1
|
Liu Z, Liu X, Yin C, Liu Z, Yu H. Identification of circRNA-Based Biomarkers and ceRNA Mechanism in Non-Small Cell Lung Cancer. Cell Biochem Biophys 2025:10.1007/s12013-025-01753-y. [PMID: 40251360 DOI: 10.1007/s12013-025-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/20/2025]
Abstract
We aimed to identify circRNA as a biomarker in non-small cell lung cancer (NSCLC) and explore the underlying mechanism. circRNA and mRNA data were retrieved from GEO database. A series of bioinformatics analyses including differentially expressed analysis, weighted gene co-expression network analysis (WGCNA), Random Forest, and support vector machine algorithm were applied to identify the key circRNAs in NSCLC. ROC curves were used to evaluate and distinguish the roles of key circRNAs in cancer. The expression levels of circRNAs were validated via qPCR analysis. Finally, a ceRNA network was constructed. Herein, si-hsa_circ_0084443 was transfected into NSCLC cells to investigate its function in NSCLC. Five circRNAs (hsa_circ_0049271, hsa_circ_0029426, hsa_circ_0084443, hsa_circ_0015278, and hsa_circ_0024731) were identified as biomarkers in NSCLC. They exhibited potent diagnostic ability in identifying NSCLC, with AUC > 0.85. qPCR results suggested that hsa_circ_0049271, hsa_circ_0029426, and hsa_circ_0015278 were significantly downregulated and hsa_circ_0084443 and hsa_circ_0024731 were significantly upregulated in tumor tissue compared with the levels in normal tissues (P < 0.05). A ceRNA network was finally constructed. Knockdown of hsa_circ_0084443 inhibited cell growth, migration, invasion, and colony formation, and promoted apoptosis in NSCLC cell line. Five circRNAs were identified as biomarkers and demonstrated abnormal expression in NSCLC. Furthermore, ceRNA network was constructed, which can aid the mechanism exploration in the future.
Collapse
Affiliation(s)
- Zhengjia Liu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiyu Liu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Cong Yin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zihao Liu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
2
|
Tang J, Tang Y, Lin P, Zheng J, Li Z, Zhang Y. Integrative analysis of circRNA networks in postoperative cognitive dysfunction. Int J Neurosci 2025; 135:455-487. [PMID: 38261527 DOI: 10.1080/00207454.2024.2309473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE In the quest to decipher the molecular intricacies of Postoperative Cognitive Dysfunction (POCD), this study focused on circular RNA (circRNA) and their regulatory networks. MATERIALS AND METHODS Analyzing the Gene Expression Omnibus Series (GSE) 147277 dataset, we pinpointed 10 differentially expressed circRNAs linked to POCD. RESULTS The ensuing competing endogenous RNA (ceRNA) network, featuring pivotal players like Homo sapiens(hsa)_circ_0003424 and hsa-miR-193b-5p, provided a comprehensive understanding of the molecular players at play in POCD. CONCLUSION Additionally, the Protein-Protein Interaction (PPI) network spotlighted 10 core Hub genes, including phosphatase and tensin homolog (PTEN) and signal transducer and activator of transcription 3(STAT3), shedding light on potential therapeutic targets.
Collapse
Affiliation(s)
- Jian Tang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Yanhong Tang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Peimin Lin
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Jie Zheng
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Zhengfen Li
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, P. R. China
| |
Collapse
|
3
|
Zhou L, Li J, Sun X, Xin Y, Yin S, Ning X. CircArid4b: A novel circular RNA regulating antibacterial response during hypoxic stress via apoptosis in yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110121. [PMID: 39788357 DOI: 10.1016/j.cbpc.2025.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
The intricate interaction among host, pathogen, and environment significantly influences aquatic health, yet the influence of hypoxic stress combined with bacterial infection on host response is understudied. Circular RNAs with stable closed-loop structures have emerged as important regulators in immunity, yet remain ill-defined in fish. In this study, we systematically explored the circRNA response in yellow catfish subjected to combined hypoxia-bacterial infection (HB) stress. Following HB stress, H&E and TUNEL staining identified heightened hepatocyte apoptosis, intracellular vacuolation, and inflammatory tissue damage. RT-qPCR elucidated that differentially expressed genes stimulated by HB synergistically enhanced apoptosis and inflammatory responses. Importantly, we systematically evaluated differentially expressed circRNAs (DEcirs) in yellow catfish under hypoxia with and without Aeromonas veronii infection and identified a novel HB-specific DEcir, designated as circArid4b, whose parental gene Arid4b is highly associated with apoptosis. Experiments confirmed the circular structure of circArid4b and revealed that under HB stimulation, specific knockdown of circArid4b inhibited the expression of Arid4b, while concurrent alterations in multiple apoptosis- and inflammation-related genes synergistically indicated the promotion of apoptotic and inflammatory pathways. Notably, the downregulation of circArid4b expression significantly reduced the susceptibility to bacterial infection in yellow catfish during hypoxia. These results suggest that HB-induced suppression of circArid4b promotes cell apoptosis and inflammation by inhibiting its parental gene and thereby facilitating resistance to bacterial infection during hypoxia. Our study enriches the understanding of fish circRNA mechanisms and offers novel preventive and control strategies for bacterial infections in fish under hypoxic environments.
Collapse
Affiliation(s)
- Linxin Zhou
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Jiayi Li
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xinxin Sun
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yingying Xin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Shaowu Yin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Xianhui Ning
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China.
| |
Collapse
|
4
|
Guo Y, Huang Q, Heng Y, Zhou Y, Chen H, Xu C, Wu C, Tao L, Zhou L. Circular RNAs in cancer. MedComm (Beijing) 2025; 6:e70079. [PMID: 39901896 PMCID: PMC11788016 DOI: 10.1002/mco2.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
Circular RNA (circRNA), a subtype of noncoding RNA, has emerged as a significant focus in RNA research due to its distinctive covalently closed loop structure. CircRNAs play pivotal roles in diverse physiological and pathological processes, functioning through mechanisms such as miRNAs or proteins sponging, regulation of splicing and gene expression, and serving as translation templates, particularly in the context of various cancers. The hallmarks of cancer comprise functional capabilities acquired during carcinogenesis and tumor progression, providing a conceptual framework that elucidates the nature of the malignant transformation. Although numerous studies have elucidated the role of circRNAs in the hallmarks of cancers, their functions in the development of chemoradiotherapy resistance remain unexplored and the clinical applications of circRNA-based translational therapeutics are still in their infancy. This review provides a comprehensive overview of circRNAs, covering their biogenesis, unique characteristics, functions, and turnover mechanisms. We also summarize the involvement of circRNAs in cancer hallmarks and their clinical relevance as biomarkers and therapeutic targets, especially in thyroid cancer (TC). Considering the potential of circRNAs as biomarkers and the fascination of circRNA-based therapeutics, the "Ying-Yang" dynamic regulations of circRNAs in TC warrant vastly dedicated investigations.
Collapse
Affiliation(s)
- Yang Guo
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Qiang Huang
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yu Heng
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yujuan Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Hui Chen
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chengzhi Xu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chunping Wu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Lei Tao
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Liang Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| |
Collapse
|
5
|
XIA LIANGJIANG, LI GUANGBIN, ZHOU QINGWU, FENG YU, MA HAITAO. CircRNA circ_0015278 induces ferroptosis in lung adenocarcinoma through the miR-1228/P53 axis. Oncol Res 2025; 33:465-475. [PMID: 39866239 PMCID: PMC11753987 DOI: 10.32604/or.2024.050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/11/2024] [Indexed: 01/28/2025] Open
Abstract
Background Circular RNAs play an important role in regulating lung adenocarcinoma (LUAD). Bioinformatics analysis identified circ_0015278 as differentially expressed in LUAD. However, the biological mechanism of circ_0015278 in LUAD has not been fully clarified, especially in ferroptosis. Materials and Methods Bioinformatics analysis was employed to explore the downstream mechanisms of Circ_0015278, subsequently confirmed by luciferase reporter assays. The impact of Circ_0015278 on cell proliferation, migration, invasion, and ferroptosis was investigated through a loss-of-function experiment. A xenotransplantation mouse model elucidated the effect of Circ_0015278 on tumour growth. Results Circ_0015278 exhibited downregulation in LUAD. It inhibited cell proliferation, migration, and invasion while promoting ferroptosis by interacting with miR-1228 to regulate P53 expression through a competitive endogenous RNA mechanism. Moreover, circ_0015278 suppressed tumour growth in mice. Conclusions Circ_0015278 was identified as a novel factor promoting ferroptosis in LUAD. Furthermore, it suppressed the malignant progression of LUAD through the miR-1228/P53 axis.
