1
|
Luo XR, Huang LZ, Yin J, Xiong ZM, Li WX, Liao C, Lin ML, Huang W, Zhang S. FSTL3 promotes colorectal cancer by activating the HIF1 pathway. Gene 2025; 954:149435. [PMID: 40154584 DOI: 10.1016/j.gene.2025.149435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Follistatin-like 3 (FSTL3) is a glycoprotein known to promote tumor growth, invasion, and angiogenesis in various cancers. However, its role in Colorectal Cancer (CRC), particularly concerning the hypoxia-inducible factor 1α (HIF1α) signaling pathway, remains unclear. The HIF1α pathway is critical in CRC progression, enabling tumor cells to adapt to hypoxia through angiogenesis, Epithelial-Mesenchymal Transition (EMT), and metabolic reprogramming. Analysis of The Cancer Genome Atlas (TCGA) and GSE39582 datasets revealed that FSTL3 is significantly upregulated in CRC tissues and correlates with poor Overall Survival (OS), Progression-Free Survival (PFS), and aggressive features such as venous, lymphatic, and perineural invasion. In vitro experiments demonstrated that FSTL3 overexpression in HCT15 and HCT116 cells promoted proliferation, migration, and cell cycle progression, whereas knockdown in LOVO and Caco2 cells suppressed these processes and induced apoptosis. Transcriptome sequencing and western blot analysis indicated that FSTL3 activated the HIF1α pathway by upregulating HIF1α, ANGPT2, and HK3, which are key regulators of angiogenesis and glycolysis. Importantly, treatment with the HIF1α inhibitor KC7F2 reversed the oncogenic effects of FSTL3 overexpression both in vitro and in vivo. In xenograft and tail vein metastasis models, KC7F2 suppressed tumor growth, reduced pulmonary metastasis, and restored lung tissue integrity, further downregulating FSTL3 and HIF1α expression. These findings suggest that FSTL3 promotes CRC progression via the HIF1α pathway and highlight its potential as a prognostic biomarker and therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Xiang-Rong Luo
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; The Central Hospital of Shaoyang, No. 36, Hongqi Road, Shaoyang City, Hunan Province 422000, PR China
| | - Li-Zhe Huang
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Jie Yin
- The Central Hospital of Shaoyang, No. 36, Hongqi Road, Shaoyang City, Hunan Province 422000, PR China
| | - Zu-Ming Xiong
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Wen-Xin Li
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Cun Liao
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Ming-Lin Lin
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Wei Huang
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Sen Zhang
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
2
|
Gan J, Wu Z, Raza SHA, Zhang F, Ji Q, Almasoudi SH, Althobaiti F, Alrayes ZR, Alkhathami AG, Hou S, Gui L. Hepatic antioxidant capacity, immune response, and glycolysis of Tibetan sheep in response to dietary soluble protein levels. PROTOPLASMA 2025:10.1007/s00709-025-02052-2. [PMID: 40102302 DOI: 10.1007/s00709-025-02052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
In recent years, the increasing cost of protein raw materials has significantly impacted feed expenses and presented challenges to the livestock industry. Ninety-two-month-old male Tibetan sheep (15.40±0.81 kg) were randomly divided into three groups based on protein levels in their diet: L group (12% protein), M group (14% protein), and H group (16% protein). The feeding experiment was performed for 100 days, including a 10-day adaption period. It was found that the liver cells of the M group exhibited a better uniform in cytoplasm. Additionally, group M sheep had higher levels of GSH-Px and T-AOC (P<0.05), as well as elevated IgM, IL-1β, IL-6, and SDH content compared to other groups (P<0.05). There were 577, 698, and 623 differentially expressed genes between groups H and L, groups H and M, and groups M and L, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the DEGs regulated the activities of 56 pathways. Six liver-metabolism-related DEGs, SOD2, SOD1, CD19, IGF1, HK2, and PFKFB3, were expressed differently among the three sheep groups. In summary, a 14% protein level in the diet improved the hepatic antioxidant capacity, immune function, and glycolysis in Tibetan sheep through modulating the expression of functional genes.
Collapse
Affiliation(s)
- Jiacheng Gan
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Zhenling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, PR China
| | - Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Qiurong Ji
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Suad Hamdan Almasoudi
- Department of Biology, College of Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Zahrah R Alrayes
- Department of Biology, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China.
| |
Collapse
|
3
|
Shi T, Zhang H, Chen Y. The m6A revolution: transforming tumor immunity and enhancing immunotherapy outcomes. Cell Biosci 2025; 15:27. [PMID: 39987091 PMCID: PMC11846233 DOI: 10.1186/s13578-025-01368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
N6-methyladenosine (m6A), the most prevalent RNA modification in eukaryotes, plays a critical role in the development and progression of various diseases, including cancer, through its regulation of RNA degradation, stabilization, splicing, and cap-independent translation. Emerging evidence underscores the significant role of m6A modifications in both pro-tumorigenic and anti-tumorigenic immune responses. In this review, we provide a comprehensive overview of m6A modifications and examine the relationship between m6A regulators and cancer immune responses. Additionally, we summarize recent advances in understanding how m6A modifications influence tumor immune responses by directly modulating immune cells (e.g., dendritic cells, tumor-associated macrophages, and T cells) and indirectly affecting cancer cells via mechanisms such as cytokine and chemokine regulation, modulation of cell surface molecules, and metabolic reprogramming. Furthermore, we explore the potential synergistic effects of targeting m6A regulators in combination with immune checkpoint inhibitor (ICI) therapies. Together, this review consolidates current knowledge on the role of m6A-mediated regulation in tumor immunity, offering insights into how a deeper understanding of these modifications may identify patients who are most likely to benefit from immunotherapies.
Collapse
Affiliation(s)
- Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
| | - Huan Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
| |
Collapse
|
4
|
Wu H, Zhang J, Wang Q, Li Z, Li L, Xie Y. Metformin combined with CB-839 specifically inhibits KRAS-mutant ovarian cancer. Sci Rep 2025; 15:6072. [PMID: 39972191 PMCID: PMC11840008 DOI: 10.1038/s41598-025-90963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/17/2025] [Indexed: 02/21/2025] Open
Abstract
KRAS mutations can cause metabolic reprogramming in ovarian cancer, leading to an increased metastatic capacity. This study investigated the metabolic reprogramming changes induced by KRAS mutations in ovarian cancer and the mechanism of action of metformin combined with a glutaminase 1 inhibitor (CB-839). KRAS-mutant ovarian cancer accounted for 14% of ovarian cancers. The expression of glucose metabolism-related (PFKFB3, HK2, GLUT1, and PDK2) and glutamine metabolism-related enzymes (GLS1 and ASCT2) was elevated in KRAS-mutant ovarian cancer cells compared with that in wild-type cells. KRAS-mutant cells had a higher aerobic oxidative capacity than did wild-type cells. Metformin inhibited proliferation, the expression of glucose metabolism-related enzymes, and the aerobic oxidative capacity of KRAS-mutant cells compared with those of control cells. Furthermore, it enhanced the expression of glutamine metabolism-related enzymes in KRAS-mutant cells. Metformin combined with CB-839 inhibited the proliferation and aerobic oxidation of KRAS-mutant cells to a greater extent than that observed in wild-type cells. Additionally, the inhibitory effects of metformin and CB-839 in the KRAS-mutant ovarian cancer NOD-SCID mouse model were significantly stronger than those in the drug-alone group. KRAS mutations lead to enhanced glucose and glutamine metabolism in ovarian cancer cells, which was inhibited by metformin combined with CB-839.
