1
|
Xu ZY, Wang M, Shi JY, Liu Y, Yu C, Zhang XY, Zhang CW, He QF, Pan C, Zhou J, Xiao H, Cao HY, Ma Y. Engineering a dynamic extracellular matrix using thrombospondin-1 to propel hepatocyte organoids reprogramming and improve mouse liver regeneration post-transplantation. Mater Today Bio 2025; 32:101700. [PMID: 40225139 PMCID: PMC11986605 DOI: 10.1016/j.mtbio.2025.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/09/2025] [Accepted: 03/22/2025] [Indexed: 04/15/2025] Open
Abstract
Hepatocyte organoids (HOs) hold significant potential for constructing bioartificial liver construction, toxicology research, and liver failure therapies. However, challenges such as difficulties in induced pluripotent stem cells (iPSCs) harvest and differentiation, safety concerns of tumor-derived matrices, and limited primary cell regulation hinder clinical applications. In this study, we developed a non-tumor-derived decellularized extracellular matrix (dECM) system with tunable mechanical properties and viscoelasticity to enhance stem cell proliferation and organoid functionality using thrombospondin-1 (THBS1). Nanoindentation and transcriptomic analysis revealed that THBS1 mediates adaptation and remodeling between organoids and ECM proteins, exhibiting native tissue-like viscoelasticity and up-regulated reprogramming transcriptional factors KLF4 and SOX2 via the YAP/TAZ pathway. Transplanting HOs presenting reprogramming effects into a 70 % hepatectomy model demonstrated improved liver regeneration, underscoring the potential of the THBS1-based dynamic ECM system in organoids manipulation and liver regeneration.
Collapse
Affiliation(s)
- Zi-Yan Xu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing-Yan Shi
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ye Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Chao Yu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xin-Yi Zhang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chen-Wei Zhang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qi-Feng He
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Pan
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hua Xiao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hong-Yong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Ma
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Jin Y, Hu H, Tian Y, Xu H, Yu Q, Cheng L, Guo X, Wang Z, Huang X, Wang X, Wang G. The role of LncRNA-MANCR induced by HIF-1α drive the malignant progression of pancreatic cancer by targeting miRNA-494/SIRT1 signaling axis under hypoxic conditions. Cancer Gene Ther 2025:10.1038/s41417-025-00900-0. [PMID: 40195439 DOI: 10.1038/s41417-025-00900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/08/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
This study revealed the prospective biological role and fundamental mechanisms of hypoxia-induced lncRNA-MANCR (MANCR), which is notably upregulated in pancreatic cancer (PC). This work uncovered the potential biological function and underlying mechanisms of hypoxia-induced MANCR, which is significantly elevated in PC. Microarray assays confirmed MANCR expression in the tissues of patients with PC and patients with chronic pancreatitis (CP), which positively correlated with sirtuin-1 (SIRT1) mRNA levels. Chromatin immunoprecipitation and luciferase assays were employed to gauge binding within the hypoxia-inducible factor-1α (HIF-1α)/MANCR/miRNA-494/SIRT1 pathway. Additionally, the association between MANCR expression and the clinical outcomes of patients with PC was confirmed. MANCR is significantly upregulated in PC cells under hypoxic conditions, which is closely linked to poor prognosis in patients with PC. Depletion of MANCR repressed in vitro proliferation, migration, and invasion of PC cells and in vivo growth of PC xenograft tumours. We further demonstrated that MANCR is localised in the cytoplasm and competitively binds miR-494, which directly targets SIRT1. Mechanically, the overexpression of SIRT1 improved the stability of the HIF-1α protein through deacetylation, leading to enhanced HIF-1α assembly. Moreover, MANCR underwent transcriptional regulation by HIF-1α in a hypoxic setting. This modulation was ascribed to HIF-1α binding to hypoxia response elements present in the MANCR promoter sequence. Data revealed the potential possibility of feedback between MANCR and HIF-1α, which may be conducive to hypoxia-induced oncogenicity and PC tumorigenesis, thereby providing a suitable therapeutic target.
Collapse
Affiliation(s)
- Yan Jin
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
- Oncological and Laparoscopic Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Hu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Yitong Tian
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Han Xu
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Qiao Yu
- Ultrasound medicine department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Oncological and Laparoscopic Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Guo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Oncological and Laparoscopic Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zongwei Wang
- School of Medicine, Stanford University, San Francisco, CA, USA
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Oncological and Laparoscopic Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Yang Y, Zhang C, Li H, He Q, Xie J, Liu H, Cui F, Lei Z, Qin X, Liu Y, Xu M, Huang S, Zhang X. A review of molecular interplay between inflammation and cancer: The role of lncRNAs in pathogenesis and therapeutic potential. Int J Biol Macromol 2025; 309:142824. [PMID: 40187457 DOI: 10.1016/j.ijbiomac.2025.142824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The inflammatory microenvironment (IME) has been demonstrated to facilitate the initiation and progression of tumors throughout the inflammatory process. Simultaneously, cancer can initiate or intensify the inflammatory response, thereby promoting tumor progression. This review examines the dual role of long non-coding RNAs (lncRNAs) in the interplay between inflammation and cancer. LncRNA modulate inflammation-induced cancer by influencing the activation of signaling pathways (NF-κB, Wnt/β-catenin, mTOR, etc), microRNA (miRNA) sponging, protein interactions, interactions with immune cells, and encoding short peptides. In contrast, lncRNAs also impact cancer-induced inflammatory processes by regulating cytokine expression, mediating tumor-derived extracellular vesicles (EVs), modulating intracellular reactive oxygen species (ROS) levels, and facilitating metabolic reprogramming. Furthermore, the therapeutic potential of lncRNA and the challenges of clinical translation were explicitly discussed as well. Overall, this review aims to provide a comprehensive and systematic resource for future researchers investigating the impact of lncRNAs on inflammation and cancer.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China; School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Chuxi Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Huacui Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China; Tangshan Institute of Southwest Jiaotong University, Tangshan, China
| | - Qin He
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Jiang Xie
- Department of Pediatrics, The Third People's Hospital of Chengdu, Chengdu, China
| | - Hongmei Liu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Fenfang Cui
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Ziqin Lei
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Xiaoyan Qin
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Ying Liu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Min Xu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China.
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Xu Zhang
- Department of Pharmacy, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu University of TCM, Chengdu, China.
| |
Collapse
|
4
|
Deng Y, Feng J, Li J, Gong S, Sun S. LncRNA BDNF-AS binds to DNMT1 to suppress angiogenesis in glioma by promoting NEDD4L-mediated YAP1 ubiquitination. Mol Cell Biochem 2025:10.1007/s11010-025-05250-x. [PMID: 40119181 DOI: 10.1007/s11010-025-05250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/08/2025] [Indexed: 03/24/2025]
Abstract
Glioma, a highly aggressive brain tumor, is characterized by high mortality and frequent recurrence rates. Angiogenesis is a critical hallmark of glioma progression. However, the regulatory role and underlying mechanism of lncRNA brain-derived neurotrophic factor-antisense (BDNF-AS) in glioma angiogenesis remain poorly understood and warrant further investigation. Malignant characteristics of glioma cells were evaluated using CCK-8, colony formation, scratch, transwell, flow cytometry, and tube formation assays. The expression levels of genes and proteins were detected by RT-qPCR, western blot, and IHC assays. The methylation level of NEDD4-like E3 ubiquitin protein ligase (NEDD4L) was determined using MSP. The interactions among molecules were validated using RIP, ChIP, and Co-IP. Our study revealed significantly downregulated BDNF-AS expression in glioma cells. BDNF-AS overexpression markedly attenuated the malignant characteristics of glioma cells, as evidenced by decreased viability, proliferation, migration, invasion, and angiogenesis, along with increased apoptosis. These tumor-suppressive effects were significantly abrogated by NEDD4L knockdown. Mechanistically, BDNF-AS could interact with DNA methyltransferase 1 (DNMT1) expression, leading to reduced NEDD4L promoter methylation and upregulation of NEDD4L expression. Additionally, NEDD4L-mediated promotion of YAP1 ubiquitination to decline YAP1 and VEGFA expression. Finally, BDNF-AS exerted potent anti-tumor effects by mediating NEDD4L/YAP1/VEGFA axis, as demonstrated by suppressed tumor growth in glioma-bearing mice and attenuated malignant features in glioma cells. BDNF-AS suppressed cell viability, proliferation, migration, and invasion, and promoted cell apoptosis of glioma cells, attenuated angiogenesis of human umbilical vein endothelial cells (HUVECs), and tumor growth via regulating NEDD4L/YAP1/VEGFA axis.
