1
|
Liu W, Wang D, Wang L, Hu S, Jiang Y, Wang Y, Cai X, Chen J. Receptor dimers and biased ligands: Novel strategies for targeting G protein-coupled receptors. Pharmacol Ther 2025; 269:108829. [PMID: 40023322 DOI: 10.1016/j.pharmthera.2025.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest superfamily of membrane receptors. They regulate physiological and pathological processes such as metabolic homeostasis, cell proliferation and differentiation, and the immune response, and are one of the most important classes of drug targets, being targeted by 30-40 % of marketed drugs. A growing number of studies continue to reveal the complexity of GPCRs, especially their ability to interact with each other to form higher-order structures such as homodimers and heterodimers, which have different functions than monomers, and are involved in disease development and progression. The existence of GPCR homodimers and heterodimers is opening up new directions in drug discovery and development to harness their therapeutic potential. Particularly striking is the ability of GPCR dimers to trigger unique biased signalling pathways, which exquisitely balance the relationship between therapeutic effects and side effects. By suppressing adverse reactions and enhancing beneficial drug effects, GPCR dimers provide an unprecedented opportunity to minimise side effects, maximise therapeutic efficacy and enhance safety. This review aims to highlight the latest research advances in GPCR dimerization and GPCR-biased signalling, focusing on the development of dimer-targeting and biased ligands as innovative drugs that will likely provide new strategies for treating GPCR-related diseases as well as a better understanding of drug design for compounds that target GPCRs. GPCRs will play an increasingly important role in precision medicine and personalised therapy, leading us towards a safer, more efficient and smarter pharmaceutical future.
Collapse
Affiliation(s)
- Wenkai Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Dexiu Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Luoqi Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Shujuan Hu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yixiang Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Xin Cai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China.
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
2
|
Vosough M, Shokouhian B, Sharbaf MA, Solhi R, Heidari Z, Seydi H, Hassan M, Devaraj E, Najimi M. Role of mitogens in normal and pathological liver regeneration. Hepatol Commun 2025; 9:e0692. [PMID: 40304568 PMCID: PMC12045551 DOI: 10.1097/hc9.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 05/02/2025] Open
Abstract
The liver has a unique ability to regenerate to meet the body's metabolic needs, even following acute or chronic injuries. The cellular and molecular mechanisms underlying normal liver regeneration have been well investigated to improve organ transplantation outcomes. Once liver regeneration is impaired, pathological regeneration occurs, and the underlying cellular and molecular mechanisms require further investigations. Nevertheless, a plethora of cytokines and growth factor-mediated pathways have been reported to modulate physiological and pathological liver regeneration. Regenerative mitogens play an essential role in hepatocyte proliferation. Accelerator mitogens in synergism with regenerative ones promote liver regeneration following hepatectomy. Finally, terminator mitogens restore the proliferating status of hepatocytes to a differentiated and quiescent state upon completion of regeneration. Chronic loss of hepatocytes, which can manifest in chronic liver disorders of any etiology, often has undesired structural consequences, including fibrosis, cirrhosis, and liver neoplasia due to the unregulated proliferation of remaining hepatocytes. In fact, any impairment in the physiological function of the terminator mitogens results in the progression of pathological liver regeneration. In the current review, we intend to highlight the updated cellular and molecular mechanisms involved in liver regeneration and discuss the impairments in central regulating mechanisms responsible for pathological liver regeneration.