Collapse
Affiliation(s)
- Han Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jialin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiujie Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zijiao Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Linlin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ya Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Lin Z, Liang S, Wei Y, Cai Z, Zhang G, Ling Q. Embryonic temperature influences transcriptomic and methylation profiles in the liver of juvenile largemouth bass. J Therm Biol 2025; 128:104073. [PMID: 40023986 DOI: 10.1016/j.jtherbio.2025.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/10/2025] [Accepted: 02/11/2025] [Indexed: 03/04/2025]
Abstract
Understanding the impacts of environmental conditions at early life stages on phenotypes and physiological responses to thermal variability at later stages is crucial for elucidating adaptive strategies in fish species. This study investigated the lasting effects of embryonic temperature on the growth performance, transcriptomic profiles, and CpG methylation status of juvenile largemouth bass (Micropterus salmoides) under normal and heat stress (HS) conditions. Embryos were incubated at three temperatures (22 °C, 25 °C, and 28 °C), reared at a constant 25 °C for three months, and subjected to acute HS at 37 °C. Liver samples were collected before and after HS for mRNA sequencing and reduced representation bisulfite sequencing. Significant differences in body size, body weight, condition factor, and hepatosomatic index were observed among groups. Fish hatched at 28 °C displayed a significantly higher standard length and body weight and lower hepatosomatic index than those hatched at lower temperatures. PCA analysis and Venn diagrams based on transcriptomes revealed transcriptomic response to HS differed at 28 °C while 22 and 25 °C were similar. Heat shock protein genes followed a similar trend. Epigenetic analyses revealed distinct CpG methylation patterns across incubation groups, while DNA methylation barely contributes to transcriptional differences. Under HS, different incubation groups exhibit various DNA methylation alterations. The "Neuroactive ligand-receptor interaction" pathway appeared to play an important role in the response to HS, suggesting a potential involvement of epigenetic regulation. Additionally, the atrnl1 gene may be involved in a DNA methylation-mediated regulatory mechanism in response to HS.
Collapse
Affiliation(s)
- Zijie Lin
- School of Life Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Sicheng Liang
- School of Life Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Yekai Wei
- School of Life Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Zhiying Cai
- School of Life Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Genrong Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Qufei Ling
- School of Life Sciences, Suzhou Medical College of Soochow University, 215000, China.
| |
Collapse
|
6
|
Mady YH, Kalbermatter CG, Khan M, Schläfli AM, Mehmeti R, Zlobec I, Christe L, Tschan MP. Reliable hexokinase 3 protein detection in human cell lines and primary tissue. Eur J Histochem 2025; 69:4175. [PMID: 40071468 PMCID: PMC11956552 DOI: 10.4081/ejh.2025.4175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Accurate differentiation of homologous proteins that share high sequence identity remains a significant challenge in biomedical research, as conventional antibodies often lack sufficient specificity, leading to potential misinterpretations. This issue is particularly evident in the study of hexokinases, a family of isoenzymes that catalyze the first step of glycolysis by phosphorylating glucose. Beyond their canonical metabolic roles, hexokinases play critical non-glycolytic functions, especially in cancer biology. However, their unique tissue distributions and context-dependent roles are often obscured by the overlapping specificities of commercially available antibodies, which can produce misleading results. In this study, we rigorously evaluated a panel of antibodies targeting hexokinase isoenzyme 3 (HK3), highlighting the widespread issue of cross-reactivity and insufficient validation. Through this process, we identified and validated a highly specific antibody for HK3, demonstrating its reliability in western blot and immunohistochemistry applications. Using this validated tool, we reveal the distinct localization of HK3 in myeloid cell populations, providing new insights into its potential functional roles in these cells. This work addresses a critical gap in antibody specificity and establishes HK3 as a uniquely expressed gene in myeloid and immune cells and is absent in other cell types under basal conditions. Providing a foundation for future investigations into its context-dependent functions.
Collapse
Affiliation(s)
- Yasmeen H. Mady
- Institute of Tissue Medicine and Pathology, University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Carmen G. Kalbermatter
- Institute of Tissue Medicine and Pathology, University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Maarij Khan
- Institute of Tissue Medicine and Pathology, University of Bern, Switzerland
| | - Anna M. Schläfli
- Institute of Tissue Medicine and Pathology, University of Bern, Switzerland
| | - Rina Mehmeti
- Institute of Tissue Medicine and Pathology, University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Inti Zlobec
- Institute of Tissue Medicine and Pathology, University of Bern, Switzerland
| | - Lucine Christe
- Institute of Tissue Medicine and Pathology, University of Bern, Switzerland
| | - Mario P. Tschan
- Institute of Tissue Medicine and Pathology, University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| |
Collapse
|
7
|
Du Y, Zhang H, Liu J, Duan X, Chen S, Jiang W. HK3: A potential prognostic biomarker with metastasis inhibition capabilities in hepatocellular carcinoma. Biochem Biophys Res Commun 2024; 741:151057. [PMID: 39615209 DOI: 10.1016/j.bbrc.2024.151057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) stands as one of the prevalent malignant tumors worldwide. The effectiveness of immunotherapy frequently depends on the intricate dynamics of immunomodulation within the tumor microenvironment (TME). The current study aims to identify prognostically relevant genes and their functional roles in HCC. This is achieved by utilizing immune scores and mutations as the basis, through the application of bioinformatics and molecular biological analysis. METHODS Differentially expressed genes (DEGs) analysis was conducted using the "clusterProfiler" package for functional enrichment. Cox regression analysis and LASSO regression analysis were performed for prognostic gene screening. Kaplan-Meier curve were further utilized to verify the prognostic value of these genes. The relationship between selected genes and immune cells was analyzed using ssGSEA algorithm and TIMER. The HK3 expression in HCC cells was tested by Western blot. Additionally, wound healing and transwell assays were utilized to detect the impact of HK3 on HCC metastasis. RESULTS Patients who had higher ESTIMATE, stromal, and immune scores exhibited more favorable overall survival rates. There are 17 genes that overlap among the DEGs related to the immune-stromal-ESTIMATE scores, mutated genes, and DEGs in HCC tissues compared to normal tissues. Among the DEGs, three genes (STAB1, COL15A1 and HK3) emerged with the most profound association concerning survival outcomes. Notably, the HK3 genes displayed a pronounced correlation with immune infiltration. Concurrently, diminished expression levels of HK3 were observed in HCC tissues and upregulation of HK3 resulted in a significant reduction in HCC cell metastasis in vitro and in vivo. CONCLUSIONS HK3 emerges as a novel prognostic biomarker for HCC, exerting regulatory influence over cellular proliferation, metastasis, and invasiveness. These findings indicate that HK3 holds promise as a potential candidate for treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Yexiang Du
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Hongchuan Zhang
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, 408300, China
| | - Jialong Liu
- 65136, Troops Hospital of PLA, Dalian, Liaoning, 116300, China
| | - Xiaodong Duan
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Suhua Chen
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - Wenbin Jiang
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guizhou, 550002, China.