Collapse
Affiliation(s)
- Yongwen Deng
- Department of Neurosurgery, Hunan Provincial People'S Hospital (the First Affiliated Hospital of Hunan Normal University), No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Jixin Feng
- Department of Neurosurgery, Hunan Provincial People'S Hospital (the First Affiliated Hospital of Hunan Normal University), No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Jiangyang Li
- Department of Neurosurgery, Hunan Provincial People'S Hospital (the First Affiliated Hospital of Hunan Normal University), No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Shuhui Gong
- Department of Neurosurgery, Hunan Provincial People'S Hospital (the First Affiliated Hospital of Hunan Normal University), No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Shengli Sun
- Department of Neurosurgery, Hunan Provincial People'S Hospital (the First Affiliated Hospital of Hunan Normal University), No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
5
|
Liu X, Zhang S, An Y, Xu B, Yan G, Sun M. USP10/XAB2/ANXA2 axis promotes DNA damage repair to enhance chemoresistance to oxaliplatin in colorectal cancer. J Exp Clin Cancer Res 2025; 44:94. [PMID: 40069750 PMCID: PMC11895293 DOI: 10.1186/s13046-025-03357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Oxaliplatin-based chemotherapy is the first-line treatment for colorectal cancer (CRC). However, oxaliplatin resistance remains a major challenge contributing to treatment failure and poor prognosis. An increased capacity for DNA damage repair is a key mechanism underlying oxaliplatin resistance. Although XPA binding protein 2 (XAB2) is implicated in various DNA damage repair mechanisms, its specific role in mediating oxaliplatin resistance remains unclear. METHODS XAB2 was identified through analysis of public datasets. Western blot analysis and immunohistochemistry were performed to evaluate XAB2 expression, while survival analysis was performed to assess its clinical significance in CRC. Functional experiments were then conducted to assess the impact of XAB2 on proliferation, DNA damage repair, and oxaliplatin resistance in CRC. RNA sequencing (RNA-seq) and Chromatin immunoprecipitation-sequencing (ChIP-seq) were used to identify XAB2 target genes. Co-immunoprecipitation (Co-IP) and mass spectrometry were used to identify the proteins interacting with XAB2. Dual-luciferase reporter assays, ChIP-qPCR, Co-IP, ubiquitination site mass spectrometry, and ubiquitin assays were used to analyse the interactions and potential mechanisms involving XAB2, Annexin A2 (ANXA2), and ubiquitin-specific protease 10 (USP10). RESULTS XAB2 was found to be expressed in CRC and was associated with poor prognosis in patients with CRC. XAB2 promoted CRC cell proliferation and enhanced oxaliplatin resistance by promoting DNA damage repair. Mechanistically, CRC cells treated with oxaliplatin exhibited increased USP10 nuclear expression. USP10 bound to XAB2 and deubiquitinated XAB2 K48-linked polyubiquitination at K593, thereby stabilising XAB2 by reducing its degradation via the ubiquitin-proteasome pathway. XAB2 upregulates ANXA2 expression at the transcriptional level by binding to the ANXA2 promoter, thereby promoting DNA damage repair, mitigating oxaliplatin-induced DNA damage, and enhancing oxaliplatin resistance. CONCLUSIONS In summary, this study demonstrates that the USP10/XAB2/ANXA2 axis promotes proliferation, DNA damage repair, and oxaliplatin resistance in CRC. These findings uncover a novel mechanism of oxaliplatin resistance in CRC and suggest potential therapeutic targets for improving the efficacy of oxaliplatin in CRC treatment.
Collapse
Affiliation(s)
- Xingwu Liu
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shaoming Zhang
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue An
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Boyang Xu
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Guanyu Yan
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Mingjun Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
E T, Xu C, Fan X, Liu J, Zhao J, Bao N, Zhao Y, Farouk MH, Ji Y, Wu Z, Pan L, Qin G. Soybean Agglutinin Induced Apoptotic Effects by Down-Regulating ANXA2 Through FAK Pathway in IPEC-J2 Cells. J Anim Physiol Anim Nutr (Berl) 2025; 109:350-361. [PMID: 39410871 DOI: 10.1111/jpn.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 03/20/2025]
Abstract
Soybean agglutinin (SBA) is an anti-nutritional factor in soybean, possesses toxic effects by binding to intestinal epithelial cells, and finally interferes the digestion and absorption of nutrients in humans and animals. Annexin A2 (ANXA2) is one of the SBA-specific binding proteins in intestinal epithelial cells and participates in multiple cellular biological processes. However, whether SBA affects apoptosis through ANXA2 and its apoptosis-related pathway remains unclear. IPEC-J2 is an ideal model to study human intestinal health. Therefore, this study aims to investigate the effects of ANXA2 on SBA-induced intestinal epithelial cell apoptosis and the related pathway mechanism using IPEC-J2 as a cell model. The results showed that SBA induced the apoptosis through FAK signal pathway and decreased the gene and protein expressions of ANXA2 in IPEC-J2. The expression of ANXA2 protein had a negative correlation with the apoptosis rates, and a positive correlation with the expression of FAK protein and FAK pathway downstream proteins. In conclusion, SBA induced apoptosis of IPEC-J2 cells by downregulating the expression of ANXA2, which activated the FAK pathway. These findings highlight the toxic mechanism of SBA, which will provide basis for studying the toxicity mechanisms of other food-derived anti-nutrients and provide a new perspective for human gastrointestinal health and related cancer treatment.
Collapse
Affiliation(s)
- Tianjiao E
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chengyu Xu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiapu Fan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jiawei Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jinpeng Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Egypt
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
7
|
Duan S, Tian Z, Hu R, Long H. NEDD4L inhibits epithelial-mesenchymal transition in gastric cancer by mediating BICC1 ubiquitination. Kaohsiung J Med Sci 2025; 41:e12924. [PMID: 39717922 PMCID: PMC11827545 DOI: 10.1002/kjm2.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical stage in the metastasis of gastric cancer (GC). Further clarification of the EMT process in GC is still needed. This study examined the effects of the NEDD4L/BICC1 axis on GC proliferation and the EMT process. Thirty GC patients were enrolled in this study to assess the expression of BICC1 and NEDD4L in tumor samples. A xenograft tumor model in mice was created to investigate BICC1's function in vivo. The proliferation, migration, and invasion of GC cells were evaluated using colony formation, transwell, and wound healing assays. Western blot determined the expression levels of EMT-associated proteins. Co-immunoprecipitation (Co-IP) elucidated the mechanism by which NEDD4L regulates BICC1. BICC1 was found to be overexpressed in tumors. Additionally, BICC1 knockdown inhibited the growth of GC cells in vivo and prevented their migration, invasion, proliferation, and EMT. Furthermore, BICC1 activated the PI3K/AKT pathway, which facilitated cancer progression. Tumor tissues and GC cells exhibited low expression levels of NEDD4L. Conversely, NEDD4L overexpression promoted the ubiquitination and degradation of BICC1 protein, thereby inhibiting GC cell proliferation, migration, invasion, and EMT processes. Our study demonstrated that NEDD4L acts as a tumor suppressor in GC, while BICC1 functions as a pro-tumorigenic factor. The NEDD4L/BICC1 axis plays a significant role in the metastasis and progression of GC.
Collapse
Affiliation(s)
- Shaoyi Duan
- Hunan University of MedicineHuaihuaHunan ProvincePeople's Republic of China
| | - Zhiliang Tian
- Hunan University of MedicineHuaihuaHunan ProvincePeople's Republic of China
| | - Rong Hu
- Hunan University of MedicineHuaihuaHunan ProvincePeople's Republic of China
| | - Heng Long
- Hunan University of MedicineHuaihuaHunan ProvincePeople's Republic of China
| |
Collapse
|
8
|
Tang H, Zhu D, Li W, Zhang G, Zhang H, Peng Q. Exosomal AFAP1-AS1 Promotes the Growth, Metastasis, and Glycolysis of Pituitary Adenoma by Inhibiting HuR Degradation. Mol Neurobiol 2025; 62:2212-2229. [PMID: 39090353 PMCID: PMC11772456 DOI: 10.1007/s12035-024-04387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Exosomal long noncoding RNAs (lncRNAs), which are highly expressed in tumor-derived exosomes, regulate various cellular behaviors such as cell proliferation, metastasis, and glycolysis by facilitating intercellular communication. Here, we explored the role and regulatory mechanism of tumor-derived exosomal lncRNAs in pituitary adenomas (PA). We isolated exosomes from PA cells, and performed in vitro and in vivo assays to examine their effect on the proliferation, metastasis, and glycolysis of PA cells. In addition, we conducted RNA pull-down, RNA immunoprecipitation, co-immunoprecipitation, and ubiquitination assays to investigate the downstream mechanism of exosomal AFAP1-AS1. Exosomes from PA cells augmented the proliferation, mobility, and glycolysis of PA cells. Moreover, AFAP1-AS1 was significantly enriched in these exosomes and stimulated the growth, migration, invasion, and glycolysis of PA cells in vitro, as well as tumor metastasis in vivo. It also enhanced the binding affinity between Hu antigen R (HuR) and SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1), resulting in HuR ubiquitination and degradation accompanied by enhanced expression of hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2). Moreover, HuR overexpression alleviated the exosomal AFAP1-AS1-mediated promotion of growth, metastasis, and glycolysis effects. These findings indicate that tumor-derived exosomal AFAP1-AS1 modulated SMURF1-mediated HuR ubiquitination and degradation to upregulate HK2 and PKM2 expression, thereby enhancing PA cell growth, metastasis, and glucose metabolism. This suggests targeting exosomal AFAP1-AS1 may be a potential strategy for the treatment of PA.