Collapse
Affiliation(s)
- LIANGJIANG XIA
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - GUANGBIN LI
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - QINGWU ZHOU
- The First Clinical Medical College of Nanchang University, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - YU FENG
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - HAITAO MA
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
6
|
Zhang L, Fang C, Zhu W, Zhong W, Ye R. Serum Hsa_circ_0023919 is a Predictive Biomarker of Chemoresistance in CRC Treatment. Int J Gen Med 2024; 17:6535-6543. [PMID: 39759896 PMCID: PMC11697668 DOI: 10.2147/ijgm.s482379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/23/2024] [Indexed: 01/07/2025] Open
Abstract
Background The diversity of available chemotherapeutic modalities for colorectal cancer (CRC) entails the implementation of personalized therapeutic regimens to optimize patient outcomes. Currently, the clinical use of biological markers for treatment selection is inadequate to achieve individualization. Circulatory RNAs (circRNAs), which function as plasma biomarkers, play a critical role in regulating biological processes in different types of cancer. Methods The samples (serum) were obtained from 80 CRC patients and 80 healthy individuals (controls) to assess the level of hsa_circ_0023919 via qRT-PCR analysis. Results In findings, hsa_circ_0023919 has a positive association with the disease stage and is greatly elevated in chemoresistant CRC patients. In addition, the area under the curve for hsa_circ_0023919 was modest, and an increase in hsa_circ_0023919 expressions was linked with a decreased overall survival (OS) and progression-free survival (PFS). Serum hsa_circ_0023919 levels serve as a diagnostic indicator for chemoresistance in CRC. Conclusion The findings suggested that hsa_circ_0023919 contributes to promoting chemoresistance in CRC patients. Consequently, it can be considered a potent therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Gastrointestinal Hernia, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Chuanfa Fang
- Department of Gastrointestinal Hernia, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Weiquan Zhu
- Department of Gastrointestinal Hernia, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Wu Zhong
- Department of Gastrointestinal Hernia, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, People’s Republic of China
| | - Rongqiang Ye
- Department of Hepatobiliary and Pancreatic Surgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, 341000, People’s Republic of China
| |
Collapse
|
7
|
Jaszek N, Bogdanowicz A, Siwiec J, Starownik R, Kwaśniewski W, Mlak R. Epigenetic Biomarkers as a New Diagnostic Tool in Bladder Cancer-From Early Detection to Prognosis. J Clin Med 2024; 13:7159. [PMID: 39685620 DOI: 10.3390/jcm13237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) currently ranks as the 9th most common cancer worldwide. It is characterised by very high rates of recurrence and metastasis. Most cases of BC are of urothelial origin, and due to its ability to penetrate muscle tissue, BC is divided into non-muscle-invasive BC (NMIBC) and muscle-invasive BC (MIBC). The current diagnosis of BC is still based primarily on invasive cystoscopy, which is an expensive and invasive method that carries a risk of various complications. Urine sediment cytology is often used as a complementary test, the biggest drawback of which is its very low sensitivity concerning the detection of BC at early stages, which is crucial for prompt implementation of appropriate treatment. Therefore, there is a great need to develop innovative diagnostic techniques that would enable early detection and accurate prognosis of BC. Great potential in this regard is shown by epigenetic changes, which are often possible to observe long before the onset of clinical symptoms of the disease. In addition, these changes can be detected in readily available biological material, such as urine or blood, indicating the possibility of constructing non-invasive diagnostic tests. Over the past few years, many studies have emerged using epigenetic alterations as novel diagnostic and prognostic biomarkers of BC. This review provides an update on promising diagnostic biomarkers for the detection and prognosis of BC based on epigenetic changes such as DNA methylation and expression levels of selected non-coding RNAs (ncRNAs), taking into account the latest literature data.
Collapse
Affiliation(s)
- Natalia Jaszek
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Alicja Bogdanowicz
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jan Siwiec
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Radosław Starownik
- Department of Urology and Urological Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Radosław Mlak
- Department of Laboratory Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
8
|
Huang K, Li S, Yang M, Teng Z, Xu B, Wang B, Chen J, Zhao L, Wu H. The epigenetic mechanism of metabolic risk in bipolar disorder. Obes Rev 2024; 25:e13816. [PMID: 39188090 DOI: 10.1111/obr.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Bipolar disorder (BD) is a complex and severe mental illness that causes significant suffering to patients. In addition to the burden of depressive and manic symptoms, patients with BD are at an increased risk for metabolic syndrome (MetS). MetS includes factors associated with an increased risk of atherosclerotic cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM), which may increase the mortality rate of patients with BD. Several studies have suggested a link between BD and MetS, which may be explained at an epigenetic level. We have focused on epigenetic mechanisms to review the causes of metabolic risk in BD.
Collapse
Affiliation(s)
- Kexin Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baoyan Xu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, Hebei Provincial Mental Health Center, Hebei Key Laboratory of Major Mental and Behavioral Disorders, The Sixth Clinical Medical College of Hebei University, Baoding, Hebei, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liping Zhao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Zhang Z, Gao Z, Fang H, Zhao Y, Xing R. Therapeutic importance and diagnostic function of circRNAs in urological cancers: from metastasis to drug resistance. Cancer Metastasis Rev 2024; 43:867-888. [PMID: 38252399 DOI: 10.1007/s10555-023-10152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/31/2023] [Indexed: 01/23/2024]
Abstract
Circular RNAs (circRNAs) are a member of non-coding RNAs with no ability in encoding proteins and their aberrant dysregulation is observed in cancers. Their closed-loop structure has increased their stability, and they are reliable biomarkers for cancer diagnosis. Urological cancers have been responsible for high mortality and morbidity worldwide, and developing new strategies in their treatment, especially based on gene therapy, is of importance since these malignant diseases do not respond to conventional therapies. In the current review, three important aims are followed. At the first step, the role of circRNAs in increasing or decreasing the progression of urological cancers is discussed, and the double-edged sword function of them is also highlighted. At the second step, the interaction of circRNAs with molecular targets responsible for urological cancer progression is discussed, and their impact on molecular processes such as apoptosis, autophagy, EMT, and MMPs is highlighted. Finally, the use of circRNAs as biomarkers in the diagnosis and prognosis of urological cancer patients is discussed to translate current findings in the clinic for better treatment of patients. Furthermore, since circRNAs can be transferred to tumor via exosomes and the interactions in tumor microenvironment provided by exosomes such as between macrophages and cancer cells is of importance in cancer progression, a separate section has been devoted to the role of exosomal circRNAs in urological tumors.
Collapse
Affiliation(s)
- Zhibin Zhang
- College of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, Hebei, China.
| | - Zhixu Gao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Huimin Fang
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Rong Xing
- Chengde Medical College, Chengde, 067000, Hebei, China
| |
Collapse
|
10
|
Cheng C, Zhang Z, Wang J, Wang C, Liu T, Yang C, Wang G, Huang H, Li Y. CircPGM5 regulates Foxo3a phosphorylation via MiR-21-5p/MAPK10 axis to inhibit bladder cancer progression. Cell Signal 2024; 121:111297. [PMID: 39004326 DOI: 10.1016/j.cellsig.2024.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Bladder cancer (BC) is one of the most prevalent malignant tumors worldwide, and the incidence is especially higher in males. Extensive evidence has demonstrated the pivotal role of circular RNAs (circRNAs) in BC progression. However, the exact regulatory mechanism of circRNAs in BC remains incompletely elucidated and warrants further exploration. This study screened a novel circRNA-circPGM5 from thousands of circRNAs by high-throughput sequencing. We found that circPGM5, originating from the PGM5 gene, was significantly lower expressed in BC tissues. Quantitative real-time PCR (qRT-PCR) verified that circPGM5 showed relatively low expression in 50 pairs of BC tissues and EJ and T24 cells. Notably, circPGM5 expression was correlated with stage, grade, and lymphatic metastasis of BC. Through RNA-FISH assay, we confirmed that circPGM5 predominantly localized in the cytoplasm. Functionally, overexpression of circPGM5 inhibited the proliferation, migration, and invasion of BC cells in vitro. Remarkably, circPGM5 demonstrated markedly significant tumor growth and metastasis suppression in vivo. Mechanistically, we discovered that circPGM5 upregulated the mitogen-activated protein kinase 10 (MAPK10) expression by influencing the oncogenic miR-21-5p activity through miR-21-5p absorption. This modulation of MAPK10 impacted the phosphorylation of the tumor suppressor Foxo3a in BC. In conclusion, our findings uncovered the tumor-suppressing role of circPGM5 in BC via the miR-21-5p/MAPK10/Foxo3a axis.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000, Guangdong, PR China; Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China; Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Ze Zhang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Jiawei Wang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Chong Wang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Tiantian Liu
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Chenglin Yang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Guowei Wang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Houbao Huang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Yawei Li
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, 519000, Guangdong, PR China.
| |
Collapse
|
11
|
Zhao J, Ma Y, Zheng X, Sun Z, Lin H, Du C, Cao J. Bladder cancer: non-coding RNAs and exosomal non-coding RNAs. Funct Integr Genomics 2024; 24:147. [PMID: 39217254 DOI: 10.1007/s10142-024-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bladder cancer (BCa) is a highly prevalent type of cancer worldwide, and it is responsible for numerous deaths and cases of disease. Due to the diverse nature of this disease, it is necessary to conduct significant research that delves deeper into the molecular aspects, to potentially discover novel diagnostic and therapeutic approaches. Lately, there has been a significant increase in the focus on non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), due to their growing recognition for their involvement in the progression and manifestation of BCa. The interest in exosomes has greatly grown due to their potential for transporting a diverse array of active substances, including proteins, nucleic acids, carbohydrates, and lipids. The combination of these components differs based on the specific cell and its condition. Research indicates that using exosomes could have considerable advantages in identifying and forecasting BCa, offering a less invasive alternative. The distinctive arrangement of the lipid bilayer membrane found in exosomes is what makes them particularly effective for administering treatments aimed at managing cancer. In this review, we have tried to summarize different ncRNAs that are involved in BCa pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in BCa.