| |
Collapse
|
8
|
Zhou H, Xiang W, Zhou G, Rodrigues-Lima F, Guidez F, Wang L. Metabolic dysregulation in myelodysplastic neoplasm: impact on pathogenesis and potential therapeutic targets. Med Oncol 2024; 42:23. [PMID: 39644425 DOI: 10.1007/s12032-024-02575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Despite significant advancements in the research of the pathogenesis mechanisms of Myelodysplastic Neoplasm (MDS) in recent years, there are still many gaps to fill. The advancement of metabolomics studies has led to a research booming in clarifying the impact of metabolic abnormalities during the pathogenesis of MDS. The present review primarily focuses on the dysregulated metabolic pathways, exploring the influences on the pathogenesis of MDS and their roles during the course of the disease. Furthermore, we discuss the potential of relevant metabolic pathways as therapeutic targets, along with the latest metabolic-related treatment drugs and approaches.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenqiong Xiang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Guangyu Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fernando Rodrigues-Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle Et Adaptative, 75013, Paris, France
| | - Fabien Guidez
- Université Paris Cité, Institut de Recherche Saint Louis INSERM UMR_S1131, 75010, Paris, France
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
9
|
Huang ZM, Wei J, Pan XW, Chen XB, Lu ZY. A novel risk score model of lactate metabolism for predicting outcomes and immune signatures in acute myeloid leukemia. Sci Rep 2024; 14:25742. [PMID: 39468216 PMCID: PMC11519446 DOI: 10.1038/s41598-024-76919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant tumor with high recurrence and refractory rates and low survival rates. Increased glycolysis is characteristic of metabolism in AML blast cells and is also associated with chemotherapy resistance. The purpose of this study was to use gene expression and clinical information from The Cancer Genome Atlas (TCGA) database to identify subtypes of AML associated with lactate metabolism. Two different subtypes linked to lactate metabolism, each with specific immunological features and consequences for prognosis, were identified in this study. Using the TCGA and International Cancer Genome Consortium (GEO) cohorts, a prognostic model composed of genes (LMNA, RETN and HK1) for the prognostic value of the lactate metabolism-related risk score prognostic model was created and validated, suggesting possible therapeutic uses. Additionally, the diagnostic value of the prognostic model genes was explored. LMNA and HK1 were ultimately identified as hub genes, and their roles in AML were determined through immune infiltration, GeneMANIA, GSEA, methylation analysis and single-cell analysis. LMNA was upregulated in AML associating with a poor prognosis while HK1 was downregulated in AML associating with a favorable prognosis. The findings underscore the noteworthy impact of genes linked to lactate metabolism in AML and illustrate the possible therapeutic usefulness of the lactate metabolism-related risk score and the hub lactate metabolism-related genes in guiding AML patients' treatment choices.
Collapse
Affiliation(s)
- Ze-Min Huang
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jing Wei
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Wen Pan
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xing-Biao Chen
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zi-Yuan Lu
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Li P, Ge H, Zhao J, Zhou Y, Zhou J, Li P, Luo J, Zhang W, Tian Z, Zhao X. Disrupting of IGF2BP3-stabilized HK2 mRNA by MYO16-AS1 competitively binding impairs LUAD migration and invasion. Mol Cell Biochem 2024; 479:2795-2808. [PMID: 38041756 PMCID: PMC11455711 DOI: 10.1007/s11010-023-04887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/24/2023] [Indexed: 12/03/2023]
Abstract
Since invasive cancer is associated with poor clinical outcomes, exploring the molecular mechanism underlying LUAD progression is crucial to improve the prognosis of patients with advanced disease. Herein, we found that MYO16-AS1 is expressed mainly in lung tissue but is notably downregulated in LUAD tissues. Overexpression of MYO16-AS1 inhibited the migration and invasion of LUAD cells. Mechanistic studies indicated that H3K27Ac modification mediated MYO16-AS1 transcription. Furthermore, we found that MYO16-AS1 competitively bound to the IGF2BP3 protein and in turn reduced IGF2BP3 protein binding to HK2 mRNA, decreasing HK2 mRNA stability and inhibiting glucose metabolism reprogramming and LUAD cell invasion in vitro and in vivo. The finding that the MYO16-AS1/IGF2BP3-mediated glucose metabolism reprogramming mechanism regulates HK2 expression provides novel insight into the process of LUAD invasion and suggests that MYO16-AS1 may be a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Peiwei Li
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Haibo Ge
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Jiangfeng Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Yongjia Zhou
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Jie Zhou
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Junwen Luo
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Wenhao Zhang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China.
- Shandong Engineering Laboratory for Precise Diagnosis and Treatment of Chest Cancer, Key Laboratory of Thoracic Cancer in Universities of Shandong, Jinan, China.
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China.
- Shandong Engineering Laboratory for Precise Diagnosis and Treatment of Chest Cancer, Key Laboratory of Thoracic Cancer in Universities of Shandong, Jinan, China.