Collapse
Affiliation(s)
- Hengxin Tang
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China.
| | - Delong Zhu
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Wenxiang Li
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Guozhi Zhang
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Heng Zhang
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Qiujiao Peng
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| |
Collapse
|
9
|
Gugnoni M, Kashyap MK, Wary KK, Ciarrocchi A. lncRNAs: the unexpected link between protein synthesis and cancer adaptation. Mol Cancer 2025; 24:38. [PMID: 39891197 PMCID: PMC11783725 DOI: 10.1186/s12943-025-02236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Cancer progression relies on the ability of cells to adapt to challenging environments overcoming stresses and growth constraints. Such adaptation is a multifactorial process that depends on the rapid reorganization of many basic cellular mechanisms. Protein synthesis is often dysregulated in cancer, and translational reprogramming is emerging as a driving force of cancer adaptive plasticity. Long non-coding RNAs (lncRNAs) represent the main product of genome transcription. They outnumber mRNAs by an order of magnitude and their expression is regulated in an extremely specific manner depending on context, space and time. This heterogeneity is functional and allows lncRNAs to act as context-specific, fine-tuning controllers of gene expression. Multiple recent evidence underlines how, besides their consolidated role in transcription, lncRNAs are major players in translation control. Their capacity to establish multiple and highly dynamic interactions with proteins and other transcripts makes these molecules able to play a central role across all phases of protein synthesis. Even if through a myriad of different mechanisms, the action of these transcripts is dual. On one hand, by modulating the overall translation speed, lncRNAs participate in the process of metabolic adaptation of cancer cells under stress conditions. On the other hand, by prioritizing the synthesis of specific transcripts they help cancer cells to maintain high levels of essential oncogenes. In this review, we aim to discuss the most relevant evidence regarding the involvement of lncRNAs in translation regulation and to discuss how this specific function may affect cancer plasticity and resistance to stress. We also expect to provide one of the first collective perspectives on the way these transcripts modulate gene expression beyond transcription.
Collapse
Affiliation(s)
- Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| | - Kishore K Wary
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, IL, USA.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
10
|
Zeng Y, Jiang H, Chen Z, Xu J, Zhang X, Cai W, Zeng X, Ma P, Lin R, Yu H, He Y, Ying H, Zhou R, Wu X, Yu F. Histone lactylation promotes multidrug resistance in hepatocellular carcinoma by forming a positive feedback loop with PTEN. Cell Death Dis 2025; 16:59. [PMID: 39890782 PMCID: PMC11785747 DOI: 10.1038/s41419-025-07359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
FOLFOX (5-fluorouracil, oxaliplatin, folinic acid) is a standard treatment for hepatocellular carcinoma, but its efficacy is often limited by drug resistance, the underlying mechanisms of which remain unclear. In this study, oxaliplatin (OXA)- and 5-fluorouracil (5-Fu)-resistant hepatocellular carcinoma cell lines were established, and enhanced glycolytic activity was identified in resistant cells. Inhibiting glycolysis effectively suppressed the malignant behavior of both OXA- and 5-Fu-resistant cells. Mechanistically, active glycolysis induced elevated levels of lactylation, predominantly histone lactylation, with H3K14la playing a key role in regulating gene expression. The ubiquitin E3 ligase NEDD4 was identified as a downstream target of H3K14la. Furthermore, NEDD4, regulated by histone lactylation, interacted with PTEN to mediate its ubiquitination and subsequent degradation. The downregulation of PTEN formed a positive feedback loop, further driving the malignant progression of OXA- and 5-Fu-resistant cells. This study elucidates a shared mechanism underlying OXA and 5-Fu resistance in hepatocellular carcinoma and highlights a promising therapeutic target for overcoming clinical chemotherapy resistance.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- PTEN Phosphohydrolase/metabolism
- PTEN Phosphohydrolase/genetics
- Humans
- Liver Neoplasms/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Cell Line, Tumor
- Histones/metabolism
- Oxaliplatin/pharmacology
- Ubiquitination/drug effects
- Feedback, Physiological
- Nedd4 Ubiquitin Protein Ligases/metabolism
- Nedd4 Ubiquitin Protein Ligases/genetics
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Animals
- Drug Resistance, Multiple/drug effects
- Mice, Nude
- Mice
- Gene Expression Regulation, Neoplastic/drug effects
- Glycolysis/drug effects
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoran Jiang
- Department of Radiation Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Urology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhoufeng Chen
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangting Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weimin Cai
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianjie Zeng
- School of Pharmaceutical Science, Fujian Medical University, Fujian, China
| | - Peipei Ma
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong Lin
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huilin Yu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanhang He
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huiya Ying
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruoru Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Wu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Liu L, Yang Y, Sun P. LINC00941 affects the proliferation, apoptosis and differentiation of osteoblasts by regulating the miR-335-5p/KAT7 axis. J Orthop Surg Res 2025; 20:75. [PMID: 39838460 PMCID: PMC11749574 DOI: 10.1186/s13018-025-05469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Fractures are the prevalent traumatic conditions encountered in orthopedic practices. The rising incidence of fractures has emerged as a pressing global health concern. Although the majority of individuals with fractures experience complete recovery of bone structure and function, approximately 10% of those with fractures exhibit delayed fracture healing (DFH). The objective of this investigation was to explore the function and underlying mechanisms of LINC00941 in the advancement of DFH, as well as its involvement in the regulation of osteoblastic differentiation by regulating the miR-335-5p/KAT7 axis. METHODS The expression levels of LINC00941, miR-335-5p, KAT7 and osteoblast differentiation-related markers were assessed using RT-qPCR. The proliferation of MC3T3-E1 cells was evaluated through the CCK-8 assay, and cell apoptosis was analyzed via flow cytometry. The targeted regulatory relationships between LINC00941 and miR-335-5p, as well as between miR-335-5p and KAT7 were verified by a dual-luciferase reporter gene assay. RESULT The expression of LINC00941 was significantly up regulated, while miR-335-5p exhibited a notable downregulation in DFH patients, both of LINC00941 and miR-335-5p have been identified as potential predicted markers for DFH. Furthermore, LINC00941 has been demonstrated to inhibit osteoblast proliferation, promote apoptosis, and suppress osteoblast differentiation through the regulation of the miR-335-5p/KAT7 axis. CONCLUSION LINC00941/ miR-335-5p/KAT7 axis may be a therapeutic target for DFH.
Collapse
Affiliation(s)
- Longjin Liu
- Department of Orthopedic 2, Zhongxian People's Hospital of Chongqing, Chongqing, 404300, China
| | - Ye Yang
- Orthopedic Joint Trauma Ward, General Hospital of Southern Theater Command of PLA, Guangzhou, 510030, China
| | - Pengxiao Sun
- Department of Joint 1, Xi'An International Medical Center Hospital, No.777, Xitai Road, Gaoxin District, Xi'An, 710000, China.