Collapse
Affiliation(s)
- Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bahare Shokouhian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Amin Sharbaf
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Heidari
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ezhilarasan Devaraj
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
3
|
Song L, Huang S, Yan H, Ma Q, Luo Q, Qiu J, Chen M, Li Z, Jiang H, Chen Y, Chen F, Du Y, Fu H, Zhao L, Zhao K, Qiu P. ADRB2 serves as a novel biomarker and attenuates alcoholic hepatitis via the SIRT1/PGC-1α/PPARα pathway: integration of WGCNA, machine learning and experimental validation. Front Pharmacol 2024; 15:1423031. [PMID: 39640486 PMCID: PMC11617210 DOI: 10.3389/fphar.2024.1423031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Background Alcoholic hepatitis is a severe inflammatory liver disease. In recent years, the incidence of AH has been on the rise, leading to an increasingly severe disease burden. Currently, there is a lack of specific biomarkers for the diagnosis and prognosis of AH in clinical practice. Therefore, the main objective of this study is to identify biomarkers closely associated with the progression of AH, to address the shortcomings in pathological diagnosis, and to identify potential therapeutic targets. Methods Bioinformatics and machine learning methods were used to comparatively study the differentially expressed genes (DEGs) between AH patients and healthy individuals by analyzing four mRNA microarray data sets obtained from the GEO database. Subsequently, the role of potential biomarkers in AH and their mechanism of action were further confirmed by AH patients and in vitro and in vivo experiments. Results Using differential analysis and WGCNA of the data set, a total of 167 key genes that may be related to AH were obtained. Among 167 genes, the LASSO logistic regression algorithm identified four potential biomarkers (KCNJ10, RPL21P23, ADRB2, and AC025279.1). Notably, ADRB2 showed biomarker potential in GSE28619, GSE94397, and E-MTAB-2664 datasets, and clinical liver samples. Furthermore, AH patients and in vivo experiments demonstrated ADRB2 inhibition and suppression of SIRT1/PPARα/PGC-1α signaling pathways, accompanied by elevated inflammatory factors and lipid deposition. In vitro experiments showed that ADRB2 overexpression mitigated the inhibition of the SIRT1/PPARα/PGC-1α signaling pathway, reversing the decrease in mitochondrial membrane potential, cell apoptosis, oxidative stress, and lipid deposition induced by alcohol exposure. Besides, the results also showed that ADRB2 expression in AH was negatively correlated with the levels of inflammatory factors (e.g., CCL2, CXCL8, and CXCL10). Conclusion This study points to ADRB2 as a promising biomarker with potential diagnostic and prognostic value in clinical cohort data. In addition, in AH patients, in vivo and in vitro experiments confirmed the key role of ADRB2 in the progression of AH. These findings suggest that ADRB2 may alleviate AH by activating the SIRT1/PPARα/PGC-1α pathway. This finding provides a new perspective for the diagnosis and treatment of AH.
Collapse
Affiliation(s)
- Li Song
- Tongde Hospital of Zhejiang Province affiliated to Zhejiang Chinese Medical University, Analysis and Testing Center, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Honghao Yan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qihan Luo
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang Qiu
- Department of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Minxia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zongyuan Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - He Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufan Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangming Chen
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haozhe Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisha Zhao
- Tongde Hospital of Zhejiang Province affiliated to Zhejiang Chinese Medical University, Analysis and Testing Center, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Kanglu Zhao
- Zhejiang Rehabilitation Medical Center, Rehabilitation Hospital Area of the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- School of Medicine, The Fourth Affiliated Hospital Zhejiang University, Yiwu, Zhejiang, China
| | - Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Xu CY, Jiang J, An Y, Ye PF, Zhang CC, Sun NN, Miao SN, Chai MQ, Liu WM, Yang M, Zhu WH, Yu JJ, Yu MM, Sun WY, Qiu H, Zhang SH, Wei W. Angiotensin II type-2 receptor signaling facilitates liver injury repair and regeneration via inactivation of Hippo pathway. Acta Pharmacol Sin 2024; 45:1201-1213. [PMID: 38491160 PMCID: PMC11130245 DOI: 10.1038/s41401-024-01249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
The angiotensin II type 2 receptor (AT2R) is a well-established component of the renin-angiotensin system and is known to counteract classical activation of this system and protect against organ damage. Pharmacological activation of the AT2R has significant therapeutic benefits, including vasodilation, natriuresis, anti-inflammatory activity, and improved insulin sensitivity. However, the precise biological functions of the AT2R in maintaining homeostasis in liver tissue remain largely unexplored. In this study, we found that the AT2R facilitates liver repair and regeneration following acute injury by deactivating Hippo signaling and that interleukin-6 transcriptionally upregulates expression of the AT2R in hepatocytes through STAT3 acting as a transcription activator binding to promoter regions of the AT2R. Subsequently, elevated AT2R levels activate downstream signaling via heterotrimeric G protein Gα12/13-coupled signals to induce Yap activity, thereby contributing to repair and regeneration processes in the liver. Conversely, a deficiency in the AT2R attenuates regeneration of the liver while increasing susceptibility to acetaminophen-induced liver injury. Administration of an AT2R agonist significantly enhances the repair and regeneration capacity of injured liver tissue. Our findings suggest that the AT2R acts as an upstream regulator in the Hippo pathway and is a potential target in the treatment of liver damage.