| |
Collapse
|
11
|
Han H, Liu J, Zhu S, Zhao T. Identification of two key biomarkers CD93 and FGL2 associated with survival of acute myeloid leukaemia by weighted gene co-expression network analysis. J Cell Mol Med 2024; 28:e18552. [PMID: 39054581 PMCID: PMC11272607 DOI: 10.1111/jcmm.18552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a biologically heterogeneous haematological malignancy. This study was performed to identify the potential biomarkers for the prognosis and treatment of AML. We applied weighted gene co-expression network analysis to identify key modules and hub genes related to the prognosis of AML using data from The Cancer Genome Atlas (TCGA). In total, 1581 differentially expressed genes (1096 upregulated and 485 downregulated) were identified between AML patients and healthy controls, with the blue module being the most significant among 14 modules associated with AML morphology. Through functional enrichment analysis, we identified 217 genes in the blue module significantly enriched in 'neutrophil degranulation' and 'neutrophil activation involved in immune response' pathways. The survival analysis revealed six genes (S100A9, S100A8, HK3, CD93, CXCR2 and FGL2) located in the significantly enriched pathway that were notably related to AML survival. We validated the expression of these six genes at gene and single-cell levels and identified methylation loci of each gene, except for S100A8. Finally, in vitro experiments were performed to demonstrate whether the identified hub genes were associated with AML survival. After knockdown of CD93 and FGL2, cell proliferation was significantly reduced in U937 cell line over 5 days. In summary, we identified CD93 and FGL2 as key hub genes related to AML survival, with FGL2 being a novel biomarker for the prognosis and treatment of AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Gene Regulatory Networks
- Biomarkers, Tumor/genetics
- Prognosis
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Gene Expression Regulation, Leukemic
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Hepatitis A Virus Cellular Receptor 2/genetics
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Gene Expression Profiling
- Cell Line, Tumor
- DNA Methylation/genetics
- Survival Analysis
- Fibrinogen
Collapse
Affiliation(s)
- Haijun Han
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of Medicine, Hangzhou City UniversityHangzhouChina
| | - Jie Liu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of Medicine, Hangzhou City UniversityHangzhouChina
- College of Life Sciences, Zhejiang Normal UniversityJinhuaChina
| | - Shengyu Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of Medicine, Hangzhou City UniversityHangzhouChina
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of Medicine, Hangzhou City UniversityHangzhouChina
- College of Life Sciences, Zhejiang Normal UniversityJinhuaChina
| |
Collapse
|
12
|
Zhu M, Tang X, Xu J, Gong Y. Identification of HK3 as a promising immunomodulatory and prognostic target in sepsis-induced acute lung injury. Biochem Biophys Res Commun 2024; 706:149759. [PMID: 38484574 DOI: 10.1016/j.bbrc.2024.149759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Sepsis is a life-threatening global disease with a significant impact on human health. Acute lung injury (ALI) has been identified as one of the primary causes of mortality in septic patients. This study aimed to identify candidate genes involved in sepsis-induced ALI through a comprehensive approach combining bioinformatics analysis and experimental validation. METHODS The datasets GSE65682 and GSE32707 obtained from the Gene Expression Omnibus database were merged to screen for sepsis-induced ALI related differentially expressed genes (DEGs). Functional enrichment and immune infiltration analyses were conducted on DGEs, with the construction of protein-protein interaction (PPI) networks to identify hub genes. In vitro and in vivo models of sepsis-induced ALI were used to study the expression and function of hexokinase 3 (HK3) using various techniques including Western blot, real-time PCR, immunohistochemistry, immunofluorescence, Cell Counting Kit-8, Enzyme-linked immunosorbent assay, and flow cytometry. RESULTS The results of bioinformatics analysis have identified HK3, MMP9, and S100A8 as hub genes with diagnostic and prognostic significance for sepsis-induced ALI. The HK3 has profound effects on sepsis-induced ALI and exhibits a correlation with immune regulation. Experimental results showed increased HK3 expression in lung tissue of septic mice, particularly in bronchial and alveolar epithelial cells. In vitro studies demonstrated upregulation of HK3 in lipopolysaccharide (LPS)-stimulated lung epithelial cells, with cytoplasmic localization around the nucleus. Interestingly, following the knockdown of HK3 expression, lung epithelial cells exhibited a significant decrease in proliferation activity and glycolytic flux, accompanied by an increase in cellular inflammatory response, oxidative stress, and cell apoptosis. CONCLUSIONS It was observed for the first time that HK3 plays a crucial role in the progression of sepsis-induced ALI and may be a valuable target for immunomodulation and therapy.Bioinformatics analysis identified HK3, MMP9, and S100A8 as hub genes with diagnostic and prognostic relevance in sepsis-induced ALI. Experimental findings showed increased HK3 expression in the lung tissue of septic mice, particularly in bronchial and alveolar epithelial cells. In vitro experiments demonstrated increased HK3 levels in lung epithelial cells stimulated with LPS, with cytoplasmic localization near the nucleus. Knockdown of HK3 expression resulted in decreased proliferation activity and glycolytic flux, increased inflammatory response, oxidative stress, and cell apoptosis in lung epithelial cells.
Collapse
Affiliation(s)
- Mingyu Zhu
- Department of Intensive Care Unit, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiaokai Tang
- Department of Orthopaedic, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jingjing Xu
- Department of Intensive Care Unit, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yuanqi Gong
- Department of Intensive Care Unit, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
13
|
Han S, Chen S, Wang J, Huang S, Xiao Y, Deng G. Erianin promotes apoptosis and inhibits Akt-mediated aerobic glycolysis of cancer cells. J Cancer 2024; 15:2380-2390. [PMID: 38495480 PMCID: PMC10937289 DOI: 10.7150/jca.92780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Highly activated aerobic glycolysis provides the metabolic requirements for tumor cell growth and proliferation. Erianin, a natural product isolated from Dendrobium chrysotoxum Lindl, has been reported to exert antitumor activity in multiple cancers. However, whether Erianin exerts inhibitory effects on aerobic glycolysis and the inherent mechanism remain poorly defined in non-small cell lung cancer (NSCLC). Here, we showed that Erianin inhibited the cell viability and proliferation, and induced apoptosis in NSCLC cells. Moreover, Erianin overtly suppressed aerobic glycolysis via decreasing HK2 expression. Mechanistically, Erianin dose-dependently curbed the Akt-GSK3β signaling pathway phosphorylation activation, which afterwards downregulated HK2 expression. Meanwhile, Erianin inhibited HCC827 tumor growth in vivo. Taken together, our results suggest that the natural product Erianin can suppress aerobic glycolysis and exert potent anticancer effects via the Akt-GSK3β signaling pathway in NSCLC cells.