| |
Collapse
|
12
|
Chen X, Han J, Li S, Yang X, Yang S, Xu C, Liang X. HOXC-AS1 and EZH2 interaction increase HOXC9 expression and promote the malignant transformation of oral leukoplakia. J Cancer 2025; 16:1202-1214. [PMID: 39895798 PMCID: PMC11786031 DOI: 10.7150/jca.103482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
Objective: To investigate the role of HOXC9 in the transformation of oral leukoplakia (OLK) to oral squamous cell carcinoma (OSCC) and its effectiveness as a new molecular marker for oral leukoplakia carcinogenesis. Materials and Methods: We assessed HOXC9 in OLK and OSCC using immunohistochemistry (IHC). Colony formation and transwell experiment were employed to appraise the function of HOXC9 in the malignant transformation of OLK. ChIP-qPCR, CO-IP, RIP-qPCR, RNA pull down and mass spectrometry were using to evaluate the molecular mechanism of HOXC9. Results: HOXC9 expression was higher in patients with OSCC than in those with OLK, which is associated with increased malignant transformation of OLK. Functional experiments suggested that HOXC9 induces the acquisition of cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT). Subsequently, we found that the HOXC9-mediated malignant phenotype was reversed by HOXC-AS1 depletion. Mechanistically, HOXC-AS1 regulates H3K27me3 methylation and EZH2 as a potential HOXC-AS1-HOXC9 interacting protein. Finally, we found that the 251-619nt nucleotide of HOXC-AS1 competitively binds to EZH2. Conclusion: HOXC-AS1 competitively binds to EZH2, inhibiting its binding to H3 in the HOXC9 promoter region, resulting in a decrease in H3K27me3 and enhanced expression of HOXC9, thereby promoting CSCs and EMT in oral leukoplakia, ultimately leading to malignant transformation into oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, Guangdong 510280, China
| | - Jiusong Han
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, Guangdong 510280, China
| | - Shuhua Li
- Guanghua School of Stomatology, Sun Yat-sen University, No. 55 Linyuan Xi Road, Guangzhou, Guangdong 510055, China
| | - Xi Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, Guangdong 510280, China
| | - Shuyu Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, Guangdong 510280, China
| | - Chenrong Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, Guangdong 510280, China
| | - Xueyi Liang
- Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, Guangdong 510280, China
| |
Collapse
|
13
|
Burenina OY, Lazarevich NL, Kustova IF, Shavochkina DA, Moroz EA, Kudashkin NE, Patyutko YI, Rubtsova MP, Dontsova OA. Upregulation of long noncoding RNAs LINC00941 and ABHD11-AS1 is associated with intrahepatic cholangiocarcinoma. Sci Prog 2025; 108:368504251330019. [PMID: 40151866 PMCID: PMC11951875 DOI: 10.1177/00368504251330019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
ObjectiveMany long noncoding RNAs (lncRNAs) are associated with liver cancers, mainly hepatocellular carcinoma (HCC) and to a smaller extent intrahepatic cholangiocarcinoma (CCA). Most of such lncRNAs show similar dysregulation patterns when the two types of tumors are compared, suggesting that these aberrations are characteristic features of these liver tumor types. In the present study, we aimed to identify some candidate lncRNAs that are associated specifically with CCA.MethodsAccording to The Cancer Genome Atlas data, we chose LINC00941, ABHD11-AS1, and CASC8 as promising biomarkers dysregulated in CCA but unaffected in HCC. We first verified their upregulation in an existing transcriptomic dataset for CCA patients. Next, we estimated expression levels of these three lncRNAs by reverse-transcription quantitative PCR in a group of paired (tumorous/adjacent) postsurgery tissue samples from 110 patients with various liver lesions: CCA, HCC, combined HCC-CCA, or benign liver tumors.ResultsSignificant upregulation of LINC00941 and ABHD11-AS1 was noted in most of the investigated CCA samples, whereas in HCC samples, increased expression of these two lncRNAs was observed only in some types of cases (mainly characterized by an advanced tumor stage). In contrast, CASC8 manifested extremely low expression and no diagnostic potential in all the tested liver samples. Analyzing expression correlations of lncRNAs with candidate genes, we obtained strong evidence for LINC00941-mediated upregulation of CAPRIN2 in CCA.ConclusionsFor the first time, we show the upregulation of LINC00941 and ABHD11-AS1 in CCA and report their good potential as diagnostic biomarkers for this type of liver tumor.
Collapse
Affiliation(s)
- Olga Y. Burenina
- Center of Molecular and Cellular Biology, Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia L. Lazarevich
- Biology Department, Lomonosov Moscow State University, Moscow, Russia
- Institute of Carcinogenesis, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Inna F. Kustova
- Institute of Carcinogenesis, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Daria A. Shavochkina
- Institute of Carcinogenesis, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Ekaterina A. Moroz
- Institute of Clinical Oncology, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Nikolay E. Kudashkin
- Institute of Clinical Oncology, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Yuriy I. Patyutko
- Institute of Clinical Oncology, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Maria P. Rubtsova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A. Dontsova
- Center of Molecular and Cellular Biology, Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
14
|
Qi M, Tu J, He R, Fei X, Zhao Y. NEDD4L Suppresses Proliferation and Promotes Apoptosis by Ubiquitinating RAC2 Expression and Acts as a Prognostic Biomarker in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2024; 25:11933. [PMID: 39596003 PMCID: PMC11594477 DOI: 10.3390/ijms252211933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L) is an HECT (homologous to E6AP C terminus)-type E3 ubiquitin ligase. As previously documented, bioinformatics analysis revealed NEDD4L is downregulated in clear cell renal cell carcinoma (ccRCC). However, the target substrate regulated by NEDD4L in ccRCC remains unknown. Here, we assessed whether NEDD4L regulates Ras-related C3 botulinum toxin substrate 2 (RAC2) expression in ccRCC. In our study, integrated bioinformatics analysis indicated that low expression of NEDD4L and high expression of RAC2 were both associated with poor prognosis of ccRCC, pro-tumorigenic immunity, and multiple tumor-associated pathways. Our data confirmed the hypothesis indicated in the previous studies related to the downregulation of NEDD4L in ccRCC. NEDD4L was identified to target the RAC2 threonine 108-proline motif, and RAC2 overexpression rescued NEDD4L-mediated cell apoptosis and inhibition of cell growth and migration. Therefore, RAC2 is a novel and first identified target of NEDD4L in ccRCC, and the aberrant less expression of NEDD4L and consequent RAC2 upregulation may contribute to renal carcinogenesis. Our study offers insight into NEDD4L as a potential future therapeutic target for renal cell carcinoma or as a novel prognostic biomarker.
Collapse
Affiliation(s)
- Manlong Qi
- Department of Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China; (J.T.); (R.H.)
| | - Jianqiao Tu
- Department of Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China; (J.T.); (R.H.)
| | - Rong He
- Department of Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China; (J.T.); (R.H.)
| | - Xiang Fei
- Department of Urology, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China;
| | - Yanyan Zhao
- Department of Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China; (J.T.); (R.H.)
| |
Collapse
|
15
|
Huang J, Lin J, Zhong T, Qin Z, Li G, Yi T, Lu X, Qin Y. LINC00894 targets Annexin A2 to regulate oxaliplatin resistance in hepatocellular carcinoma: ANXA2 protein function. Int J Biol Macromol 2024; 281:136538. [PMID: 39396585 DOI: 10.1016/j.ijbiomac.2024.136538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
To investigate the role of LINC00894 in oxaliplatin chemoresistance of hepatocellular carcinoma (HCC) and its mechanisms. The oxaliplatin-resistant HCC cell lines were established. IC50 of oxaliplatin was calculated by CCK-8 assay. Cell viability was detected using clonal formation experiment, while cell apoptosis was accessed by flow cytometry. RNA binding protein immunoprecipitation and RNA pull-down were performed to explore the interaction of LINC00894 and ANXA2. The expressions of RNA and protein were tested by qRT-PCR and western blot respectively. Tumor xenograft was performed to detect the effect of LINC00894 in vivo. The expression of ki67 was evaluated by immunohistochemistry staining. LINC00894 was overexpressed in HCC cells resistant to oxaliplatin. Elevated LINC00894 promoted HCC cells resistance to oxaliplatin, whereas silence of LINC00894 improved HCC sensitivity to oxaliplatin. LINC00894 could bind to the ANXA2 protein, enhanced the stability of the ANXA2 protein and reduced its ubiquitination. Furthermore, LINC00894 modulated HCC resistance to oxaliplatin both in vitro and in vivo by targeting the ANXA2 protein.LINC00894 enhanced the stability of ANXA2 protein and attenuated its ubiquitination by interacting with it, thereby promoting oxaliplatin resistance in HCC. Our findings contributed to understanding the role of these mechanisms in the process of oxaliplatin resistance in HCC.
Collapse
MESH Headings
- Annexin A2/metabolism
- Annexin A2/genetics
- Humans
- Oxaliplatin/pharmacology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Animals
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Mice
- Apoptosis/drug effects
- Apoptosis/genetics
- Ubiquitination/drug effects
- Xenograft Model Antitumor Assays
- Mice, Nude
- Cell Proliferation/drug effects
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Junling Huang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 530632, China; Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China
| | - Jiajie Lin
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 530632, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000, China
| | - Tengmeng Zhong
- Department of Hepatobiliary Surgery, Baise People's Hospital, Baise, 533000, Guangxi Province, China
| | - Zongshuai Qin
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China
| | - Guangzhi Li
- Department of General practice, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan 2nd Road, Baise 533000, Guangxi Province, China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China
| | - Xianzhe Lu
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 530632, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000, China.
| | - Yueqiu Qin
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China.
| |
Collapse
|
16
|
Liu H, Wang N, Yang R, Luan J, Cao M, Zhai C, Wang S, Wei M, Wang D, Qiao J, Liu Y, She W, Guo N, Liao B, Gou X. E3 Ubiquitin Ligase NEDD4L Negatively Regulates Skin Tumorigenesis by Inhibiting IL-6/GP130 Signaling Pathway. J Invest Dermatol 2024; 144:2453-2464.e11. [PMID: 38580105 DOI: 10.1016/j.jid.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
IL-6 signaling plays a crucial role in the survival and metastasis of skin cancer. NEDD4L acts as a suppressor of IL-6 signaling by targeting GP130 degradation. However, the effects of the NEDD4L-regulated IL-6/GP130 signaling pathway on skin cancer remain unclear. In this study, protein expression levels of NEDD4L and GP130 were measured in tumor tissues from patients with cutaneous squamous cell carcinoma. Skin tumors were induced in wild-type and Nedd4l-knockout mice, and activation of the IL-6/GP130/signal transducer and activator of transcription 3 signaling pathway was detected. The results indicated a negative correlation between the protein expression levels of NEDD4L and GP130 in cutaneous squamous cell carcinoma tissues from patients. Nedd4l deficiency significantly promoted 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin tumorigenesis and benign-to-malignant conversion by activating the IL-6/GP130/signal transducer and activator of transcription 3 signaling pathway, which was abrogated by supplementation with the GP130 inhibitor SC144. Furthermore, our findings suggested that NEDD4L can interact with GP130 and promote its ubiquitination in skin tumors. In conclusion, our results indicate that NEDD4L could act as a tumor suppressor in skin cancer, and inhibition of GP130 could be a potential therapeutic method for treating this disease.