Collapse
Affiliation(s)
- Jingang Zhao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Yangyang Ma
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Xiaodong Zheng
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Zhen Sun
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Hongxiang Lin
- Department of Urology, Ganzhou Donghe Hospital, Ganzhou, 341000, Jiang'xi, China
| | - Chuanjun Du
- Department of Urology, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, Zhe'jiang, China
| | - Jing Cao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China.
| |
Collapse
|
12
|
Agrawal A, Vindal V. Competing endogenous RNAs in head and neck squamous cell carcinoma: a review. Brief Funct Genomics 2024; 23:335-348. [PMID: 37941447 DOI: 10.1093/bfgp/elad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Our understanding of RNA biology has evolved with recent advances in research from it being a non-functional product to molecules of the genome with specific regulatory functions. Competitive endogenous RNA (ceRNA), which has gained prominence over time as an essential part of post-transcriptional regulatory mechanism, is one such example. The ceRNA biology hypothesis states that coding RNA and non-coding RNA co-regulate each other using microRNA (miRNA) response elements. The ceRNA components include long non-coding RNAs, pseudogene and circular RNAs that exert their effect by interacting with miRNA and regulate the expression level of its target genes. Emerging evidence has revealed that the dysregulation of the ceRNA network is attributed to the pathogenesis of various cancers, including the head and neck squamous cell carcinoma (HNSCC). This is the most prevalent cancer developed from the mucosal epithelium in the lip, oral cavity, larynx and pharynx. Although many efforts have been made to comprehend the cause and subsequent treatment of HNSCC, the morbidity and mortality rate remains high. Hence, there is an urgent need to understand the holistic progression of HNSCC, mediated by ceRNA, that can have immense relevance in identifying novel biomarkers with a defined therapeutic intervention. In this review, we have made an effort to highlight the ceRNA biology hypothesis with a focus on its involvement in the progression of HNSCC. For the identification of such ceRNAs, we have additionally highlighted a number of databases and tools.
Collapse
Affiliation(s)
- Avantika Agrawal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Vaibhav Vindal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
13
|
Yang L, Ruan Y, Chen B, Zhu Y, Xu H. Circ_0001671 regulates prostate cancer progression through miR-27b-3p/BLM axis. Sci Rep 2024; 14:12181. [PMID: 38806577 PMCID: PMC11133351 DOI: 10.1038/s41598-024-63068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Prostate cancer (PCa) ranks as the second most prevalent cancer among males globally. However, the exact mechanisms underlying its progression remain inadequately elucidated. The present study sought to investigate the role and underlying molecular mechanism of hsa_circ_0001671 (circ_0001671) in the pathogenic behavior of PCa cells. Guided by the ceRNA theory, miR-27b-3p was employed to identify circRNAs that could potentially regulate Bloom Syndrome Protein (BLM). A series of experimental approaches including bioinformatics, luciferase assays, Fluorescent In Situ Hybridization (FISH), RNA-pulldown, and RNA Immunoprecipitation (RIP) were utilized to validate the miRNA sponge function of circ_0001671. Divergent primer PCR, RNase R treatments, and Sanger sequencing were conducted for the identification of circ_0001671. Quantitative RT-PCR and Western blot analyses were performed to validate gene expression levels. Both in vitro and in vivo experiments were conducted to assess the functional role of circ_0001671 in PCa cells.It was observed that the expression levels of circ_0001671 and BLM were significantly elevated in PCa tissues and cell lines, whereas miR-27b-3p showed decreased expression. Circ_0001671 was found to promote cellular proliferation, migration, and invasion, while inhibiting apoptosis. In vivo assays confirmed that circ_0001671 facilitated tumor growth. Further mechanistic studies revealed that circ_0001671 acted as a competing endogenous RNA (ceRNA) for BLM by sponging miR-27b-3p. The oncogenic role of circ_0001671 in PCa was shown to be modulated through the miR-27b-3p/BLM axis. In conclusion, circ_0001671 exerts an oncogenic effect in prostate cancer through the regulation of BLM by sponging miR-27b-3p, thus suggesting a novel molecular target for the treatment of PCa.
Collapse
Affiliation(s)
- Lihong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Yong Ruan
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Yuhang Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
14
|
Saranya I, Dharshini VS, Akshaya RL, Subhashini PS, Selvamurugan N. Regulatory and therapeutic implications of competing endogenous RNA network in breast cancer progression and metastasis: A review. Int J Biol Macromol 2024; 266:131075. [PMID: 38531528 DOI: 10.1016/j.ijbiomac.2024.131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Breast cancer (BC) is a global health concern, and development of diagnostic tools and targeted treatments for BC remains challenging. Therapeutic approaches for BC often involve a combination of surgery, radiation therapy, chemotherapy, targeted therapy, and hormone therapy. In recent years, there has been a growing interest in the role of noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and microRNAs (miRNAs), in BC and their therapeutic implications. Various biological processes such as cell proliferation, migration, and apoptosis rely on the activities of these ncRNAs, and their dysregulation has been implicated in BC progression. The regulatory function of the competitive endogenous RNA (ceRNA) network, which comprises lncRNAs, miRNAs, and mRNAs, has been the subject of extensive pathophysiological research. Most lncRNAs serve as molecular sponges for miRNAs and sequester their activities, thereby regulating the expression of target mRNAs and contributing to the promotion or inhibition of BC progression. This review summarizes recent findings on the role of ceRNA networks in BC progression, metastasis, and therapeutic resistance, and highlights the association of ceRNA networks with transcription factors and signaling pathways. Understanding the ceRNA network can lead to the discovery of biomarkers and targeted treatment methods to prevent the spread and metastasis of BC.
Collapse
Affiliation(s)
- I Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - V Sowfika Dharshini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - P Sakthi Subhashini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
15
|
Liu Y, Jiang H, Hu K, Zou H, Zhang W, Liu J, Jian X. CircPRMT5 promotes progression of osteosarcoma by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. PLoS One 2024; 19:e0298947. [PMID: 38626179 PMCID: PMC11020494 DOI: 10.1371/journal.pone.0298947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/01/2024] [Indexed: 04/18/2024] Open
Abstract
Research has demonstrated that circular RNAs (circRNAs) exert critical functions in the occurrence and progression of numerous malignant tumors. CircPRMT5 was recently reported to be involved in the pathogenesis of cancers. However, the potential role of circPRMT5 in osteosarcoma needs further investigation. In present study, our results suggested that circPRMT5 was highly upregulated in osteosarcoma cells and mainly localizes in the cytoplasm. CircPRMT5 promoted the proliferation, migration and invasion capacities of osteosarcoma cells, and suppressed cell apoptosis. Knockdown of circPRMT5 exerted the opposite effects. Mechanically, circPRMT5 promoted the binding of CNBP to CDK6 mRNA, which enhanced the stability of CDK6 mRNA and facilitated its translation, thereby promoting the progression of osteosarcoma. Knockdown of CDK6 reversed the promoting effect of circPRMT5 on osteosarcoma cells. These findings suggest that circPRMT5 promotes osteosarcoma cell malignant activity by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. Thus, circPRMT5 may represent a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yunlu Liu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Keli Hu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hui Zou
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Weiguo Zhang
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jiangtao Liu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiaofei Jian
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| |
Collapse
|
16
|
Song M, Ma L, Zhu Y, Gao H, Hu R. Umbilical cord mesenchymal stem cell-derived exosomes inhibits fibrosis in human endometrial stromal cells via miR-140-3p/FOXP1/Smad axis. Sci Rep 2024; 14:8321. [PMID: 38594471 PMCID: PMC11004014 DOI: 10.1038/s41598-024-59093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024] Open
Abstract
Endometrial fibrosis is the histologic appearance of intrauterine adhesion (IUA). Emerging evidences demonstrated umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-exo) could alleviate endometrial fibrosis. But the specific mechanism is not clear. In this study, we explored the effect of UCMSC-exo on endometrial fibrosis, and investigated the possible role of miR-140-3p/FOXP1/Smad axis in anti-fibrotic properties of UCMSC-exo. UCMSC-exo were isolated and identified. Transforming growth factor-β (TGF-β) was used to induce human endometrial stromal cell (HESC) fibrosis. Dual luciferase assay was performed to verify the relationship between miR-140-3p and FOXP1. The expressions of fibrotic markers, SIP1, and p-Smad2/p-Smad3 in HESCs stimulated with UCMSC-exo were detected by western blot. In addition, the effects of miR-140-3p mimic, miR-140-3p inhibitor and FOXP1 over-expression on endometrial fibrosis were assessed. The isolated UCMSC-exo had a typical cup-shaped morphology and could be internalized into HESCs. The expressions of fibrotic markers were significantly increased by TGF-β, which was reversed by UCMSC-exo. MiR-140-3p in UCMSC-exo ameliorated TGf-β-induced HESCs fibrosis. FOXP1 was identified as the direct target of miR-140-3p, which could inversely regulate miR-140-3p's function on HESCs fibrosis. Furthermore, we demonstrated that miR-140-3p in UCMSC-exo regulated Smad signal pathway to exert the anti-fibrotic effect in HESCs. The anti-fibrotic effect of UCMSC-derived exosomes against HESC fibrosis was at least partially achieved by miR-140-3p/FOXP1/Smad axis.