Collapse
Affiliation(s)
- Shuangze Han
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sijin Chen
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Jidong Wang
- Department of Oral and Maxillofacial Surgery, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde 415000, Hunan, China
| | - Sheng Huang
- Department of General, Hunan Chest Hospital, Changsha 410013, Hunan, China
| | - Yeqing Xiao
- Department of Ultrasonography, Hunan Chest Hospital, Changsha 410013, Hunan, China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha 410013, Hunan, China
| |
Collapse
|
14
|
Bai W, Liu D, Cheng Q, Yang X, Zhu L, Qin L, Fang J. Tetraarsenic tetrasulfide triggers ROS-induced apoptosis and ferroptosis in B-cell acute lymphoblastic leukaemia by targeting HK2. Transl Oncol 2024; 40:101850. [PMID: 38043497 PMCID: PMC10701457 DOI: 10.1016/j.tranon.2023.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023] Open
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) is the most common type of cancer diagnosed in children. Despite cure rates of higher than 85 %, refractory or relapsed ALL still exhibits a bleak prognosis indicative of the dearth of treatment modalities specific for relapsed or refractory ALL. Prior research has implicated metabolic alterations in leukemia pathogenesis, and literature on the therapeutic efficacy of arsenic compounds targeting metabolic pathways in B-cell acute lymphoblastic leukemia (B-ALL) cells is scarce. METHODS A compound extracted from realgar, tetraarsenic tetrasulfide (As4S4), and its antitumor effects on B-ALL were experimentally examined in vitro and in vivo. RESULTS As4S4 apparently targets B-ALL cells by inducing specific cellular responses, including apoptosis, G2/M arrest, and ferroptosis. Interestingly, these effects are attributed to reactive oxygen species (ROS) accumulation, and increased ROS levels have been linked to both the mitochondria-dependent caspase cascade and the activation of p53 signaling. The ROS scavenger N-acetylcysteine (NAC) can counteract the effects of As4S4 treatment on Nalm-6 and RS4;11 cells. Specifically, by targeting Hexokinase-2 (HK2), As4S4 induces alterations in mitochondrial membrane potential and disrupts glucose metabolism, leading to ROS accumulation, and was shown to inhibit B-ALL cell proliferation in vitro and in vivo. Intriguingly, overexpression of HK2 can partially desensitize B-ALL cells to As4S4 treatment. CONCLUSION Tetraarsenic tetrasulfide can regulate the Warburg effect by controlling HK2 expression, a finding that provides both new mechanistic insight into metabolic alterations and pharmacological evidence for the clinical treatment of B-ALL.
Collapse
Affiliation(s)
- Wenke Bai
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, Guangdong 510120, China
| | - Diandian Liu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, Guangdong 510120, China
| | - Qianyi Cheng
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, Guangdong 510120, China
| | - Xingge Yang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Science and Technology, 24 Jinghua Road Luoyang, Henan 471003, China
| | - Liwen Zhu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, Guangdong 510120, China
| | - Lijun Qin
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, Guangdong 510120, China.
| | - Jianpei Fang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
15
|
Allen LAH. PCNA at the crossroads of human neutrophil activation, metabolism, and survival. J Leukoc Biol 2024; 115:201-204. [PMID: 38057160 DOI: 10.1093/jleuko/qiad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
The proliferating cell nuclear antigen scaffold differentially binds hexokinase, procaspase-9, and p47phox to regulate neutrophil metabolism, viability and activation state.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Department of Molecular Microbiology and Immunology, One Hospital Drive, M616B Medical Sciences Building, University of Missouri, Columbia, MO 65212, United States
- Research Division, Harry S. Truman Memorial Veterans' Hospital, 800 Hospital Drive, Columbia, MO 65201, United States
| |
Collapse
|
16
|
Yang J, Li L, Wang L, Chen R, Yang X, Wu J, Feng G, Ding J, Diao L, Chen J, Yang J. Trophoblast-derived miR-410-5p induces M2 macrophage polarization and mediates immunotolerance at the fetal-maternal interface by targeting the STAT1 signaling pathway. J Transl Med 2024; 22:19. [PMID: 38178171 PMCID: PMC10768263 DOI: 10.1186/s12967-023-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Macrophages phenotypic deviation and immune imbalance play vital roles in pregnancy-associated diseases such as spontaneous miscarriage. Trophoblasts regulate phenotypic changes in macrophages, however, their underlying mechanism during pregnancy remains unclear. Therefore, this study aimed to elucidate the potential function of trophoblast-derived miRNAs (miR-410-5p) in macrophage polarization during pregnancy. METHODS Patient decidual macrophage tissue samples in spontaneous abortion group and normal pregnancy group (those who had induced abortion for non-medical reasons) were collected at the Reproductive Medicine Center of Renmin Hospital of Wuhan University from April to December 2021. Furthermore, placental villi and decidua tissue samples were collected from patients who had experienced a spontaneous miscarriage and normal pregnant women for validation and subsequent experiments at the Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), from March 2021 to September 2022. As an animal model, 36 female mice were randomly divided into six groups as follows: naive-control, lipopolysaccharide-model, agomir-negative control prevention, agomir-410-5p prevention, agomir-negative control treatment, and agomir-410-5p treatment groups. We analyzed the miR-410-5p expression in abortion tissue and plasma samples; and supplemented miR-410-5p to evaluate embryonic absorption in vivo. The main source of miR-410-5p at the maternal-fetal interface was analyzed, and the possible target gene, signal transducer and activator of transcription (STAT) 1, of miR-410-5p was predicted. The effect of miR-410-5p and STAT1 regulation on macrophage phenotype, oxidative metabolism, and mitochondrial membrane potential was analyzed in vitro. RESULTS MiR-410-5p levels were lower in the spontaneous abortion group compared with the normal pregnancy group, and plasma miR-410-5p levels could predict pregnancy and spontaneous abortion. Prophylactic supplementation of miR-410-5p in pregnant mice reduced lipopolysaccharide-mediated embryonic absorption and downregulated the decidual macrophage pro-inflammatory phenotype. MiR-410-5p were mainly distributed in villi, and trophoblasts secreted exosomes-miR-410-5p at the maternal-fetal interface. After macrophages captured exosomes, the cells shifted to the tolerance phenotype. STAT1 was a potential target gene of miR-410-5p. MiR-410-5p bound to STAT1 mRNA, and inhibited the expression of STAT1 protein. STAT1 can drive macrophages to mature to a pro-inflammatory phenotype. MiR-410-5p competitive silencing of STAT1 can avoid macrophage immune disorders. CONCLUSION MiR-410-5p promotes M2 macrophage polarization by inhibiting STAT1, thus ensuring a healthy pregnancy. These findings are of great significance for diagnosing and preventing spontaneous miscarriage, providing a new perspective for further research in this field.
Collapse
Affiliation(s)
- Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China
- Department of Gynecology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, People's Republic of China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China.
| | - Linlin Wang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Ruizhi Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Xiaobing Yang
- Department of Clinical Laboratory, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Juanhua Wu
- Department of Gynecology, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Gang Feng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, Guangdong, People's Republic of China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
17
|
Lambrecht R, Rudolf F, Ückert AK, Sladky VC, Phan TS, Jansen J, Naim S, Kaufmann T, Keogh A, Kirschnek S, Mangerich A, Stengel F, Leist M, Villunger A, Brunner T. Non-canonical BIM-regulated energy metabolism determines drug-induced liver necrosis. Cell Death Differ 2024; 31:119-131. [PMID: 38001256 PMCID: PMC10781779 DOI: 10.1038/s41418-023-01245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Paracetamol (acetaminophen, APAP) overdose severely damages mitochondria and triggers several apoptotic processes in hepatocytes, but the final outcome is fulminant necrotic cell death, resulting in acute liver failure and mortality. Here, we studied this switch of cell death modes and demonstrate a non-canonical role of the apoptosis-regulating BCL-2 homolog BIM/Bcl2l11 in promoting necrosis by regulating cellular bioenergetics. BIM deficiency enhanced total ATP production and shifted the bioenergetic profile towards glycolysis, resulting in persistent protection from APAP-induced liver injury. Modulation of glucose levels and deletion of Mitofusins confirmed that severe APAP toxicity occurs only in cells dependent on oxidative phosphorylation. Glycolytic hepatocytes maintained elevated ATP levels and reduced ROS, which enabled lysosomal recycling of damaged mitochondria by mitophagy. The present study highlights how metabolism and bioenergetics affect drug-induced liver toxicity, and identifies BIM as important regulator of glycolysis, mitochondrial respiration, and oxidative stress signaling.