Collapse
Affiliation(s)
- Huan Liu
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China
| | - Ning Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Run Yang
- School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China
| | - Meng Cao
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China
| | - Cui Zhai
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China
| | - Shan Wang
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China
| | - Mengqian Wei
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China
| | - Duorong Wang
- School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Jiayue Qiao
- School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Yuqian Liu
- College of pharmacy, Xi'an Medical University, Xi'an, China
| | - Wenting She
- College of pharmacy, Xi'an Medical University, Xi'an, China
| | - Na Guo
- Department of Immunology, Xi'an Medical University, Xi'an, China
| | - Bo Liao
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi'an, China.
| | - Xingchun Gou
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Brain Diseases, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
17
|
Yang Q, Yong X, Chen X, Huang R, Wang X, Xu Z, Chen W. LINC00941 is a diagnostic biomarker for lung adenocarcinoma and promotes tumorigenesis through cell autophagy. J Cell Mol Med 2024; 28:e70076. [PMID: 39392103 PMCID: PMC11467743 DOI: 10.1111/jcmm.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a lethal malignancy. There is mounting evidence indicating that lncRNAs are crucial players with dual roles as both biomarkers and regulators across various cancers. It was reported that LINC00941 plays a cancer-promoting role in NSCLC. However, its impact on tumour autophagy remains poorly understood. In this study, we developed a risk assessment model and identified an autophagy-related lncRNA LINC00941, which has independent predictive and early diagnostic potential. Using RT-qPCR analysis, we confirmed the upregulation of LINC00941 in tumour tissues and cell lines of human lung adenocarcinoma (LUAD). Functional assays, such as CCK8, colony formation and xenograft models, demonstrated the cancer-promoting activity of LINC00941 both in vitro and in vivo. Further analysis using Western blotting analysis, mRFP-GFP-LC3 double fluorescence lentivirus vector and transmission electron microscopy (TEM) confirmed that the knockdown of LINC00941 triggered autophagy. These results indicate that knockdown of LINC00941 induces autophagy and impairs the proliferation of LUAD. Therefore, we propose LINC00941 as an independent biomarker for early diagnosis as well as a therapeutic target in LUAD.
Collapse
Affiliation(s)
- Qin Yang
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengduChina
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Xi Yong
- Department of Vascular SurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Xiaoli Chen
- Department of Pathology, Basic Medicine and Forensic Medicine CollegeNorth Sichuan Medical CollegeNanchongChina
| | - Rong Huang
- School of Pharmacy, Institute of Materia MedicalNorth Sichuan Medical collegeNanchongChina
| | - Xiaolin Wang
- Department of Pathology, Basic Medicine and Forensic Medicine CollegeNorth Sichuan Medical CollegeNanchongChina
| | - Zhengmin Xu
- School of Pharmacy, Institute of Materia MedicalNorth Sichuan Medical collegeNanchongChina
- Traditional Chinese Medicine for Prevention and Treatment of Musculoskeletal Diseases Key Laboratory of Nanchong CityNanchongChina
| | - Wei Chen
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengduChina
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
18
|
Zhang Y, Zhang J. AGR2 facilitates teratoma progression by regulating glycolysis via the AnXA2/EGFR axis. Exp Cell Res 2024; 442:114228. [PMID: 39197578 DOI: 10.1016/j.yexcr.2024.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Anterior gradient-2 (AGR2) is highly expressed in several tumors and plays an important role in tumor development. However, the biological function of AGR2 in teratomas has not yet been thoroughly studied. In this study, AGR2 was found to be upregulated in teratoma tissues and in human testicular teratoma cell lines by Western blotting and qRT-PCR assays. A DNA Methylation-Specific PCR assay demonstrated that AGR2 upregulation resulted from hypomethylated AGR2 in teratoma cells. NCC-IT and NT2-D1 cells were transfected with pcDNA-AGR2 or sh-AGR2 to obtain AGR2-overexpressed or -silenced cells, and cell proliferation, invasion and glycolysis were determined using CCK-8, 5-ethynyl-2'-deoxyuridine (EdU), Transwell assays, and commercial kits. The results revealed that overexpression of AGR2 promoted teratoma cell proliferation and invasion and elevated glycolysis levels evidencing by the increase in lactate secretion, glucose consumption, ATP levels and the expression of glycolysis-related proteins, while knockdown of AGR2 showed the opposite results. The interactions between AGR2 and annexin A2 (AnXA2), as well as between AnXA2 and epidermal growth factor receptor (EGFR) were verified by co-immunoprecipitation assay. Mechanistic studies revealed that AGR2 interacts with AnXA2 and increases the level of AnXA2 to recruit more AnXA2 to EGFR, there by promoting EGFR expression. A series of rescue experiments showed that knockdown of AnXA2 or EGFR weakened the promotional effects of AGR2 overexpression on the proliferation, invasion, and glycolysis of teratoma cells. Finally, tumorigenicity assays were performed using NT2-D1 cells stably transfected with either LV-NC-shRNA or LV-shAGR2. The results showed that AGR2 knockdown significantly inhibited teratoma tumor growth in vivo. In conclusion, our data suggested that AGR2 facilitates glycolysis in teratomas through promoting EGFR expression by interacting with AnXA2, thereby promoting teratoma cells proliferation and invasion.
Collapse
Affiliation(s)
- Yahong Zhang
- Department of Gynecology, Baoji People's Hospital, No. 24 Xinhua Lane, Jing'er Road, Baoji, 721000, Shaanxi Province, China
| | - Jing Zhang
- Department of Gynecology, Baoji Central Hospital, No. 8 Jiangtan Road, Weibin District, Baoji, 721008, Shaanxi Province, China.
| |
Collapse
|
19
|
Zhang S, Ta N, Zhang S, Li S, Zhu X, Kong L, Gong X, Guo M, Liu Y. Unraveling pancreatic ductal adenocarcinoma immune prognostic signature through a naive B cell gene set. Cancer Lett 2024; 594:216981. [PMID: 38795761 DOI: 10.1016/j.canlet.2024.216981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), a leading cause of cancer mortality, has a complex pathogenesis involving various immune cells, including B cells and their subpopulations. Despite emerging research on the role of these cells within the tumor microenvironment (TME), the detailed molecular interactions with tumor-infiltrating immune cells (TIICs) are not fully understood. METHODS We applied CIBERSORT to quantify TIICs and naive B cells, which are prognostic for PDAC. Marker genes from scRNA-seq and modular genes from weighted gene co-expression network analysis (WGCNA) were integrated to identify naive B cell-related genes. A prognostic signature was constructed utilizing ten machine-learning algorithms, with validation in external cohorts. We further assessed the immune cell diversity, ESTIMATE scores, and immune checkpoint genes (ICGs) between patient groups stratified by risk to clarify the immune landscape in PDAC. RESULTS Our analysis identified 994 naive B cell-related genes across single-cell and bulk transcriptomes, with 247 linked to overall survival. We developed a 12-gene prognostic signature using Lasso and plsRcox algorithms, which was confirmed by 10-fold cross-validation and showed robust predictive power in training and real-world cohorts. Notably, we observed substantial differences in immune infiltration between patients with high and low risk. CONCLUSION Our study presents a robust prognostic signature that effectively maps the complex immune interactions in PDAC, emphasizing the critical function of naive B cells and suggesting new avenues for immunotherapeutic interventions. This signature has potential clinical applications in personalizing PDAC treatment, enhancing the understanding of immune dynamics, and guiding immunotherapy strategies.