Collapse
Affiliation(s)
- Mengling Song
- Department of Reproductive Medicine, General Hospital of Ningxia Medical University (The First Clinical Medical College of Ningxia Medical University), 804 Shengli Street, Xingqing Square, Yinchuan, 750004, Ningxia, China.
| | - Lijun Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yongzhao Zhu
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Huimin Gao
- General Hospital of Ningxia Medical University (the First Clinical Medical College of Ningxia Medical University), Yinchuan, 750004, Ningxia, China
| | - Rong Hu
- Department of Reproductive Medicine, General Hospital of Ningxia Medical University (The First Clinical Medical College of Ningxia Medical University), 804 Shengli Street, Xingqing Square, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
17
|
Zhao L, Huang J, Liu W, Su X, Zhao B, Wang X, He X. Long non-coding RNA RAD51-AS1 promotes the tumorigenesis of ovarian cancer by elevating EIF5A2 expression. J Cancer Res Clin Oncol 2024; 150:179. [PMID: 38584230 PMCID: PMC10999386 DOI: 10.1007/s00432-024-05671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE The present study aims to determine the molecular mechanism mediated by RAD51 antisense RNA 1 (RAD51-AS1) in ovarian cancer (OvCA). METHODS The data associated with RAD51-AS1 in OvCA were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Relative expression of RAD51-AS1 was detected. Determination of cell proliferation, metastasis, and invasion was performed by cell counting, colony formation, would-healing, and transwell invasion assays. Protein levels were detected by western blotting. The molecular mechanism mediated by RAD51-AS1 was predicted by bioinformatics analysis and verified by dual-luciferase reporter assays. Subcutaneous tumorigenesis models were used to confirm the function of RAD51-AS1 in vivo. RESULTS Data from TCGA and GEO showed that RAD51-AS1 was associated with poor prognosis in OvCA patients and DNA repair, cell cycle, focal adhesion, and apoptosis in SKOV3.ip cells. High levels of RAD51-AS1 were detected in OvCA cells. Overexpressing RAD51-AS1 enhanced the proliferative, invading, and migratory capabilities of OvCA cells in vitro while silencing RAD51-AS1 exhibited the opposite effects. Mechanically, RAD51-AS1 elevated eukaryotic initiation factor 5A2 (EIF5A2) expression as a sponge for microRNA (miR)-140-3p. Finally, the role of RAD51-AS1 was verified by subcutaneous tumorigenesis models. CONCLUSION RAD51-AS1 promoted OvCA progression by the regulation of the miR-140-3p/EIF5A2 axis, which illustrated the potential therapeutic target for OvCA.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jia Huang
- Reproductive Health Department, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Wenting Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiaoyan Su
- Pathology Department, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bei Zhao
- Traditional Chinese Medicine Department, Duchang County People's Hospital, Jiujiang, Jiangxi, China
| | - Xianggang Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiaoju He
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
18
|
Yin J, Liu G, Zhu X. MiR-485-3p/MiR-543/MiR-337-3p is Required for the Oncogenic Potential of the Hsa_circ_0007385-MEMO1 Axis in Colorectal Cancer. Biochem Genet 2024; 62:1182-1199. [PMID: 37561333 DOI: 10.1007/s10528-023-10472-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Circular RNAs (circRNAs) play regulatory roles in the biological processes of multiple tumors, colorectal cancer (CRC) included. Our previous study probed the impact of circ_0007385 on CRC cell malignant behaviors, while the underlying mechanism remains obscure. In this work, the potential mechanism of hsa_circ_0007385 in CRC was probed. Functional experiments were implemented for probing the function of hsa_circ_0007385 in CRC. Further analysis revealed the relation between hsa_circ_0007385 and miRNAs. A xenograft mouse model was implemented for probing the influence of hsa_circ_0007385 on CRC growth and metastasis in vivo. Hsa_circ_0007385 was up-regulated in CRC. Hsa_circ_0007385 positively regulated its host gene mediator of cell motility 1 (MEMO1). Hsa_circ_0007385 silencing inhibited CRC progression. Hsa_circ_0007385 and MEMO1 bond to miR-485-3p/miR-543/miR-337-3p, and these three miRNAs were lowly expressed in CRC, and negatively modulated by hsa_circ_0007385. Hsa_circ_0007385 functioned as an oncogene in CRC in a miR-485-3p/miR-543/miR-337-3p- or MEMO1-dependent manner. Hsa_circ_0007385 promoted CRC progression via modulating miR-485-3p/miR-543/miR-337-3p/MEMO1 axis. Thus, circ-MEMO1 might be a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Junfeng Yin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Guanglan Liu
- Department of General Surgery, Ganyu District People's Hospital, Lianyungang, 222100, Jiangsu, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
19
|
Wang M, Li H, Qian Y, Zhao S, Wang H, Wang Y, Yu T. The lncRNA lnc_AABR07044470.1 promotes the mitochondrial-damaged inflammatory response to neuronal injury via miR-214-3p/PERM1 axis in acute ischemic stroke. Mol Biol Rep 2024; 51:412. [PMID: 38466466 PMCID: PMC10927863 DOI: 10.1007/s11033-024-09301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE We investigated the role of lnc_AABR07044470.1 on the occurrence and development of acute ischemic stroke (AIS) and neuronal injury by targeting the miR-214-3p/PERM1 axis to find a novel clinical drug target and prediction and treatment of AIS. METHODS The mouse AIS animal model was used in vivo experiments and hypoxia/reoxygenation cell model in vitro was established. Firstly, infarction volume and pathological changes of mouse hippocampal neurons were detected using HE staining. Secondly, rat primary neuron apoptosis was detected by flow cytometry assay. The numbers of neuron, microglia and astrocytes were detected using immunofluorescence (IF). Furthermore, binding detection was performed by bioinformatics database and double luciferase reporter assay. Lnc_AABR07044470.1 localization was performed using fluorescence in situ hybridization (FISH).Lnc_AABR07044470.1, miR-214-3pand PERM1mRNA expression was performed using RT-qPCR. NLRP3, ASC, Caspase-1 and PERM1 protein expression was performed using Western blotting. IL-1β was detected by ELISA assay. RESULTS Mouse four-vessel occlusion could easily establish the animal model, and AIS animal model had an obvious time-dependence. HE staining showed that, compared with the sham group, infarction volume and pathological changes of mouse hippocampal neurons were deteriorated in the model group. Furthermore, compared with the sham group, neurons were significantly reduced, while microglia and astrocytes were significantly activated. Moreover, the bioinformatics prediction and detection of double luciferase reporter confirmed the binding site of lnc_AABR07044470.1 to miR-214-3p and miR-214-3p to Perm1. lnc_AABR07044470.1 and PERM1 expression was significantly down-regulated and miR-214-3pexpression was significantly up-regulated in AIS animal model in vivo. At the same time, the expression of inflammasome NLRP3, ASC, Caspase-1 and pro-inflammatory factor IL-1β was significantly up-regulated in vivo and in vitro. The over-expression of lnc_AABR07044470.1 and miR-214-3p inhibitor could inhibit the neuron apoptosis and the expression of inflammasome NLRP3, ASC, Caspase-1 and pro-inflammatory factor IL-1β and up-regulate the expression of PERM1 in vitro. Finally, over-expression of lnc_AABR07044470.1 and miR-214-3p inhibitor transfected cell model was significant in relieving the AIS and neuronal injury. CONCLUSION Lnc_AABR07044470.1 promotes inflammatory response to neuronal injury via miR-214-3p/PERM1 axis in AIS.
Collapse
Affiliation(s)
- Meng Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| | - Hong Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| | - Yulin Qian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| | - Shanshan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| | - Hao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| | - Yu Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| | - Tao Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China.
| |
Collapse
|
20
|
Yu M, Fan Y, Zhao Y, Tang Y. MicroRNA-140-3p inhibits proliferation and promotes apoptosis in non-small cell lung cancer by targeting MDIG. ENVIRONMENTAL TOXICOLOGY 2024; 39:1521-1530. [PMID: 38009637 DOI: 10.1002/tox.24026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are associated with cancer progression. MiR-140-3p is a tumor suppressor. Nevertheless, its function in non-small cell lung cancer (NSCLC) is unclear. METHODS MiR-140-3p expression in NSCLC clinical specimens was examined using the TCGA database and real-time PCR. NSCLC cell proliferation and apoptosis were investigated after the miRNA overexpression. Then, mineral dust-induced gene (MDIG) levels in NSCLC clinical specimens were monitored by real-time PCR and western blotting. Bioinformatics predicated the binding of miR-140-3p to MDIG, and their relationship was validated by luciferase reporter assay. The miR-140-3p/MDIG axis was further validated through rescue experiments. The involvement of STAT3 signaling in the actions of miR-140-3p/MDIG axis was investigated. RESULTS MiR-140-3p was decreased in NSCLC tissues and negatively correlated with MDIG expression. Additionally, it was also lower in high-grade specimens than in low-grade ones. MiR-140-3p restrained cell proliferation, facilitated apoptosis, and inhibited STAT3 signaling in NSCLC. Interestingly, MDIG was a target of this miRNA. Furthermore, MDIG upregulation abolished miR-140-3p's effect on cell proliferation, apoptosis, and STAT3 pathway in NSCLC cells. CONCLUSION MiR-140-3p restrained NSCLC development through the regulation of the STAT3 pathway by targeting MDIG. This axis may be a promising target for NSCLC treatment.