Collapse
Affiliation(s)
- Rebekka Lambrecht
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Franziska Rudolf
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Anna-Katharina Ückert
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Valentina C Sladky
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Truong San Phan
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Jasmin Jansen
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Samara Naim
- Institute of Pharmacology, University of Bern, Inselspital, Bern University Hospital, INO-F, Freiburgstrasse 16C, 3010, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Inselspital, Bern University Hospital, INO-F, Freiburgstrasse 16C, 3010, Bern, Switzerland
| | - Adrian Keogh
- Visceral and Transplantation Surgery, Department of Clinical Research, Inselspital, Bern University Hospital, 3008, Bern, Switzerland
| | - Susanne Kirschnek
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, 79104, Freiburg, Germany
| | - Aswin Mangerich
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Florian Stengel
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Ludwig Boltzman Institute for Rare and Undiagnosed Diseases (LBI-RUD), Lazarettgasse 14, 1090, Vienna, Austria
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany.
| |
Collapse
|
18
|
Liu Y, Xing L, Zhang Y, Liu X, Li T, Zhang S, Wei H, Li J. Mild Intermittent Cold Stimulation Affects Cardiac Substance Metabolism via the Neuroendocrine Pathway in Broilers. Animals (Basel) 2023; 13:3577. [PMID: 38003194 PMCID: PMC10668735 DOI: 10.3390/ani13223577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to investigate the impact of cold adaptation on the neuroendocrine and cardiac substance metabolism pathways in broilers. The broilers were divided into the control group (CC), cold adaptation group (C3), and cold-stressed group (C9), and experimental period was divided into the training period (d 1-35), recovery period (d 36-43), and cold stress period (d 43-44). During the training period, the CC group was reared at ambient temperature, while C3 and C9 groups were reared at 3 °C and 9 °C lower than the ambient temperature, respectively, for 5 h/d at 1 d intervals. During the recovery period, all the groups were maintained at 20 °C. Lastly, during the cold stress period, the groups were divided into two sub-groups, and each sub-group was placed at 10 °C for 12 h (Y12) or 24 h (Y24) for acute cold stimulation. The blood, hypothalamic, and cardiac tissues samples were obtained from all the groups during the training, recovery, and acute stress periods. The results revealed that the transcription of calcium voltage-gated channel subunit alpha 1 C (CACNAIC) was increased in the hypothalamic tissues of the C3 group (p < 0.05). Moreover, compared to the CC group, the serum norepinephrine (NE) was increased in the C9 group (p < 0.05), but insulin (INS) was decreased in the C9 group (p < 0.05). In addition, the transcription of the phosphoinositide-3 kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), SREBP1c, FASN, ACC1, and SCD genes was down-regulated in the C3 and C9 groups (p < 0.05); however, their expression increased in the C3 and C9 groups after acute cold stimulation (p < 0.05). Compared to the CC group, the transcription of forkhead box O1 (FoxO1), PEPCK, G6Pase, GLUT1, HK1, PFK, and LDHB genes was up-regulated in the C3 and C9 groups (p < 0.05. Furthermore, compared to the CC and C9 groups, the protein and mRNA expressions of heat shock protein (HSP) 70 and HSP90 were significantly increased in the C3 group (p < 0.05). These results indicate that intermittent cold training can enhance cold stress tolerance in broilers by regulating their neuroendocrine and cardiac substance metabolism pathways.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Yong Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Xiaotao Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Shijie Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
19
|
Li T, Gu Y, Xu B, Kuca K, Zhang J, Wu W. CircZBTB44 promotes renal carcinoma progression by stabilizing HK3 mRNA structure. Mol Cancer 2023; 22:77. [PMID: 37106446 PMCID: PMC10134651 DOI: 10.1186/s12943-023-01771-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
CircZBTB44 (hsa_circ_0002484) has been identified to be upregulated in renal cell carcinoma (RCC) tissues, while its role and contribution in RCC remain elusive. We confirmed the overexpression of circZBTB44 in RCC cells compared to normal kidney cell HK-2. CircZBTB44 knockdown suppressed the viability, proliferation, and migration of RCC cells and inhibited tumorigenesis in xenograft mouse models. Heterogeneous Nuclear Ribonucleoprotein C (HNRNPC) and Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) are two RNA binding proteins of circZBTB44. HNRNPC facilitated the translocation of circZBTB44 from nuclei to cytoplasm via m6A modification, facilitating the interaction of IGF2BP3 and circZBTB44 in the cytoplasm of RCC cells. Furthermore, circZBTB44 upregulated Hexokinase 3 (HK3) expression by binding to IGF2BP3 in RCC cells. HK3 exerted oncogenic effects on RCC cell malignant behaviors and tumor growth. In the co-culture of RCC cells with macrophages, circZBTB44 promoted M2 polarization of macrophages by up-regulating HK3. In summary, HNRNPC mediated circZBTB44 interaction with IGF2BP3 to up-regulate HK3, promoting the proliferation and migration of RCC cells in vitro and tumorigenesis in vivo. The results of the study shed new light on the targeted therapy of RCC.
Collapse
Affiliation(s)
- Tushuai Li
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, 230009, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214013, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Gu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, 230009, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Jie Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, 99 Southern Sanhuan Road, Suzhou, 215500, China.
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, 230009, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
20
|
Farooq Z, Ismail H, Bhat SA, Layden BT, Khan MW. Aiding Cancer's "Sweet Tooth": Role of Hexokinases in Metabolic Reprogramming. Life (Basel) 2023; 13:946. [PMID: 37109475 PMCID: PMC10141071 DOI: 10.3390/life13040946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Hexokinases (HKs) convert hexose sugars to hexose-6-phosphate, thus trapping them inside cells to meet the synthetic and energetic demands. HKs participate in various standard and altered physiological processes, including cancer, primarily through the reprogramming of cellular metabolism. Four canonical HKs have been identified with different expression patterns across tissues. HKs 1-3 play a role in glucose utilization, whereas HK 4 (glucokinase, GCK) also acts as a glucose sensor. Recently, a novel fifth HK, hexokinase domain containing 1 (HKDC1), has been identified, which plays a role in whole-body glucose utilization and insulin sensitivity. Beyond the metabolic functions, HKDC1 is differentially expressed in many forms of human cancer. This review focuses on the role of HKs, particularly HKDC1, in metabolic reprogramming and cancer progression.
