ruixuan Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Kesong Shi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Yueshi Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Le Dou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotInner MongoliaChina
| |
Collapse
|
48
|
Liu Y, Wu H, Zhou G, Zhang D, Yang Q, Li Y, Yang X, Sun J. Role of M6a Methylation in Myocardial Ischemia-Reperfusion Injury and Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024; 24:918-928. [PMID: 39026038 DOI: 10.1007/s12012-024-09898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Cardiovascular disease remains the leading cause of death worldwide, with acute myocardial infarction and anticancer drug-induced cardiotoxicity being the significant factors. The most effective treatment for acute myocardial infarction is rapid restoration of coronary blood flow by thrombolytic therapy or percutaneous coronary intervention. However, myocardial ischemia-reperfusion injury (MI/RI) after reperfusion therapy is common in acute myocardial infarction, thus affecting the prognosis of patients with acute myocardial infarction. There is no effective treatment for MI/RI. Anthracyclines such as Doxorubicin (DOX) have limited clinical use due to their cardiotoxicity, and the mechanism of DOX-induced cardiac injury is complex and not yet fully understood. N6-methyladenosine (m6A) plays a crucial role in many biological processes. Emerging evidence suggests that m6A methylation plays a critical regulatory role in MI/RI and DOX-induced cardiotoxicity (DIC), suggesting that m6A may serve as a novel biomarker and therapeutic target for MI/RI and DIC. M6A methylation may mediate the pathophysiological processes of MI/RI and DIC by regulating cellular autophagy, apoptosis, oxidative stress, and inflammatory response. In this paper, we first focus on the relationship between m6A methylation and MI/RI, then further elucidate that m6A methylation may mediate the pathophysiological process of MI/RI through the regulation of cellular autophagy, apoptosis, oxidative stress, and inflammatory response. Finally, briefly outline the roles played by m6A in DIC, which will provide a new methodology and direction for the research and treatment of MI/RI and DIC.
Collapse
Affiliation(s)
- Yanfang Liu
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Hui Wu
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China.
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China.
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| | - Gang Zhou
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Dong Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Qingzhuo Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yi Li
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Xiaoting Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jianfeng Sun
- Department of Vascular Surgery, The First College of Medical Science, Yichang Central People's Hospital, China Three Gorges University, Hubei, 443000, China
| |
Collapse
|
49
|
Li X, Li Y, Zhang W, Jiang F, Lin L, Wang Y, Wu L, Zeng H, Zheng J. The IGF2BP3/Notch/Jag1 pathway: A key regulator of hepatic stellate cell ferroptosis in liver fibrosis. Clin Transl Med 2024; 14:e1793. [PMID: 39113232 PMCID: PMC11306284 DOI: 10.1002/ctm2.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/11/2024] Open
Abstract
INTRODUCTION Liver fibrosis is primarily driven by the activation of hepatic stellate cells (HSCs), which involves various epigenetic modifications. OBJECTIVES N6-methyladenosine (m6A), the most prevalent RNA modification in eukaryotic cells, influences numerous physiological and pathological processes. Nevertheless, the role of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), a reader gene mediating m6A modifications, in liver fibrosis remains unclear. METHODS AND RESULTS This study demonstrated that IGF2BP3 knockout reduces liver fibrosis by promoting HSC ferroptosis (FPT) and inactivating HSCs. Multi-omics analysis revealed that HSC-specific IGF2BP3 knockout decreased m6A content in Jagged1 (Jag1), a key component of the Notch signalling pathway. Furthermore, IGF2BP3 deficiency significantly reduced the expression of hairy and enhancer of split-1 (Hes1), a transcription factor in the Notch/Jag1 signalling pathway, with mRNA levels declining to 35%-62% and protein levels to 28%-35%. Additionally, it suppressed glutathione peroxidase 4 (GPX4) (decreased to approximately 31%-38%), a negative regulator of FPT, thereby facilitating HSC FPT progression and reducing profibrotic gene expression. CONCLUSION These findings uncover a novel IGF2BP3/Notch/Jag1 signalling pathway involving HSC FPT, suggesting promising targets for ameliorating liver fibrosis. KEY POINTS/HIGHLIGHTS IGF2BP3 deficiency inactivates Jag1 signalling. IGF2BP3 deficiency-mediated m6A modifications promote HSC ferroptosis. IGF2BP3 inhibition facilitates ferroptosis in HSCs via the Hes1/GPX4 axis. IGF2BP3 deficiency inactivates Jag1/Notch1/3/Hes1 signalling pathway inactivation, leading to the decrease in GPX4, which contributes to HSC ferroptosis.
Collapse
Affiliation(s)
- Xinmiao Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yifei Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Weizhi Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Feng Jiang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Lifan Lin
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yining Wang
- School of Mental HealthWenzhou Medical UniversityWenzhouChina
| | - Lingling Wu
- Renji CollegeWenzhou Medical UniversityWenzhouChina
| | - Han Zeng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jianjian Zheng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
50
|
Abubakar M, Hajjaj M, Naqvi ZEZ, Shanawaz H, Naeem A, Padakanti SSN, Bellitieri C, Ramar R, Gandhi F, Saleem A, Abdul Khader AHS, Faraz MA. Non-Coding RNA-Mediated Gene Regulation in Cardiovascular Disorders: Current Insights and Future Directions. J Cardiovasc Transl Res 2024; 17:739-767. [PMID: 38092987 DOI: 10.1007/s12265-023-10469-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/23/2023] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVDs) pose a significant burden on global health. Developing effective diagnostic, therapeutic, and prognostic indicators for CVDs is critical. This narrative review explores the role of select non-coding RNAs (ncRNAs) and provides an in-depth exploration of the roles of miRNAs, lncRNAs, and circRNAs in different aspects of CVDs, offering insights into their mechanisms and potential clinical implications. The review also sheds light on the diverse functions of ncRNAs, including their modulation of gene expression, epigenetic modifications, and signaling pathways. It comprehensively analyzes the interplay between ncRNAs and cardiovascular health, paving the way for potential novel interventions. Finally, the review provides insights into the methodologies used to investigate ncRNA-mediated gene regulation in CVDs, as well as the implications and challenges associated with translating ncRNA research into clinical applications. Considering the broader implications, this research opens avenues for interdisciplinary collaborations, enhancing our understanding of CVDs across scientific disciplines.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, Punjab, Pakistan.
| | - Mohsin Hajjaj
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Zil E Zehra Naqvi
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Hameed Shanawaz
- Department of Internal Medicine, Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | - Ammara Naeem
- Department of Cardiology, Heart & Vascular Institute, Dearborn, Michigan, USA
| | | | | | - Rajasekar Ramar
- Department of Internal Medicine, Rajah Muthiah Medical College, Chidambaram, Tamil Nadu, India
| | - Fenil Gandhi
- Department of Family Medicine, Lower Bucks Hospital, Bristol, PA, USA
| | - Ayesha Saleem
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | | | - Muhammad Ahmad Faraz
- Department of Forensic Medicine, Postgraduate Medical Institute, Lahore, Punjab, Pakistan
| |
Collapse
|