Collapse
Affiliation(s)
- Miaomiao Yu
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yueren Fan
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yihang Zhao
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yu Tang
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Wang J, Tan J, Zhang Y, Zhou L, Liu Y. circCD2AP promotes epithelial mesenchymal transition and stemness in bladder cancer by regulating FOXQ1/USP21 axis. iScience 2024; 27:108447. [PMID: 38292422 PMCID: PMC10827552 DOI: 10.1016/j.isci.2023.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/28/2023] [Accepted: 11/10/2023] [Indexed: 02/01/2024] Open
Abstract
Bladder cancer (BC) is a prevalent and deadly disease. circCD2AP was suggested to be highly expressed in BC. However, the exact mechanism needs further investigation. In this study, circCD2AP was observed to be upregulated in BC and linked to poor prognosis in individuals. Functionally, circCD2AP or USP21 knockdown inhibited BC cell EMT and stemness both in vitro and in vivo. Mechanistically, circCD2AP interacted with ELAVL1 to enhance the stability of USP21 mRNA, which, in turn, inhibited the ubiquitination degradation of FOXQ1. Through rescue assay, USP21 or FOXQ1 knockdown was found to abolish the promoting effects of circCD2AP or USP21 overexpression on BC cell EMT and stemness. Overall, this study has unveiled the role of circCD2AP/ELAVL1/USP21/FOXQ1 axis in BC EMT and stemness regulation, offering insights into the mechanisms underlying BC progression, with potential implications for therapeutic strategies.
Collapse
Affiliation(s)
- Jinrong Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Jing Tan
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Yichuan Zhang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Lei Zhou
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Yuan Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
22
|
Wu X, Gao H, Li F. hsa_circ_0037722 Drives Keloid Formation by Interacting with miR-140-3p and NR2F2. Crit Rev Immunol 2024; 44:17-29. [PMID: 37947069 DOI: 10.1615/critrevimmunol.2023050332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Keloids can invade normal skin tissues to lead to itching, pain, hemorrhaging and suppuration, thereby affecting the mental health of patients. circRNAs can participate in keloids formation, but the role of hsa_circ_0037722 in keloids is still unknown. The goal of our study was to reveal the role of hsa_circ_0037722 in keloids. The levels of hsa_circ_0037722, miR-140-3p and NR2F2 in keloids was confirmed by qRT-PCR. Cell experiments were applied to assess the effect of hsa_circ_0037722/miR-140-3p/NR2F2 axis on keloids formation. In addition, the correlation among hsa_circ_0037722, miR-140-3p and NR2F2 was confirmed by luciferase assay. hsa_circ_0037722 and NR2F2 were upregulated in keloids tissues and keloids fibroblasts, whereas miR-140-3p was downregulated in keloids tissues and keloids fibroblasts. The abilities of proliferation and metastasis of keloids fibroblasts were impaired by silencing hsa_circ_0037722. However, miR-140-3p inhibitor or NR2F2 overexpression could restore the inhibitory function of hsa_circ_0037722 knockdown in keloid fibroblasts due to their targeting relationship. Taken together, hsa_circ_0037722 can facilitate keloids formation by interacting with miR-140-3p to relieve the suppression of miR-140-3p for NR2F2. The findings of this study may provide a novel idea for developing molecular targeted therapies for keloid.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Plastic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430000, Hubei, China
| | - Hu Gao
- Wound Repair & Rehabilitation Center, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430000, Hubei, China
| | - Fan Li
- Department of Plastic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430000, Hubei, China
| |
Collapse
|
23
|
Hansen CE, Springstubbe D, Müller S, Petkovic S. Directed Circularization of a Short RNA. Methods Mol Biol 2024; 2765:209-226. [PMID: 38381342 DOI: 10.1007/978-1-0716-3678-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Basic research and functional analyses of circular RNA (circRNA) have been limited by challenges in circRNA formation of desired length and sequence in adequate yields. Nowadays, circular RNA can be obtained using enzymatic, "ribozymatic," or modulated splice events. However, there are few records for the directed circularization of RNA. Here, we present a proof of principle for an affordable and efficient RNA-based system for the controlled synthesis of circRNA with a physiological 3',5'-phosphodiester conjunction. The engineered hairpin ribozyme variant circular ribozyme 3 (CRZ-3) performs self-cleavage poorly. We designed an activator-polyamine complex to complete cleavage as a prerequisite for subsequent circularization. The developed protocol allows synthesizing circRNA without external enzymatic assistance and adds a controllable way of circularization to the existing methods.
Collapse
Affiliation(s)
| | | | - Sabine Müller
- University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Sonja Petkovic
- University Hospital Schleswig-Holstein, Campus Lübeck, Germany.
| |
Collapse
|
24
|
Shi X, Yang J, Wang M, Xia L, Zhang L, Qiao S. Hsa_circ_0050900 affects ferroptosis in intrahepatic cholangiocarcinoma cells by targeting hsa‑miR-605‑3p to regulate SLC3A2. Oncol Lett 2024; 27:2. [PMID: 38028176 PMCID: PMC10665981 DOI: 10.3892/ol.2023.14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly lethal hepatobiliary tumor with high aggressiveness. The role of circular RNA (circRNA) in ICC remains to be explored. The present study aimed to investigate whether hsa_circ_0050900 affected ferroptosis in ICC cells by regulating hsa-microRNA (miR)-605-3p/solute carrier family 3 member 2 (SLC3A2). Human ICC cells were cultured and hsa_circ_0050900 expression was evaluated by reverse transcription-quantitative PCR. hsa_circ_0050900 was knocked down and ferroptosis inhibitor ferrostatin-1 was added to HuCCT-1 cells. Following knockdown or overexpression of hsa-miR-605-3p, Fe2+, reactive oxygen species (ROS), glutathione peroxidase 4 and SLC3A2 levels were assessed using iron and ROS assay kit or RT-qPCR and western blotting, respectively. Cell function experiments were performed to examine proliferation and migration abilities. Dual-luciferase reporter gene and argonaute2-RNA immunoprecipitation assay verified the relationship among hsa_circ_0050900, hsa-miR-605-3p, and SLC3A2. hsa_circ_0050900 was derived from actinin alpha 4 gene and was elevated in ICC cells. Among HuCCT-1, QBC-939, HCCC-9810, and RBE cell lines, the highest expression was in HuCCT-1 cells. Inhibition of hsa_circ_0050900 inhibited proliferation and migration by facilitating ICC cell ferroptosis. hsa-miR-605-3p expression was elevated after knocking down hsa_circ_0050900 and hsa-miR-605-3p was negatively regulated by hsa_circ_0050900. In addition, hsa-miR-605-3p targeted SLC3A2. Overexpression of hsa-miR-605-3p regulated SLC3A2 to promote ICC cell ferroptosis and inhibit proliferation and migration. Taken together, knockdown of hsa_circ_0050900 inhibited SLC3A2 expression via sponging hsa-miR-605-3p to promote ICC cell ferroptosis, and finally suppressed proliferation and migration. The present study suggested that hsa_circ_0050900 was a potential therapeutic target for ICC.
Collapse
Affiliation(s)
- Xiangtian Shi
- Department of Hepatobiliary Surgery, Bayannur Hospital, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Jiarui Yang
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523058, P.R. China
- Department of Pancreatic Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Meng Wang
- Department of Hepatobiliary Surgery, Bayannur Hospital, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Long Xia
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia Autonomous Region 010017, P.R. China
| | - Lei Zhang
- Department of Pancreatic Hepato-Biliary-Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Shan Qiao
- Department of Hepatobiliary Surgery, Bayannur Hospital, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| |
Collapse
|
25
|
Xu G, Liu G, Wang Z, Li Y, Fang W. Circular RNAs: Promising Treatment Targets and Biomarkers of Ischemic Stroke. Int J Mol Sci 2023; 25:178. [PMID: 38203348 PMCID: PMC10779226 DOI: 10.3390/ijms25010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Ischemic stroke is one of the most significant causes of morbidity and mortality worldwide. However, there is a dearth of effective drugs and treatment methods for ischemic stroke. Significant numbers of circular RNAs (circRNAs) exhibit abnormal expression following ischemic stroke and are considered potential therapeutic targets. CircRNAs have emerged as promising biomarkers due to their stable expression in peripheral blood and their potential significance in ischemic stroke diagnosis and prognosis. This review provides a summary of 31 circRNAs involved in the pathophysiological processes of apoptosis, autophagy, inflammation, oxidative stress, and angiogenesis following ischemic stroke. Furthermore, we discuss the mechanisms of action of said circRNAs and their potential clinical applications. Ultimately, circRNAs exhibit promise as both therapeutic targets and biomarkers for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | - Yunman Li
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (G.X.); (G.L.); (Z.W.)
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (G.X.); (G.L.); (Z.W.)
| |
Collapse
|
26
|
Yang J, Tan C, Wang Y, Zong T, Xie T, Yang Q, Wu M, Liu Y, Mu T, Wang X, Yao Y. The circRNA MKLN1 regulates autophagy in the development of diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166839. [PMID: 37549719 DOI: 10.1016/j.bbadis.2023.166839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Diabetic retinopathy (DR) is a common complication in patients with diabetes and has become an important cause of blindness in working-age people. However, the mechanisms involved have not been fully elucidated. Circular RNAs (circRNAs) can play an important role in DR, and they can accurately regulate the expression of target genes through a new regulatory model: the competing endogenous RNA (ceRNA) model. We isolated total RNA from extracellular vesicles in the serum of healthy individuals (Con) and individuals with diabetes mellitus without DR (DM), nonproliferative DR (NPDR), or proliferative DR (PDR) and subjected them to deep sequencing. We found aberrantly high expression of circMKLN1. In a streptozotocin (STZ)-induced mice model of diabetes, the inhibition of circMKLN1 with AAV2 transduction markedly ameliorated retinal acellular vessels and vascular leakage, which was reversed by intravitreal injection of rapamycin, a potent autophagy inducer. In addition, circMKLN1 adsorbs miR-26a-5p as a molecular sponge and mediates high glucose (HG)/methylglyoxal (MG)-induced autophagy in hRMECs. CircMKLN1-silencing treatment reduces HG/MG-related reactive autophagy and inflammation. In addition, miR-26a-5p targeting by circMKLN1 plays an important role in the regulation of Rab11a expression. Thus, either new biomarkers or new therapeutic targets may be identified with the translation of these findings.