Collapse
Affiliation(s)
- Shichen Zhang
- Software Engineering Institute, East China Normal University, Shanghai 200062, China
| | - Na Ta
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Shihao Zhang
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Senhao Li
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Xinyu Zhu
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Lingyun Kong
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical University, Shanghai 200433, China
| | - Xueqing Gong
- Software Engineering Institute, East China Normal University, Shanghai 200062, China.
| | - Meng Guo
- National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical University, Shanghai 200433, China.
| | - Yanfang Liu
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, China; National Key Laboratory of Immunity and Inflammation & Institute of Immunology, Navy Medical University, Shanghai 200433, China.
| |
Collapse
|
20
|
Xu J, Jiang W, Hu T, Long Y, Shen Y. NEDD4 and NEDD4L: Ubiquitin Ligases Closely Related to Digestive Diseases. Biomolecules 2024; 14:577. [PMID: 38785984 PMCID: PMC11117611 DOI: 10.3390/biom14050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Protein ubiquitination is an enzymatic cascade reaction and serves as an important protein post-translational modification (PTM) that is involved in the vast majority of cellular life activities. The key enzyme in the ubiquitination process is E3 ubiquitin ligase (E3), which catalyzes the binding of ubiquitin (Ub) to the protein substrate and influences substrate specificity. In recent years, the relationship between the subfamily of neuron-expressed developmental downregulation 4 (NEDD4), which belongs to the E3 ligase system, and digestive diseases has drawn widespread attention. Numerous studies have shown that NEDD4 and NEDD4L of the NEDD4 family can regulate the digestive function, as well as a series of related physiological and pathological processes, by controlling the subsequent degradation of proteins such as PTEN, c-Myc, and P21, along with substrate ubiquitination. In this article, we reviewed the appropriate functions of NEDD4 and NEDD4L in digestive diseases including cell proliferation, invasion, metastasis, chemotherapeutic drug resistance, and multiple signaling pathways, based on the currently available research evidence for the purpose of providing new ideas for the prevention and treatment of digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yueming Shen
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha 410000, China; (J.X.); (W.J.); (T.H.); (Y.L.)
| |
Collapse
|
21
|
Ling X, Qi C, Cao K, Lu M, Yang Y, Zhang J, Zhang L, Zhu J, Ma J. METTL3-mediated deficiency of lncRNA HAR1A drives non-small cell lung cancer growth and metastasis by promoting ANXA2 stabilization. Cell Death Discov 2024; 10:203. [PMID: 38688909 PMCID: PMC11061277 DOI: 10.1038/s41420-024-01965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
We previously reported lncRNA HAR1A as a tumor suppressor in non-small cell lung cancer (NSCLC). However, the delicate working mechanisms of this lncRNA remain obscure. Herein, we demonstrated that the ectopic expression of HAR1A inhibited the proliferation, epithelial-mesenchymal transition (EMT), migration, and invasion of NSCLC cells and enhanced paclitaxel (PTX) sensitivity in vitro and in vivo. We identified the oncogenic protein annexin 2 (ANXA2) as a potential interacting patterner of HAR1A. HAR1A overexpression enhanced ANXA2 ubiquitination and accelerated its degradation via the ubiquitin-proteasome pathway. We further uncovered that HAR1A promoted the interaction between E3 ubiquitin ligase TRIM65 and ANXA2. Moreover, the ANXA2 plasmid transfection could reverse HAR1A overexpression-induced decreases in proliferation, migration, and invasion of NSCLC cells and the activity of the NF-κB signaling pathway. Finally, we found that HAR1A loss in NSCLC might be attributed to the upregulated METTL3. The m6A modification levels of HAR1A were increased in cancer cells, while YTHDF2 was responsible for recognizing m6A modification in the HAR1A, leading to the disintegration of this lncRNA. In conclusion, we found that METTL3-mediated m6A modification decreased HAR1A in NSCLC. HAR1A deficiency, in turn, stimulated tumor growth and metastasis by activating the ANXA2/p65 axis.
Collapse
Affiliation(s)
- Xiaodong Ling
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Cuicui Qi
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Kui Cao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Mengdi Lu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Yingnan Yang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Jinfeng Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Luquan Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China.
- Biobank, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China.
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
22
|
Xiong Y, Kong X, Tu S, Xin W, Wei Y, Yi S, Wan R, Xiao W. LINC02086 inhibits ferroptosis and promotes malignant phenotypes of pancreatic cancer via miR-342-3p/CA9 axis. Funct Integr Genomics 2024; 24:49. [PMID: 38438595 DOI: 10.1007/s10142-024-01329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in modulating the tumorigenesis and progression of malignant tumors. LINC02086 is a newly identified oncogene associated with tumorigenesis, but its role in pancreatic cancer (PC) has not been fully elucidated. In this study we examined the expression levels of LINC02086, miR-342-3p, and CA9 in PC. The relationship of ferroptosis with these factors was analyzed by detecting the expression levels of Fe2+, reactive oxygen species (ROS), and ferroptosis marker proteins. The expression of these genes was altered to observe their effects on cell proliferation, migration, and invasion ability. Bioinformatics was used to predict target genes, and the binding relationship was verified luciferase reporter assay. Finally, the function of LINC02086 was evaluated in vivo. The findings suggest that LINC02086 is highly expressed in PC tissues and cell lines and is correlated with a poor prognosis. In vitro experiments demonstrated that LINC02086 knockdown promoted ferroptosis in PC cells to suppress their malignant phenotype. LINC02086 acts as a competitive endogenous RNA that adsorbed miR-342-3p. miR-342-3p hinders the malignant progression of PC by promoting ferroptosis. In addition, miR-342-3p targets CA9 and affects its function. Further mechanistic studies revealed that LINC02086 inhibits ferroptosis and promotes PC progression by acting as a sponge for miR-342-3p to upregulate CA9 expression. In vivo experiments further confirmed this mechanism. Taken together, LINC02086 upregulates CA9 expression by competitively binding with miR-342-3p, thereby inhibiting ferroptosis in PC cells and promoting their malignant phenotype. The results of our study provide new insights into how LINC02086 contributes to the progression of PC.
Collapse
Affiliation(s)
- Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiaoyu Kong
- Department of Clinical Microbiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shuju Tu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wanpeng Xin
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yongyang Wei
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Siqing Yi
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Weidong Xiao
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Institute of Digestive Surgery, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
23
|
Li P, Yang L, Park SY, Liu F, Li AH, Zhu Y, Sui H, Gao F, Li L, Ye L, Zou Y, Tian Z, Zhao Y, Costa M, Sun H, Zhao X. Stabilization of MOF (KAT8) by USP10 promotes esophageal squamous cell carcinoma proliferation and metastasis through epigenetic activation of ANXA2/Wnt signaling. Oncogene 2024; 43:899-917. [PMID: 38317006 DOI: 10.1038/s41388-024-02955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Dysregulation of MOF (also known as MYST1, KAT8), a highly conserved H4K16 acetyltransferase, plays important roles in human cancers. However, its expression and function in esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we report that MOF is highly expressed in ESCC tumors and predicts a worse prognosis. Depletion of MOF in ESCC significantly impedes tumor growth and metastasis both in vitro and in vivo, whereas ectopic expression of MOF but not catalytically inactive mutant (MOF-E350Q) promotes ESCC progression, suggesting that MOF acetyltransferase activity is crucial for its oncogenic activity. Further analysis reveals that USP10, a deubiquitinase highly expressed in ESCC, binds to and deubiquitinates MOF at lysine 410, which protects it from proteosome-dependent protein degradation. MOF stabilization by USP10 promotes H4K16ac enrichment in the ANXA2 promoter to stimulate ANXA2 transcription in a JUN-dependent manner, which subsequently activates Wnt/β-Catenin signaling to facilitate ESCC progression. Our findings highlight a novel USP10/MOF/ANXA2 axis as a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Chest Cancer, The Second Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Lingxiao Yang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Sun Young Park
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, 10010, USA
| | - Fanrong Liu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Alex H Li
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, 10010, USA
| | - Yilin Zhu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huacong Sui
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fengyuan Gao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lingbing Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lan Ye
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Chest Cancer, The Second Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yunpeng Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Max Costa
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, 10010, USA
| | - Hong Sun
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, 10010, USA.