Collapse
Affiliation(s)
- Zeenat Farooq
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hagar Ismail
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sheraz Ahmad Bhat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Md. Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Wu J, Fan S, Feinberg D, Wang X, Jabbar S, Kang Y. Inhibition of Sphingosine Kinase 2 Results in PARK2-Mediated Mitophagy and Induces Apoptosis in Multiple Myeloma. Curr Oncol 2023; 30:3047-3063. [PMID: 36975444 PMCID: PMC10047154 DOI: 10.3390/curroncol30030231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Mitophagy plays an important role in maintaining mitochondrial homeostasis by clearing damaged mitochondria. Sphingosine kinase 2 (SK2), a type of sphingosine kinase, is an important metabolic enzyme involved in generating sphingosine-1-phosphate. Its expression level is elevated in many cancers and is associated with poor clinical outcomes. However, the relationship between SK2 and mitochondrial dysfunction remains unclear. We found that the genetic downregulation of SK2 or treatment with ABC294640, a specific inhibitor of SK2, induced mitophagy and apoptosis in multiple myeloma cell lines. We showed that mitophagy correlates with apoptosis induction and likely occurs through the SET/PP2AC/PARK2 pathway, where inhibiting PP2AC activity may rescue this process. Furthermore, we found that PP2AC and PARK2 form a complex, suggesting that they might regulate mitophagy through protein-protein interactions. Our study demonstrates the important role of SK2 in regulating mitophagy and provides new insights into the mechanism of mitophagy in multiple myeloma.
Collapse
Affiliation(s)
| | | | | | | | | | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
22
|
Rouchka EC, de Almeida C, House RB, Daneshmand JC, Chariker JH, Saraswat-Ohri S, Gomes C, Sharp M, Shum-Siu A, Cesarz GM, Petruska JC, Magnuson DS. Construction of a searchable database for gene expression changes in spinal cord injury experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526630. [PMID: 36778366 PMCID: PMC9915599 DOI: 10.1101/2023.02.01.526630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) is a debilitating disease resulting in an estimated 18,000 new cases in the United States on an annual basis. Significant behavioral research on animal models has led to a large amount of data, some of which has been catalogued in the Open Data Commons for Spinal Cord Injury (ODC-SCI). More recently, high throughput sequencing experiments have been utilized to understand molecular mechanisms associated with SCI, with nearly 6,000 samples from over 90 studies available in the Sequence Read Archive. However, to date, no resource is available for efficiently mining high throughput sequencing data from SCI experiments. Therefore, we have developed a protocol for processing RNA-Seq samples from high-throughput sequencing experiments related to SCI resulting in both raw and normalized data that can be efficiently mined for comparisons across studies as well as homologous discovery across species. We have processed 1,196 publicly available RNA-seq samples from 50 bulk RNA-Seq studies across nine different species, resulting in an SQLite database that can be used by the SCI research community for further discovery. We provide both the database as well as a web-based front-end that can be used to query the database for genes of interest, differential gene expression, genes with high variance, and gene set enrichments.
Collapse
Affiliation(s)
- Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, KY USA
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville School of Medicine, 522 East Gray Street, Louisville, KY USA 40202
- Bioinformatics Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
| | - Carlos de Almeida
- Translational Neuroscience Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
| | - Randi B. House
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY
| | - Jonah C. Daneshmand
- Bioinformatics Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
| | - Julia H. Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville School of Medicine, 522 East Gray Street, Louisville, KY USA 40202
- Department of Neuroscience Training, School of Medicine, University of Louisville, Louisville, KY
| | - Sujata Saraswat-Ohri
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Cynthia Gomes
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| | - Morgan Sharp
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
| | - Greta M. Cesarz
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
| | - Jeffrey C. Petruska
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| | - David S.K. Magnuson
- Translational Neuroscience Program, School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
23
|
Guo D, Meng Y, Jiang X, Lu Z. Hexokinases in cancer and other pathologies. CELL INSIGHT 2023; 2:100077. [PMID: 37192912 PMCID: PMC10120283 DOI: 10.1016/j.cellin.2023.100077] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 05/18/2023]
Abstract
Glucose metabolism is indispensable for cell growth and survival. Hexokinases play pivotal roles in glucose metabolism through canonical functions of hexokinases as well as in immune response, cell stemness, autophagy, and other cellular activities through noncanonical functions. The aberrant regulation of hexokinases contributes to the development and progression of pathologies, including cancer and immune diseases.
Collapse
Affiliation(s)
- Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoming Jiang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Yang Y, Fu X, Liu R, Yan L, Yang Y. Exploring the prognostic value of HK3 and its association with immune infiltration in glioblastoma multiforme. Front Genet 2023; 13:1033572. [PMID: 36712881 PMCID: PMC9877303 DOI: 10.3389/fgene.2022.1033572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Hexokinase 3 (HK3) is one of the key enzymes involved in glucose phosphorylation (the first step in most glucose metabolic pathways). Many studies have demonstrated the vital role of dysregulation of HK3 in several tumors. However, there is a need for in-depth characterization of the role of HK3 in glioblastoma multiforme (GBM). Methods: All data were sourced from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). Kaplan-Meier analysis and univariate regression were applied for survival analysis. Gene set enrichment analysis (GSEA) was used for enrichment analysis. Tumor Immune Single Cell Hub (TISCH) database was applied for single-cell analysis. Tumor Immune Dysfunction and Exclusion (TIDE) analysis was applied to evaluate the immune response. Results: HK3 expression was upregulated in GBM and correlated with poor prognosis. The high HK3 expression group was primarily enriched in adaptive immune response, chemokine signaling pathway, and cytokine-cytokine receptor interaction. The high HK3 expression group showed significantly greater enrichment of the majority of immune cells and immune-related pathways. HK3 showed significant correlation with most immune cells, especially macrophages (p < .001, R = .81). TISCH analysis showed that HK3 was predominantly expressed in macrophages in most cancers. HK3 showed significant correlation with most immune-related genes, such as PD-1 (p < .001, R = .41), PDL-1 (p < .001, R = .27), and CTLA-4 (p < .001, R = .29). TIDE analysis revealed that the low HK3 expression group has a lower TIDE score and may benefit from immunotherapy. Drug sensitivity analysis showed that patients with high HK3 expression frequently showed drug resistance. Conclusion: HK3 was associated with poor prognosis and may serve as a biomarker of macrophages in GBM. HK3 was also associated with immune response and drug resistance. Our findings may provide novel insights for GBM immunotherapy.