Collapse
Affiliation(s)
- Chang-Yong Xu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ji Jiang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yue An
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Peng-Fei Ye
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Cun-Cun Zhang
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Ning-Ning Sun
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Sai-Nan Miao
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Meng-Qi Chai
- School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Wen-Min Liu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Mei Yang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei-Hua Zhu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Jing-Jing Yu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Man-Man Yu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Huan Qiu
- School of Nursing, Anhui Medical University, Hefei, 230032, China.
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
5
|
Wu Y, Ni T, Zhang M, Fu S, Ren D, Feng Y, Liang H, Zhang Z, Zhao Y, He Y, Yang Y, Tian Z, Yan T, Liu J. Treatment with β-Adrenoceptor Agonist Isoproterenol Reduces Non-parenchymal Cell Responses in LPS/D-GalN-Induced Liver Injury. Inflammation 2024; 47:733-752. [PMID: 38129360 PMCID: PMC11074027 DOI: 10.1007/s10753-023-01941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
There is an increasing evidence indicating the involvement of the sympathetic nervous system (SNS) in liver disease development. To achieve an extensive comprehension of the obscure process by which the SNS alleviates inflammatory damage in non-parenchymal liver cells (NPCs) during acute liver failure (ALF), we employ isoproterenol (ISO), a beta-adrenoceptor agonist, to mimic SNS signaling. ISO was administered to C57BL/6J mice to establish an acute liver failure (ALF) model using LPS/D-GalN, which was defined as ISO + ALF. Non-parenchymal cells (NPCs) were isolated from liver tissues and digested for tandem mass tag (TMT) labeled proteomics to identify differentially expressed proteins (DEPs). The administration of ISO resulted in a decreased serum levels of pro-inflammatory cytokines, e.g., TNF-α, IL-1β, and IL-6 in ALF mice, which alleviated liver damage. By using TMT analysis, it was possible to identify 1587 differentially expressed proteins (DEPs) in isolated NPCs. Notably, over 60% of the DEPs in the ISO + ALF vs. ALF comparison were shared in the Con vs. ALF comparison. According to enrichment analysis, the DEPs influenced by ISO in ALF mice were linked to biological functions of heme and fatty acid metabolism, interferon gamma response, TNFA signaling pathway, and mitochondrial oxidation function. Protein-protein interaction network analysis indicated Mapk14 and Caspase3 may serve as potentially valuable indicators of ISO intervention. In addition, the markers on activated macrophages, such as Mapk14, Casp1, Casp8, and Mrc1, were identified downregulated after ISO initiation. ISO treatment increased the abundance of anti-inflammatory markers in mouse macrophages, as evidenced by the immunohistochemistry (IHC) slides showing an increase in Arg + staining and a reduction in iNOS + staining. Furthermore, pretreatment with ISO also resulted in a reduction of LPS-stimulated inflammation signaling markers, Mapk14 and NF-κB, in human THP-1 cells. Prior treatment with ISO may have the potential to modify the biological functions of NPCs and could serve as an innovative pharmacotherapy for delaying the pathogenesis and progression of ALF.