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Chest Cancer, The Second Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
24
|
Xiao S, Ouyang Q, Feng Y, Lu X, Han Y, Ren H, Huang Q, Zhao J, Xiao C, Yang M. LncNFYB promotes the proliferation of rheumatoid arthritis fibroblast-like synoviocytes via LncNFYB/ANXA2/ERK1/2 axis. J Biol Chem 2024; 300:105591. [PMID: 38141769 PMCID: PMC10867587 DOI: 10.1016/j.jbc.2023.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are specifically expressed in different diseases and regulate disease progression. To explore the functions of rheumatoid arthritis (RA)-specific lncRNA, we determined the lncRNA expression profile of fibroblast-like synoviocytes (FLS) obtained from patients with RA and osteoarthritis (OA) using a LncRNA microarray and identified up-regulated LncNFYB in RA as a potential therapeutic target. Using gain- and loss-of-function studies, LncNFYB was proven to promote FLS proliferation and cell cycle progress but not affect their invasion, migration, and apoptotic abilities. Further investigation discovered that LncRNA could combine with annexin A2 (ANXA2) and enhance the level of phospho-ANXA2 (Tyr24) in the plasma membrane area, which induced the activation of ERK1/2 to promote proliferation. These findings provide new insights into the biological functions of LncNFYB on modification of FLS, which may be exploited for the therapy of RA.
Collapse
Affiliation(s)
- Shibai Xiao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingqing Ouyang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Feng
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxi Lu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yipeng Han
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Ren
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Huang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinjun Zhao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changhong Xiao
- Department of Rheumatology and Immunology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Min Yang
- Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Wang Y, Wang J, Zhang Y, Luo H, Yuan H. LncRNA-MUF: A Novel Oncogenic Star with Potential as a Biological Marker and Therapeutic Target for Gastrointestinal Malignancies. J Cancer 2024; 15:1498-1510. [PMID: 38370364 PMCID: PMC10869981 DOI: 10.7150/jca.91984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/30/2023] [Indexed: 02/20/2024] Open
Abstract
Gastrointestinal (GI) cancers pose a significant global health challenge, characterized by a high incidence and poor prognosis. The delayed detection and occurrence of metastasis contribute to the overall low survival rates associated with these cancers. Therefore, there is an urgent need to identify novel molecular targets for effective GI cancer treatment. Recent research has shed light on the potential of long non-coding RNAs (lncRNAs) as promising targets in cancer therapy, given their strong association with carcinogenesis and profound impact on tumor development. Among these lncRNAs, lncRNA-MUF, also known as LINC00941, has emerged as a key player in oncogenic regulation, specifically implicated in the progression of various GI cancers, including esophageal, gastric, colorectal, hepatic, and pancreatic cancer. This review aims to provide an updated and focused analysis of the regulatory roles of LINC00941 in the initiation and progression of GI cancer. Our objective is to unravel the underlying molecular mechanisms through which LINC00941 influences GI cancer phenotypes both in vivo and in vitro, with a special emphasis on the key molecules and signaling pathways involved. Additionally, LINC00941 has demonstrated clinical significance in terms of clinical pathology, prognosis, and diagnosis in GI tumors, further reinforcing its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Yihan Zhang
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Huazhao Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang 332007, Jiangxi, China
| |
Collapse
|
26
|
Yan Q, Su X, Chen Y, Wang Z, Han W, Xia Q, Mao Y, Si J, Li H, Duan S. LINC00941: a novel player involved in the progression of human cancers. Hum Cell 2024; 37:167-180. [PMID: 37995050 DOI: 10.1007/s13577-023-01002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
LINC00941, also known as lncRNA-MUF, is an intergenic non-coding RNA located on chromosome 12p11.21. It actively participates in a complex competing endogenous RNA network, regulating the expression of microRNA and its downstream proteins. Through transcriptional and post-transcriptional regulation, LINC00941 plays a vital role in multiple signaling pathways, influencing cell behaviors such as tumor cell proliferation, epithelial-mesenchymal transition, migration, and invasion. Noteworthy is its consistently high expression in various tumor types, closely correlating with clinicopathological features and cancer prognoses. Elevated LINC00941 levels are associated with adverse clinical outcomes, including increased tumor size, extensive lymphatic metastasis, and distant metastasis, leading to poorer survival rates across different cancers. Additionally, LINC00941 and its associated genes are linked to various targeted drugs available in the market. In this comprehensive review, we systematically summarize existing studies, detailing LINC00941's differential expression, clinicopathological and prognostic implications, regulatory mechanisms, and associated therapeutic drugs. Our analysis includes relevant charts and incorporates bioinformatics analyses to verify LINC00941's differential expression in pan-cancer and explore potential transcriptional regulation patterns of downstream targets. This work not only establishes a robust data foundation but also guides future research directions. Given its potential as a significant cancer biomarker and therapeutic target, further investigation into LINC00941's differential expression and regulatory mechanisms is essential.
Collapse
Affiliation(s)
- Qibin Yan
- Institute of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Pharmacy, Hangzhou City University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinming Su
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yunzhu Chen
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zehua Wang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Wenbo Han
- Department of Pharmacy, Hangzhou City University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Qing Xia
- Institute of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yunan Mao
- Department of Pharmacy, Hangzhou City University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiahua Si
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hanbing Li
- Institute of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Yang W, Wang S, Tong S, Zhang WD, Qin JJ. Expanding the ubiquitin code in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166884. [PMID: 37704111 DOI: 10.1016/j.bbadis.2023.166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental regulatory mechanism in cells, vital for maintaining cellular homeostasis, compiling signaling transduction, and determining cell fates. These biological processes require the coordinated signal cascades of UPS members, including ubiquitin ligases, ubiquitin-conjugating enzymes, deubiquitinases, and proteasomes, to ubiquitination and de-ubiquitination on substrates. Recent studies indicate that ubiquitination code rewriting is particularly prominent in pancreatic cancer. High frequency mutation or aberrant hyperexpression of UPS members dysregulates ferroptosis, tumor microenvironment, and metabolic rewiring processes and contribute to tumor growth, metastasis, immune evasion, and acquired drug resistance. We conduct an in-depth overview of ubiquitination process in pancreatic cancer, highlighting the role of ubiquitin code in tumor-promoting and tumor-suppressor pathways. Furthermore, we review current UPS modulators and analyze the potential of UPS modulators as cancer therapy.
Collapse
Affiliation(s)
- Wenyan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shiqun Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
28
|
Bahadorimonfared A, Farahani M, Rezaei Tavirani M, Razzaghi Z, Arjmand B, Rezaei M, Nikzamir A, Ehsani Ardakani MJ, Mansouri V. Stage analysis of pancreatic ductal adenocarcinoma via network analysis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2024; 17:297-3030. [PMID: 39308540 PMCID: PMC11413388 DOI: 10.22037/ghfbb.v17i3.2887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
Aim This study aimed to introduce a biomarker panel to detect pancreatic ductal adenocarcinoma (PDAC) in the early stage, and also differentiate of stages from each other. Background PDAC is a lethal cancer with poor prognosis and overall survival. Methods Gene expression profiles of PDAC patients were extracted from the Gene Expression Omnibus (GEO) database. The genes that were significantly differentially expressed (DEGs) for Stages I, II, and III in comparison to the healthy controls were identified. The determined DEGs were assessed via protein-protein interaction (PPI) network analysis, and the hub-bottleneck nodes of analyzed networks were introduced. Results A number of 140, 874, and 1519 significant DEGs were evaluated via PPI network analysis. A biomarker panel including ALB, CTNNB1, COL1A1, POSTN, LUM, and ANXA2 is presented as a biomarker panel to detect PDAC in the early stage. Two biomarker panels are suggested to recognize other stages of illness. Conclusion It can be concluded that ALB, CTNNB1, COL1A1, POSTN, LUM, and ANXA2 and also FN1, HSP90AA1, LOX, ANXA5, SERPINE1, and WWP2 beside GAPDH, AKT1, EGF, CASP3 are suitable sets of gene to separate stages of PDAC.
Collapse
Affiliation(s)
- Ayad Bahadorimonfared
- Department of Health & Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | - Mitra Rezaei
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolrahim Nikzamir
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Disease, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Ehsani Ardakani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Zhang M, Zhang Z, Tian X, Zhang E, Wang Y, Tang J, Zhao J. NEDD4L in human tumors: regulatory mechanisms and dual effects on anti-tumor and pro-tumor. Front Pharmacol 2023; 14:1291773. [PMID: 38027016 PMCID: PMC10666796 DOI: 10.3389/fphar.2023.1291773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Tumorigenesis and tumor development are closely related to the abnormal regulation of ubiquitination. Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), an E3 ubiquitin ligase critical to the ubiquitination process, plays key roles in the regulation of cancer stem cells, as well as tumor cell functions, including cell proliferation, apoptosis, cell cycle regulation, migration, invasion, epithelial-mesenchymal transition (EMT), and tumor drug resistance, by controlling subsequent protein degradation through ubiquitination. NEDD4L primarily functions as a tumor suppressor in several tumors but also plays an oncogenic role in certain tumors. In this review, we comprehensively summarize the relevant signaling pathways of NEDD4L in tumors, the regulatory mechanisms of its upstream regulatory molecules and downstream substrates, and the resulting functional alterations. Overall, therapeutic strategies targeting NEDD4L to treat cancer may be feasible.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichun Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Tang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianzhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Morgenstern E, Kretz M. The human long non-coding RNA LINC00941 and its modes of action in health and disease. Biol Chem 2023; 404:1025-1036. [PMID: 37418674 DOI: 10.1515/hsz-2023-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Long non-coding RNAs have gained attention in recent years as they were shown to play crucial roles in the regulation of cellular processes, but the understanding of the exact mechanisms is still incomplete in most cases. This is also true for long non-coding RNA LINC00941, which was recently found to be highly upregulated in various types of cancer influencing cell proliferation and metastasis. Initial studies could not elucidate the mode of action to understand the role and real impact of LINC00941 in tissue homeostasis and cancer development. However, recent analyses have demonstrated multiple potential modes of action of LINC00941 influencing the functionality of various cancer cell types. Correspondingly, LINC00941 was proposed to be involved in regulation of mRNA transcription and modulation of protein stability, respectively. In addition, several experimental approaches suggest a function of LINC00941 as competitive endogenous RNA, thus acting in a post-transcriptional regulatory fashion. This review summarizes our recent knowledge about the mechanisms of action of LINC00941 elucidated so far and discusses its putative role in miRNA sequestering processes. In addition, the functional role of LINC00941 in regulating human keratinocytes is discussed to also highlight its role in normal tissue homeostasis tissue aside from its involvement in cancer.