Collapse
Affiliation(s)
- Yuling Yang
- Department of Radiation Oncology, Shaanxi Provincial Cancer Hospital, Xi’an Medical University, Xi’an, China
| | - Xing Fu
- Department of Radiation Oncology, Ankang Central Hospital, Ankang, China
| | - Runsha Liu
- Department of Radiation Oncology, Shaanxi Provincial Cancer Hospital, Xi’an Medical University, Xi’an, China
| | - Lijuan Yan
- Department of Radiation Oncology, Shaanxi Provincial Cancer Hospital, Xi’an Medical University, Xi’an, China
| | - Yiping Yang
- Clinical Research Center for Shaanxi Provincial Radiotherapy, Department of Radiation Oncology, Shaanxi Provincial Cancer Hospital, Xi’an, China,*Correspondence: Yiping Yang,
| |
Collapse
|
25
|
Namgaladze D, Brüne B. Rapid glycolytic activation accompanying innate immune responses: mechanisms and function. Front Immunol 2023; 14:1180488. [PMID: 37153593 PMCID: PMC10158531 DOI: 10.3389/fimmu.2023.1180488] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Innate immune responses to pathogens, mediated by activation of pattern recognition receptors and downstream signal transduction cascades, trigger rapid transcriptional and epigenetic changes to support increased expression of pro-inflammatory cytokines and other effector molecules. Innate immune cells also rapidly rewire their metabolism. The most prominent metabolic alteration following innate immune activation is rapid up-regulation of glycolysis. In this mini-review, we summarize recent advances regarding the mechanisms of rapid glycolytic activation in innate immune cells, highlighting the relevant signaling components. We also discuss the impact of glycolytic activation on inflammatory responses, including the recently elucidated links of metabolism and epigenetics. Finally, we highlight unresolved mechanistic details of glycolytic activation and possible avenues of future research in this area.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
- *Correspondence: Dmitry Namgaladze,
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
26
|
Zeng Z, Li M, Jiang Z, Lan Y, Chen L, Chen Y, Li H, Hui J, Zhang L, Hu X, Xia H. Integrated transcriptomic and metabolomic profiling reveals dysregulation of purine metabolism during the acute phase of spinal cord injury in rats. Front Neurosci 2022; 16:1066528. [PMID: 36507345 PMCID: PMC9727392 DOI: 10.3389/fnins.2022.1066528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Spinal cord injury (SCI) results in drastic dysregulation of microenvironmental metabolism during the acute phase, which greatly affects neural recovery. A better insight into the potential molecular pathways of metabolic dysregulation by multi-omics analysis could help to reveal targets that promote nerve repair and regeneration in the future. Materials and methods We established the SCI model and rats were randomly divided into two groups: the acute-phase SCI (ASCI) group (n = 14, 3 days post-SCI) and the sham group with day-matched periods (n = 14, without SCI). In each group, rats were sacrificed at 3 days post-surgery for histology study (n = 3), metabolome sequencing (n = 5), transcriptome sequencing (n = 3), and quantitative real-time polymerase chain reaction (n = 3). The motor function of rats was evaluated by double-blind Basso, Beattie, and Bresnahan (BBB) Locomotor Scores at 0, 1, 2, 3 days post-SCI in an open field area. Then the transcriptomic and metabolomic data were integrated in SCI model of rat to reveal the underlying molecular pathways of microenvironmental metabolic dysregulation. Results The histology of the microenvironment was significantly altered in ASCI and the locomotor function was significantly reduced in rats. Metabolomics analysis showed that 360 metabolites were highly altered during the acute phase of SCI, of which 310 were up-regulated and 50 were down-regulated, and bioinformatics analysis revealed that these differential metabolites were mainly enriched in arginine and proline metabolism, D-glutamine and D-glutamate metabolism, purine metabolism, biosynthesis of unsaturated fatty acids. Transcriptomics results showed that 5,963 genes were clearly altered, of which 2,848 genes were up-regulated and 3,115 genes were down-regulated, and these differentially expressed genes were mainly involved in response to stimulus, metabolic process, immune system process. Surprisingly, the Integrative analysis revealed significant dysregulation of purine metabolism at both transcriptome and metabolome levels in the acute phase of SCI, with 48 differential genes and 16 differential metabolites involved. Further analysis indicated that dysregulation of purine metabolism could seriously affect the energy metabolism of the injured microenvironment and increase oxidative stress as well as other responses detrimental to nerve repair and regeneration. Discussion On the whole, we have for the first time combined transcriptomics and metabolomics to systematically analyze the potential molecular pathways of metabolic dysregulation in the acute phase of SCI, which will contribute to broaden our understanding of the sophisticated molecular mechanisms of SCI, in parallel with serving as a foundation for future studies of neural repair and regeneration after SCI.
Collapse
Affiliation(s)
- Zhong Zeng
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Mei Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Zhanfeng Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yuanxiang Lan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Lei Chen
- Department of Neurosurgery, The First People’s Hospital of Shizuishan, Shizuishan, China
| | - Yanjun Chen
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hailiang Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Jianwen Hui
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Lijian Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| | - Xvlei Hu
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,*Correspondence: Hechun Xia,
| |
Collapse
|
27
|
The intersection of metabolism and inflammation is governed by the intracellular topology of hexokinases and the metabolic fate of glucose. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2022; 4:e00011. [PMID: 36337735 PMCID: PMC9616595 DOI: 10.1097/in9.0000000000000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022]
Abstract
Hexokinases (HKs) catalyze the first and irreversible step of glucose metabolism. Its product, glucose-6-phosphate (G-6P) serves as a precursor for catabolic processes like glycolysis for adenosine 5'-triphosphate (ATP) production and anabolic pathways including the pentose phosphate pathway (PPP) for the generation of intermediaries like nicotinamide adenine dinucleotide phosphate (NADPH) and ribulose-5-P. Thus, the cellular fate of glucose is important not only for growth and maintenance, but also to determine different cellular activities. Studies in immune cells have demonstrated an intimate linkage between metabolic pathways and inflammation, however the precise molecular mechanisms that determine the cellular fate of glucose during inflammation or aging are not completely understood. Here we discuss a study by De Jesus et al that describes the role of HK1 cytosolic localization as a critical regulator of glucose flux by shunting glucose into the PPP at the expense of glycolysis, exacerbating the inflammatory response of macrophages. The authors convincingly demonstrate a novel mechanism that is independent of its mitochondrial functions, but involve the association to a protein complex that inhibits glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase. We expand the discussion by comparing previous studies related to the HK2 isoform and how cells have evolved to regulate the mitochondrial association of these two isoforms by non-redundant mechanism.
Collapse
|