Collapse
Affiliation(s)
- Jiahui Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Chengye Tan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Yan Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Tianyi Zong
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Qian Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Meili Wu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Yanqiu Liu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Tong Mu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Xiaolu Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China.
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China.
| |
Collapse
|
27
|
Shi Y, Tian Y, Wu Y, Zhao Y. CircTNPO1 promotes the tumorigenesis of osteosarcoma by sequestering miR-578 to upregulate WNT5A expression. Cell Signal 2023; 111:110858. [PMID: 37633479 DOI: 10.1016/j.cellsig.2023.110858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
As a type of non-coding RNAs, circular RNAs (circRNAs) have the ability to bind to miRNAs and regulate gene expression. Recent studies have shown that circRNAs are involved in certain pathological events. However, the expression and functional role of circTNPO1 in osteosarcoma (OS) are not yet clear. To investigate circRNAs that are differentially expressed in OS tissues and cells, circRNA microarray analysis combined with qRT-PCR was performed. The in-vitro and in-vivo functions of circTNPO1 were studied by knocking it down or overexpressing it. The binding and regulatory relationships between circTNPO1, miR-578, and WNT5A were evaluated using dual luciferase assays, RNA pull-down and rescue assays, as well as RNA immunoprecipitation (RIP). Furthermore, functional experiments were conducted to uncover the regulatory effect of the circTNPO1/miR-578/WNT5A pathway on OS progression. Cytoplasm was identified as the primary location of circTNPO1, which exhibited higher expression in OS tissues and cells compared to the corresponding controls. The overexpression of circTNPO1 was found to enhance malignant phenotypes in vitro and increase oncogenicity in vivo. Moreover, circTNPO1 was observed to sequester miR-578 in OS cells, resulting in the upregulation of WNT5A and promoting carcinoma progression. These findings indicate that circTNPO1 can contribute to the progression of OS through the miR-578/WNT5A axis. Therefore, targeting the circTNPO1/miR-578/WNT5A axis could be a promising therapeutic strategy for OS.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunyun Tian
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanqing Wu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yingchun Zhao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
28
|
Fang G, Xu D, Zhang T, Qiu L, Gao X, Wang G, Miao Y. Effects of hsa_circ_0074854 on colorectal cancer progression, construction of a circRNA-miRNA-mRNA network, and analysis of immune infiltration. J Cancer Res Clin Oncol 2023; 149:15439-15456. [PMID: 37644235 PMCID: PMC10620273 DOI: 10.1007/s00432-023-05315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Circular RNAs have been demonstrated to be closely associated with the onset and metastasis of colorectal cancer. However, the roles and clinical diagnostic value of most circRNAs in colorectal cancer remain unclear. METHODS We detected the differential expression of circRNAs in CRC tissues and cells and investigated their relationship in conjunction with clinical pathological features. Additionally, we performed cellular functional experiments in CRC cell lines to explore the functions of circRNAs. To further validate the potential ceRNA network, qPCR was performed to assess the expression of miRNA and mRNA in CRC cells after differential expression of circRNAs knockdown. Furthermore, database analysis was utilized to explore the relationship between the predicted mRNAs and immune infiltration in CRC. RESULTS Our research findings indicate a positive correlation between hsa_circ_0074854 expression and advanced clinical pathological features, as well as an unfavorable prognosis. Knockdown of hsa_circ_0074854 was observed to inhibit proliferation and migration capabilities of colorectal cancer cells, affecting the cell cycle progression, and simultaneously promoting apoptosis. A competing endogenous RNA mechanism may exist among circRNAs, miRNAs, and mRNAs. Furthermore, the expression of target genes displayed correlations with the abundance of certain immune cells. CONCLUSION We propose a novel ceRNA network and evaluate the interplay between target genes and immune cells, providing novel insights for the diagnosis and targeted therapy of CRC.
Collapse
Affiliation(s)
- Guida Fang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People's Hospital, Bengbu Medical College, Lianyungang, 222002, Jiangsu, China
| | - Dalai Xu
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People's Hospital, Bengbu Medical College, Lianyungang, 222002, Jiangsu, China
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, 222002, Jiangsu, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People's Hospital, Bengbu Medical College, Lianyungang, 222002, Jiangsu, China
| | - Lei Qiu
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People's Hospital, Bengbu Medical College, Lianyungang, 222002, Jiangsu, China
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, 222002, Jiangsu, China
| | - Xuzhu Gao
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, 222002, Jiangsu, China
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, 222002, Jiangsu, China
| | - Gang Wang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People's Hospital, Bengbu Medical College, Lianyungang, 222002, Jiangsu, China.
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, 222002, Jiangsu, China.
| | - Yongchang Miao
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People's Hospital, Bengbu Medical College, Lianyungang, 222002, Jiangsu, China.
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, 222002, Jiangsu, China.
| |
Collapse
|
29
|
Shi H, Xie J, Pei S, He D, Hou H, Xu S, Fu Z, Shi X. Digging out the biology properties of tRNA-derived small RNA from black hole. Front Genet 2023; 14:1232325. [PMID: 37953919 PMCID: PMC10637384 DOI: 10.3389/fgene.2023.1232325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
An unique subclass of functional non-coding RNAs generated by transfer RNA (tRNA) under stress circumstances is known as tRNA-derived small RNA (tsRNA). tsRNAs can be divided into tRNA halves and tRNA-derived fragments (tRFs) based on the different cleavage sites. Like microRNAs, tsRNAs can attach to Argonaute (AGO) proteins to target downstream mRNA in a base pairing manner, which plays a role in rRNA processing, gene silencing, protein expression and viral infection. Notably, tsRNAs can also directly bind to protein and exhibit functions in transcription, protein modification, gene expression, protein stabilization, and signaling pathways. tsRNAs can control the expression of tumor suppressor genes and participate in the initiation of cancer. It can also mediate the progression of diseases by regulating cell viability, migration ability, inflammatory factor content and autophagy ability. Precision medicine targeting tsRNAs and drug therapy of plant-derived tsRNAs are expected to be used in clinical practice. In addition, liquid biopsy technology based on tsRNAs indicates a new direction for the non-invasive diagnosis of diseases.
Collapse
Affiliation(s)
- Hengmei Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danni He
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Huyang Hou
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shipeng Xu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Liu X, Zeng L, Wang W, Li Z, Zhou S, Wang F, Wang Y, Du J, Ma X. Integrated analysis of high‑throughput sequencing reveals the regulatory potential of hsa_circ_0035431 in HNSCC. Oncol Lett 2023; 26:435. [PMID: 37664656 PMCID: PMC10472046 DOI: 10.3892/ol.2023.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/14/2023] [Indexed: 09/05/2023] Open
Abstract
Circular RNAs (circRNAs) are molecular sponges that are involved in regulation of multiple types of cancer. The present study aimed to screen and explore the key circRNA/microRNA (miRNA or miR)/mRNA interactions in head and neck squamous cell carcinoma (HNSCC) using bioinformatics. A total of six pairs of cancerous and adjacent healthy tissue were obtained from patients with HNSCC and genome-wide transcriptional sequencing was performed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed on differentially expressed genes (DEGs). Moreover, expression levels of DEGs were verified in HNSCC cells and tissues using reverse transcription-quantitative (RT-q)PCR. A molecular regulatory network consisting of three circRNAs, seven miRNAs and seven mRNAs was constructed, resulting in identification of two signaling axes, hsa_circ_0035431/hsa-miR-940/fucosyltransferase 6 (FUT6) and hsa_circ_0035431/hsa-miR-940/cingulin-like 1 (CGNL1). FUT6 and CGNL1 were downregulated in HNSCC compared with adjacent healthy tissue and the expression levels of these genes were associated with tumor stage. Low FUT6 and CGNL1 expression levels were associated with lower overall survival rate and progression-free intervals in HNSCC. RT-qPCR demonstrated that hsa_circ_0035431, FUT6 and CGNL1 were downregulated in HNSCC cells and tissue and hsa-miR-940 was upregulated. Notably, these results were consistent with those obtained using high-throughput sequencing. In conclusion, hsa_circ_0035431 may participate in regulation of FUT6 and CGNL1 expression by sponging hsa-miR-940, thus, impacting the occurrence, development and prognosis of HNSCC.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
- School of Stomatology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Lili Zeng
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
- School of Stomatology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Wenlong Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Zhipeng Li
- Department of Stomatology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang 314001, P.R. China
| | - Siyuan Zhou
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
- School of Stomatology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Fang Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Yue Wang
- Department of Stomatology, Zibo Central Hospital, Zibo, Shandong 255000, P.R. China
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Xiangrui Ma
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| |
Collapse
|
31
|
Huang X, Wu J, Wang Y, Xian Z, Li J, Qiu N, Li H. FOXQ1 inhibits breast cancer ferroptosis and progression via the circ_0000643/miR-153/SLC7A11 axis. Exp Cell Res 2023; 431:113737. [PMID: 37591453 DOI: 10.1016/j.yexcr.2023.113737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Dysregulation of ferroptosis is involved in breast cancer progression and therapeutic responses. Inducing ferroptosis can be a potential therapeutic strategy for breast cancer treatment. Forkhead box Q1 (FOXQ1) is an oncogenic transcription factor that highly expressed and related with poor outcomes in various tumors. However, the specific effects of FOXQ1 on ferroptosis in breast cancer is unclear. In this study, we intended to explore the functions and potential mechanisms of FOXQ1 in breast cancer ferroptosis. By CCK-8, colony formation, wound healing, transwell and ferroptosis related assays, we explored the functions of FOXQ1 in breast cancer ferroptosis and progression. Through bioinformatics analysis of public database, luciferase reporter assay, RIP and ChIP assay, we investigated the potential mechanisms of FOXQ1 in breast cancer ferroptosis and progression. We found that FOXQ1 was overexpressed in breast cancer and associated with worse survival. Additionally, inhibition of FOXQ1 suppressed breast cancer ferroptosis and progression. Mechanically, we confirmed that FOXQ1 could bind to the promoter of circ_0000643 host gene to increase the levels of circ_0000643, which could sponge miR-153 and enhance the expression of SLC7A11, leading to reduced cell ferroptosis in breast cancer cells. Targeting the FOXQ1/circ_0000643/miR-153/SLC7A11 axis could be a promising strategy in breast cancer treatment.