Collapse
Affiliation(s)
- Eva Morgenstern
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| | - Markus Kretz
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
| |
Collapse
|
31
|
Datkhayev UM, Rakhmetova V, Shepetov AM, Kodasbayev A, Datkayeva GM, Pazilov SB, Farooqi AA. Unraveling the Complex Web of Mechanistic Regulation of Versatile NEDD4 Family by Non-Coding RNAs in Carcinogenesis and Metastasis: From Cell Culture Studies to Animal Models. Cancers (Basel) 2023; 15:3971. [PMID: 37568787 PMCID: PMC10417118 DOI: 10.3390/cancers15153971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 08/13/2023] Open
Abstract
Discoveries related to an intriguing feature of ubiquitination have prompted a detailed analysis of the ubiquitination patterns in malignant cells. How the "ubiquitinome" is reshaped during multistage carcinogenesis has garnered significant attention. Seminal studies related to the structural and functional characterization of NEDD4 (Neuronal precursor cell-expressed developmentally downregulated-4) have consolidated our understanding at a new level of maturity. Additionally, regulatory roles of non-coding RNAs have further complicated the complex interplay between non-coding RNAs and the members of NEDD4 family. These mechanisms range from the miRNA-mediated targeting of NEDD4 family members to the regulation of transcriptional factors for a broader range of non-coding RNAs. Additionally, the NEDD4-mediated degradation of different proteins is modulated by lncRNAs and circRNAs. The miRNA-mediated targeting of NEDD4 family members is also regulated by circRNAs. Tremendous advancements have been made in the identification of different substrates of NEDD4 family and in the comprehensive analysis of the molecular mechanisms by which various members of NEDD4 family catalyze the ubiquitination of substrates. In this review, we have attempted to summarize the multifunctional roles of the NEDD4 family in cancer biology, and how different non-coding RNAs modulate these NEDD4 family members in the regulation of cancer. Future molecular studies should focus on the investigation of a broader drug design space and expand the scope of accessible targets for the inhibition/prevention of metastasis.
Collapse
Affiliation(s)
- Ubaidilla M. Datkhayev
- Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty 050000, Kazakhstan
| | | | - Abay M. Shepetov
- Department of Nephrology, Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty 050000, Kazakhstan;
| | - Almat Kodasbayev
- Department of Cardiovascular Surgery, Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty 050000, Kazakhstan
| | | | - Sabit B. Pazilov
- Department of Healthcare of Kyzylorda Region, Kyzylorda, Abay Avenue, 27, Kyzylorda 120008, Kazakhstan;
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| |
Collapse
|
32
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
33
|
Liu ZY, Lin XT, Zhang YJ, Gu YP, Yu HQ, Fang L, Li CM, Wu D, Zhang LD, Xie CM. FBXW10-S6K1 promotes ANXA2 polyubiquitination and KRAS activation to drive hepatocellular carcinoma development in males. Cancer Lett 2023; 566:216257. [PMID: 37277019 DOI: 10.1016/j.canlet.2023.216257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
The incidence rate of human hepatocellular carcinoma (HCC) is approximately three times higher in males than in females. A better understanding of the mechanisms underlying HCC development in males could lead to more effective therapies for HCC. Our previous study found that FBXW10 played a critical role in promoting HCC development in male mice and patients, but the mechanism remains unknown. Here, we found that FBXW10 promoted K63-linked ANXA2 polyubiquitination and activation in HCC tissues from males, and this process was required for S6K1-mediated phosphorylation. Activated ANXA2 further translocated from the cytoplasm to the cell membrane to bind KRAS and then activated the MEK/ERK pathway, leading to HCC proliferation and lung metastasis. Interfering with ANXA2 significantly blocked FBXW10-driven HCC growth and lung metastasis in vitro and in vivo. Notably, membrane ANXA2 was upregulated and positively correlated with FBXW10 expression in male HCC patients. These findings offer new insights into the regulation and function of FBXW10 signaling in HCC tumorigenesis and metastasis and suggest that the FBXW10-S6K1-ANXA2-KRAS-ERK axis may serve as a potential biomarker and therapeutic target in male HCC patients with high FBXW10 expression.
Collapse
Affiliation(s)
- Ze-Yu Liu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu-Jun Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yong-Peng Gu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chun-Ming Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei-Da Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
34
|
Lu J, Yu L, Xie N, Wu Y, Li B. METTL14 Facilitates the Metastasis of Pancreatic Carcinoma by Stabilizing LINC00941 in an m6A-IGF2BP2-Dependent Manner. J Cancer 2023; 14:1117-1131. [PMID: 37215454 PMCID: PMC10197944 DOI: 10.7150/jca.84070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/08/2023] [Indexed: 05/24/2023] Open
Abstract
Pancreatic adenocarcinoma (PC), one of the most fatal diseases, usually generates a poor prognosis in advanced stages. N6-methyladenosine modification has emerged as a crucial participant in tumor development and recurrence. Methyltransferase-like 14 (METTL14), as a core member of methyltransferases, is involved in tumor progression and metastasis. However, the potential mechanism by which METTL14 regulates long noncoding RNAs (lncRNAs) in PC remains unclear. RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation quantitative PCR (MeRIP-qPCR), and fluorescence in situ hybridization (FISH) were used to explore the underlying mechanisms. In our study, we found that METTL14 expression was upregulated in PC patients, and was associated with poor prognosis. In vitro and in vivo experiments, knocking down METTL14 suppressed tumor metastasis. RNA-seq and bioinformatics analyses were used to identify LINC00941 as the downstream target of METTL14. Mechanistically, LINC00941 was upregulated by METTL14 in an m6A-dependent way. LINC00941 was recruited and recognized by IGF2BP2. METTL14 enhanced the affinity of IGF2BP2 for LINC00941, while IGF2BP2 promoted the stabilization of LINC00941, which contributed to the migration and invasion of PC cells. Overall, our research revealed that METTL14 promoted the metastasis of PC through m6A modification of LINC00941. Targeting the METTL14-LINC00941-IGF2BP2 axis may provide promising therapeutic approaches for PC.
Collapse
Affiliation(s)
| | | | | | | | - Baiwen Li
- ✉ Corresponding author: Baiwen Li, MD, Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China. E-mail:
| |
Collapse
|
35
|
Nokkeaw A, Thamjamrassri P, Tangkijvanich P, Ariyachet C. Regulatory Functions and Mechanisms of Circular RNAs in Hepatic Stellate Cell Activation and Liver Fibrosis. Cells 2023; 12:cells12030378. [PMID: 36766720 PMCID: PMC9913196 DOI: 10.3390/cells12030378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Chronic liver injury induces the activation of hepatic stellate cells (HSCs) into myofibroblasts, which produce excessive amounts of extracellular matrix (ECM), resulting in tissue fibrosis. If the injury persists, these fibrous scars could be permanent and disrupt liver architecture and function. Currently, effective anti-fibrotic therapies are lacking; hence, understanding molecular mechanisms that control HSC activation could hold a key to the development of new treatments. Recently, emerging studies have revealed roles of circular RNAs (circRNAs), a class of non-coding RNAs that was initially assumed to be the result of splicing errors, as new regulators in HSC activation. These circRNAs can modulate the activity of microRNAs (miRNAs) and their interacting protein partners involved in regulating fibrogenic signaling cascades. In this review, we will summarize the current knowledge of this class of non-coding RNAs for their molecular function in HSC activation and liver fibrosis progression.
Collapse
Affiliation(s)
- Archittapon Nokkeaw
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pisit Tangkijvanich
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.T.); (C.A.)
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.T.); (C.A.)
| |
Collapse
|