Collapse
Affiliation(s)
- Yuchao Wu
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Tianzhi Ni
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Mengmeng Zhang
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
- Honghui Hospital, Xi'an Jiaotong University, Xi'an City, China
| | - Shan Fu
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Danfeng Ren
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yali Feng
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Huiping Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ze Zhang
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yingren Zhao
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yingli He
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yuan Yang
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Zhen Tian
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China.
| | - Taotao Yan
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China.
| | - Jinfeng Liu
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China.
| |
Collapse
|
6
|
Xu J, Xiao H, He K, Zhang Y. Crosstalk between adrenergic receptors and catalytic receptors. CURRENT OPINION IN PHYSIOLOGY 2023; 36:100718. [DOI: 10.1016/j.cophys.2023.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Gonzatti MB, Freire BM, Antunes MM, de Menezes GB, Talbot J, Peron JPS, Basso AS, Keller AC. Targeting adrenergic receptors to mitigate invariant natural killer T cells-induced acute liver injury. iScience 2023; 26:107947. [PMID: 37841583 PMCID: PMC10568435 DOI: 10.1016/j.isci.2023.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Invariant Natural Killer T (iNKT) cell activation by α-galactosylceramide (αGC) potentiates cytotoxic immune responses against tumors. However, αGC-induced liver injury is a limiting factor for iNKT-based immunotherapy. Although adrenergic receptor stimulation is an important immunosuppressive signal that curbs tissue damage induced by inflammation, its effect on the antitumor activity of invariant Natural Killer T (iNKT) cells remains unclear. We use mouse models and pharmacological tools to show that the stimulation of the sympathetic nervous system (SNS) inhibits αGC-induced liver injury without impairing iNKT cells' antitumoral functions. Mechanistically, SNS stimulation prevents the collateral effect of TNF-α production by iNKT cells and neutrophil accumulation in hepatic parenchyma. Our results suggest that the modulation of the adrenergic signaling can be a complementary approach to αGC-based immunotherapy to mitigate iNKT-induced liver injury without compromising its antitumoral activity.
Collapse
Affiliation(s)
- Michelangelo Bauwelz Gonzatti
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), Rua Botucatu, 862, 4th floor, São Paulo 04023-062, Brazil
| | - Beatriz Marton Freire
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), Rua Botucatu, 862, 4th floor, São Paulo 04023-062, Brazil
| | - Maísa Mota Antunes
- Department of Morphology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Minas Gerais 31270-910, Brazil
| | - Gustavo Batista de Menezes
- Department of Morphology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Minas Gerais 31270-910, Brazil
| | - Jhimmy Talbot
- Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, WA 98109-1024, USA
| | - Jean Pierre Schatzmann Peron
- Department of Immunology-ICB IV, University of São Paulo, Av. Prof. Lineu Prestes, 1730, São Paulo 05508-900, Brazil
| | - Alexandre Salgado Basso
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), Rua Botucatu, 862, 4th floor, São Paulo 04023-062, Brazil
| | - Alexandre Castro Keller
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), Rua Botucatu, 862, 4th floor, São Paulo 04023-062, Brazil
| |
Collapse
|
8
|
Adori M, Bhat S, Gramignoli R, Valladolid-Acebes I, Bengtsson T, Uhlèn M, Adori C. Hepatic Innervations and Nonalcoholic Fatty Liver Disease. Semin Liver Dis 2023; 43:149-162. [PMID: 37156523 PMCID: PMC10348844 DOI: 10.1055/s-0043-57237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. Increased sympathetic (noradrenergic) nerve tone has a complex role in the etiopathomechanism of NAFLD, affecting the development/progression of steatosis, inflammation, fibrosis, and liver hemodynamical alterations. Also, lipid sensing by vagal afferent fibers is an important player in the development of hepatic steatosis. Moreover, disorganization and progressive degeneration of liver sympathetic nerves were recently described in human and experimental NAFLD. These structural alterations likely come along with impaired liver sympathetic nerve functionality and lack of adequate hepatic noradrenergic signaling. Here, we first overview the anatomy and physiology of liver nerves. Then, we discuss the nerve impairments in NAFLD and their pathophysiological consequences in hepatic metabolism, inflammation, fibrosis, and hemodynamics. We conclude that further studies considering the spatial-temporal dynamics of structural and functional changes in the hepatic nervous system may lead to more targeted pharmacotherapeutic advances in NAFLD.
Collapse
Affiliation(s)
- Monika Adori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sadam Bhat
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ismael Valladolid-Acebes
- Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Mathias Uhlèn
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Csaba Adori
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|