Collapse
Affiliation(s)
- Xiaojia Huang
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jinna Wu
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Yizhuo Wang
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Zhuoyu Xian
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jia Li
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Ni Qiu
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Hongsheng Li
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China.
| |
Collapse
|
32
|
Rezaei S, Nikpanjeh N, Rezaee A, Gholami S, Hashemipour R, Biavarz N, Yousefi F, Tashakori A, Salmani F, Rajabi R, Khorrami R, Nabavi N, Ren J, Salimimoghadam S, Rashidi M, Zandieh MA, Hushmandi K, Wang Y. PI3K/Akt signaling in urological cancers: Tumorigenesis function, therapeutic potential, and therapy response regulation. Eur J Pharmacol 2023; 955:175909. [PMID: 37490949 DOI: 10.1016/j.ejphar.2023.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In addition to environmental conditions, lifestyle factors, and chemical exposure, aberrant gene expression and mutations involve in the beginning and development of urological tumors. Even in Western nations, urological malignancies are among the top causes of patient death, and their prevalence appears to be gender dependent. The prognosis for individuals with urological malignancies remains dismal and unfavorable due to the ineffectiveness of conventional treatment methods. PI3K/Akt is a popular biochemical mechanism that is activated in tumor cells as a result of PTEN loss. PI3K/Akt escalates growth and metastasis. Moreover, due to the increase in tumor cell viability caused by PI3K/Akt activation, cancer cells may acquire resistance to treatment. This review article examines the function of PI3K/Akt in major urological tumors including bladder, prostate, and renal tumors. In prostate, bladder, and kidney tumors, the level of PI3K and Akt are notably elevated. In addition, the activation of PI3K/Akt enhances the levels of Bcl-2 and XIAP, hence increasing the tumor cell survival rate. PI3K/Akt ] upregulates EMT pathways and matrix metalloproteinase expression to increase urological cancer metastasis. Furthermore, stimulation of PI3K/Akt results in drug- and radio-resistant cancers, but its suppression by anti-tumor drugs impedes the tumorigenesis.
Collapse
Affiliation(s)
- Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Negin Nikpanjeh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Reza Hashemipour
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Negin Biavarz
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Tashakori
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
33
|
Chen C, Lu J, Li W, Lu X. Circular RNA ATP2C1 (has_circ_0005797) sponges miR-432/miR-335 to promote breast cancer progression through regulating CCND1 expression. Am J Cancer Res 2023; 13:3433-3448. [PMID: 37693160 PMCID: PMC10492110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in the world. Accumulating evidence has indicated that circular RNAs (circRNAs) play essential roles in BC. Here we investigated the biological functions of circATP2C as a competing endogenous RNA (ceRNA) in BC development. We found that circATP2C1 expression was upregulated in BC cells and tissues and was significantly associated with the poor overall survival in BC patients. CircATP2C1 is more resistant to RNase R exonuclease and Actinomycin D than is the linear mRNA of ATP2C1. CircATP2C1-knockdown inhibited the viability, colony proliferation and invasion abilities, while increasing the apoptosis rates of BC cells in vitro, as well as inhibiting tumor mass, size and weight in vivo. Upregulation of miR-432 and miR-335 inhibited CCND1 expression in BC cells. Both miR-432/miR-335 specifically bind to the 3'-UTR of circATP2C1 and CCND1 (CyclinD1). The inhibition of the aggression of BC cells by circATP2C1-knockdown was rescued by co-transfection of miR-432/miR-335 inhibitors. In conclusion, circATP2C1 promotes BC oncogenesis and metastasis by sponging miR-432/miR-335 to abolish the inhibition of the target gene, CCND1. This study suggests that circATP2C1 has implications for BC diagnosis and treatment.
Collapse
Affiliation(s)
- Caiping Chen
- Department of Breast Surgery, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing)Jiaxing, Zhejiang, China
| | - Jianju Lu
- Department of Breast Surgery, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing)Jiaxing, Zhejiang, China
| | - Wang Li
- Department of Breast Surgery, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing)Jiaxing, Zhejiang, China
- School of Graduate, Bengbu Medical CollegeBengbu, Anhui, China
| | - Xiang Lu
- Department of Breast Surgery, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing)Jiaxing, Zhejiang, China
| |
Collapse
|
34
|
Wang W, Luo H, Chang J, Yang X, Zhang X, Zhang Q, Li Y, Zhao Y, Liu J, Zou B, Hao M. Circular RNA circ0001955 promotes cervical cancer tumorigenesis and metastasis via the miR-188-3p/NCAPG2 axis. J Transl Med 2023; 21:356. [PMID: 37248471 DOI: 10.1186/s12967-023-04194-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are known to play a crucial role in a variety of malignancies. However, the precise role of circRNAs in cervical squamous cell carcinoma (CSCC) remains largely unknown. METHODS The expression of circ0001955 was determined by real-time quantitative PCR and fluorescence in situ hybridization. To examine the effects of circ0001955 on CSCC metastasis and growth, functional experiments were conducted in vitro and in vivo. Mechanistically, nucleocytoplasmic separation, dual luciferase reporter assay, RNA antisense purification experiments, and rescue experiments were performed to confirm the interaction between circ0001955, miR-188-3p, and NCAPG2 in CSCC. RESULTS Here, we demonstrated that a circRNA derived from the CSNK1G1 gene (circ0001955) is significantly upregulated in CSCC. The overexpression of circ0001955 promotes tumor proliferation and metastasis, whereas the knockdown of circ0001955 exerts the opposite effects. Mechanistically, circ0001955 competitively binds miR-188-3p and prevents miR-188-3p from reducing the levels of NCAPG2, activating the AKT/mTOR signaling pathway to induce epithelial mesenchymal transformation. Notably, the application of an inhibitor of mTOR significantly antagonized circ0001955-mediated CSCC tumorigenesis. CONCLUSION circ0001955 promotes CSCC tumorigenesis and metastasis via the miR-188-3p/NCAPG2 axis which would provide an opportunity to search new therapeutic targets for CSCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Haixia Luo
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jingjing Chang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xin Yang
- Pathology Department, School of Medicine, Stanford University, 300 Pasteur Drive, Lane 235, Stanford, CA, 94305, USA
| | - Xiu Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qingmei Zhang
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Yuanxing Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yueyang Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianbing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Binbin Zou
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Min Hao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
35
|
Sanya DRA, Onésime D. Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer. Hum Cell 2023:10.1007/s13577-023-00915-5. [PMID: 37209205 DOI: 10.1007/s13577-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Bladder cancer (BC) is featured as the second most common malignancy of the urinary tract worldwide with few treatments leading to high incidence and mortality. It stayed a virtually intractable disease, and efforts to identify innovative and effective therapies are urgently needed. At present, more and more evidence shows the importance of non-coding RNA (ncRNA) for disease-related study, diagnosis, and treatment of diverse types of malignancies. Recent evidence suggests that dysregulated functions of ncRNAs are closely associated with the pathogenesis of numerous cancers including BC. The detailed mechanisms underlying the dysregulated role of ncRNAs in cancer progression are still not fully understood. This review mainly summarizes recent findings on regulatory mechanisms of the ncRNAs, long non-coding RNAs, microRNAs, and circular RNAs, in cancer progression or suppression and focuses on the predictive values of ncRNAs-related signatures in BC clinical outcomes. A deeper understanding of the ncRNA interactive network could be compelling framework for developing biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
36
|
Ji X, Lv C, Huang J, Dong W, Sun W, Zhang H. ALKBH5-induced circular RNA NRIP1 promotes glycolysis in thyroid cancer cells by targeting PKM2. Cancer Sci 2023. [PMID: 36851875 DOI: 10.1111/cas.15772] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
Although circular RNAs (circRNAs) are involved in cell proliferation, differentiation, apoptosis, and invasion, the underlying regulatory mechanisms of circRNAs in thyroid cancer have not been fully elucidated. This article aimed to study the role of circRNA regulated by N6-methyladenosine modification in papillary thyroid cancer (PTC). Quantitative real-time PCR, western blotting, and immunohistochemistry were used to investigate the expressions of circRNA nuclear receptor-interacting protein 1 (circNRIP1) in PTC tissues and adjacent noncancerous thyroid tissues. In vitro and in vivo assays were carried out to assess the effects of circNRIP1 on PTC glycolysis and growth. The N6-methyladenosine mechanisms of circNRIP1 were evaluated by methylated RNA immunoprecipitation sequencing, luciferase reporter gene, and RNA stability assays. Results showed that circNRIP1 levels were significantly upregulated in PTC tissues. Furthermore, elevated circNRIP1 levels in PTC patients were correlated with high tumor lymph node metastasis stage and larger tumor sizes. Functionally, circNRIP1 significantly promoted glycolysis, PTC cell proliferation in vitro, and tumorigenesis in vivo. Mechanistically, circNRIP1 acted as a sponge for microRNA (miR)-541-5p and miR-3064-5p and jointly upregulated pyruvate kinase M2 (PKM2) expression. Knockdown of m6 A demethylase α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) significantly enhanced circNRIP1 m6 A modification and upregulated its expression. These results show that ALKBH5 knockdown upregulates circNRIP1, thus promoting glycolysis in PTC cells. Therefore, circNRIP1 can be a prognostic biomarker and therapeutic target for PTC by acting as a sponge for oncogenic miR-541-5p and miR-3064-5p to upregulate PKM2 expression.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Chengzhou Lv
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jiapeng Huang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wenwu Dong
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
37
|
Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P, Gholami S, Ghorbani A, Tavakolpournegari A, Farsani ZM, Zarrabi A, Nabavi N, Zandieh MA, Rashidi M, Taheriazam A, Entezari M, Khan H. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023; 187:106568. [PMID: 36423787 DOI: 10.1016/j.phrs.2022.106568] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Motahare Sadat Ayat Mirdamadi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Nasrin Khaniabad
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pouria Daneii
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Zoheir Mohammadian Farsani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
38
|
Taheri F, Ebrahimi SO, Heidari R, Pour SN, Reiisi S. Mechanism and function of miR-140 in human cancers: A review and in silico study. Pathol Res Pract 2023; 241:154265. [PMID: 36509008 DOI: 10.1016/j.prp.2022.154265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA-140 (miR-140) acts as a tumor suppressor and plays a vital role in cell biological functions such as cell proliferation, apoptosis, and DNA repair. The expression of this miRNA has been shown to be considerably decreased in cancer tissues and cell lines compared with normal adjacent tissues. Consequently, aberrant expression of some miR-140 target genes can lead to the initiation and progression of various human cancers, such as breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. The dysregulation of the miR-140 network also affects cell proliferation, invasion, metastasis, and apoptosis of cancer cells by affecting various signaling pathways. Besides, up-regulation of miR-140 could enhance the efficacy of chemotherapeutic agents in different cancer. We aimed to cover most aspects of miR-140 function in cancer development and address its importance in different stages of cancer progression.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaye Nezamabadi Pour
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
39
|
Li Z, Wang J, Lin Y, Fang J, Xie K, Guan Z, Ma H, Yuan L. Newly discovered circRNAs in rheumatoid arthritis, with special emphasis on functional roles in inflammatory immunity. Front Pharmacol 2022; 13:983744. [PMID: 36278188 PMCID: PMC9585171 DOI: 10.3389/fphar.2022.983744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022] Open
Abstract
Circular RNA (circRNA) is a unique type of endogenous RNA. It does not have free 3 ′or 5′ ends, but forms covalently closed continuous rings. Rheumatoid arthritis (RA) is a common chronic autoimmune joint disease, characterized by chronic inflammation of the joint synovial membrane, joint destruction, and the formation of pannus. Although the pathogenesis of rheumatoid arthritis remains incompletely understood, a growing amount of research shows that circRNA has a close relationship with RA. Researchers have found that abnormally expressed circRNAs may be associated with the occurrence and development of RA. This article reviews the inflammatory immune, functions, mechanisms, and values of the circRNAs in RA to provide new ideas and novel biomarkers for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
| | - Jianpeng Wang
- The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yudong Lin
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Jihong Fang
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Kang Xie
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Zhiye Guan
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Hailong Ma
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Liang Yuan
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
- *Correspondence: Liang Yuan,
| |
Collapse
|
40
|
Ren H, Chen S, Liu C, Wu H, Wang Z, Zhang X, Ren J, Zhou L. Circular RNA in multiple myeloma: A new target for therapeutic intervention. Pathol Res Pract 2022; 238:154129. [PMID: 36137401 DOI: 10.1016/j.prp.2022.154129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Circular RNAs (circRNAs) are RNA molecules with a stable closed-loop structure that are found in a variety of organisms. CircRNAs are highly stable and conserved, and they play important roles in transcriptional regulation and splicing. Multiple Myeloma (MM) is a malignant proliferative disease for which there are currently no effective and comprehensive treatments. Numerous circRNAs may contribute to the development and progression of MM by acting as oncogenes or regulators. Due to the unique function of circRNAs, they have a high potential for regulating the biological functions (including proliferation and apoptosis) of MM cells, and their expression levels and molecular mechanism are closely related to their diagnostic value, therapeutic sensitivity, and clinical prognosis of MM patients. In this review, we aim to provide a detailed overview of the structure and function of circRNAs and demonstrate the potential therapeutic value and potential mechanism of circRNAs in MM via experiments and clinical trials.
Collapse
Affiliation(s)
- Hefei Ren
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Sai Chen
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Chang Liu
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Hongkun Wu
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Zhenhua Wang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Xiaomin Zhang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Jigang Ren
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Lin Zhou
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
41
|
Li H, Guo J, Qin Z, Wei M, Guo H, Huang F. circLETM1 upregulates KRT80 via adsorbing miR-143-3p and promotes the progression of colorectal cancer. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Guo LX, You ZH, Wang L, Yu CQ, Zhao BW, Ren ZH, Pan J. A novel circRNA-miRNA association prediction model based on structural deep neural network embedding. Brief Bioinform 2022; 23:6694810. [DOI: 10.1093/bib/bbac391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
A large amount of clinical evidence began to mount, showing that circular ribonucleic acids (RNAs; circRNAs) perform a very important function in complex diseases by participating in transcription and translation regulation of microRNA (miRNA) target genes. However, with strict high-throughput techniques based on traditional biological experiments and the conditions and environment, the association between circRNA and miRNA can be discovered to be labor-intensive, expensive, time-consuming, and inefficient. In this paper, we proposed a novel computational model based on Word2vec, Structural Deep Network Embedding (SDNE), Convolutional Neural Network and Deep Neural Network, which predicts the potential circRNA-miRNA associations, called Word2vec, SDNE, Convolutional Neural Network and Deep Neural Network (WSCD). Specifically, the WSCD model extracts attribute feature and behaviour feature by word embedding and graph embedding algorithm, respectively, and ultimately feed them into a feature fusion model constructed by combining Convolutional Neural Network and Deep Neural Network to deduce potential circRNA-miRNA interactions. The proposed method is proved on dataset and obtained a prediction accuracy and an area under the receiver operating characteristic curve of 81.61% and 0.8898, respectively, which is shown to have much higher accuracy than the state-of-the-art models and classifier models in prediction. In addition, 23 miRNA-related circular RNAs (circRNAs) from the top 30 were confirmed in relevant experiences. In these works, all results represent that WSCD would be a helpful supplementary reliable method for predicting potential miRNA-circRNA associations compared to wet laboratory experiments.
Collapse
Affiliation(s)
- Lu-Xiang Guo
- College of Information Engineering, Xijing University , Xi’an 710123, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University , Xi’an, 710129, China
| | - Lei Wang
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences , Nanning 530007, China
- College of Information Science and Engineering, Zaozhuang University , Shandong 277100, China
| | - Chang-Qing Yu
- College of Information Engineering, Xijing University , Xi’an 710123, China
| | - Bo-Wei Zhao
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi 830011, China
| | - Zhong-Hao Ren
- College of Information Engineering, Xijing University , Xi’an 710123, China
| | - Jie Pan
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi’an 710069, China
| |
Collapse
|
43
|
circRNA: A New Biomarker and Therapeutic Target for Esophageal Cancer. Biomedicines 2022; 10:biomedicines10071643. [PMID: 35884948 PMCID: PMC9313320 DOI: 10.3390/biomedicines10071643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) comprise a large class of endogenous non-coding RNA with covalently closed loops and have independent functions as linear transcripts transcribed from identical genes. circRNAs are generated by a “back-splicing” process regulated by regulatory elements in cis and associating proteins in trans. Many studies have shown that circRNAs play important roles in multiple processes, including splicing, transcription, chromatin modification, miRNA sponges, and protein decoys. circRNAs are highly stable because of their closed ring structure, which prevents them from degradation by exonucleases, and are more abundant in terminally differentiated cells, such as brains. Recently, it was demonstrated that numerous circRNAs are differentially expressed in cancer cells, and their dysfunction is involved in tumorigenesis and metastasis. However, the crucial functions of these circRNAs and the dysregulation of circRNAs in cancer are still unknown. In this review, we summarize the recent reports on the biogenesis and biology of circRNAs and then catalog the advances in using circRNAs as biomarkers and therapeutic targets for cancer therapy, particularly esophageal cancer.
Collapse
|