1
|
Wang M, Mu G, Qiu B, Wang S, Tao C, Mao Y, Zhao X, Liu J, Chen K, Li Z, Wang W, Yang E, Yang Y. Competitive antagonism of KAT7 crotonylation against acetylation affects procentriole formation and colorectal tumorigenesis. Nat Commun 2025; 16:2379. [PMID: 40064919 PMCID: PMC11893896 DOI: 10.1038/s41467-025-57546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Accurate procentriole formation is critical for centriole duplication. However, the holistic transcriptional regulatory mechanisms underlying this process remain elusive. Here, we show that KAT7 crotonylation, facilitated by the crotonyltransferase hMOF, competes against its acetylation regulated by the deacetylase HDAC2 at the K432 residue upon DNA damage stimulation. This competition diminishes its histone acetyltransferase activity, leading to the inhibition of procentriole formation in colorectal cancer cells. Mechanistically, the reduction of KAT7 histone acetyltransferase activity by the antagonistic effect of KAT7 crotonylation against its acetylation decreases the gene expression associated with procentriole formation by modulating the enrichment of H3K14ac at their promoters and plays an important role in colorectal tumorigenesis. Furthermore, KAT7 crotonylation and acetylation are associated with the prognosis in colorectal cancer patients. Collectively, our findings uncover a previously unidentified role of KAT7 in the regulation of procentriole formation and colorectal tumorigenesis via competitive antagonism of its crotonylation against acetylation.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, 100191, China
| | - Guanqun Mu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Bingquan Qiu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Changyu Tao
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yutong Mao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xinhui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jiansong Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Keyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, 100191, China.
| |
Collapse
|
2
|
Liu S, Yang S, Xu M, Zhou Q, Weng J, Hu Z, Xu M, Xu W, Yi Y, Shi Y, Dong Q, Hung MC, Ren N, Zhou C. WWOX tuning of oleic acid signaling orchestrates immunosuppressive macrophage polarization and sensitizes hepatocellular carcinoma to immunotherapy. J Immunother Cancer 2024; 12:e010422. [PMID: 39500530 PMCID: PMC11552608 DOI: 10.1136/jitc-2024-010422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2024] [Indexed: 11/13/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are therapeutically effective for hepatocellular carcinoma (HCC) but are individually selective. This study examined the role of specific common fragile sites (CFSs) related gene in HCC immunotherapy. METHODS We analyzed HCC tissues using next-generation sequencing and flow cytometry via time-of-flight technology. A humanized orthotopic HCC mouse model, an in vitro co-culture system, untargeted metabolomics and a DNA pulldown assay were used to examine the function and mechanism of WWOX in the tumor immune response. RESULTS WWOX was the most upregulated CFS-related gene in HCC patients responsive to ICIs. WWOX deficiency renders HCC resistant to PD-1 treatment in humanized orthotopic HCC mouse model. Macrophage infiltration is increased and CD8 T-cell subset infiltration is decreased in WWOX-deficient HCC patients. HCC-derived oleic acid (OA) promotes macrophage conversion to an immunosuppressive phenotype. Mechanistically, WWOX deficiency promoted OA synthesis primarily via competitive binding of NME2 with KAT1, which promoted acetylation of NME2 at site 31 and inhibited NME2 binding to the SCD5 promoter region. Pharmacological blockade of SCD5 enhanced the antitumor effects of anti-PD-1 therapy. CONCLUSIONS WWOX is a key factor for immune escape in HCC patients, which suggests its use as a biomarker for stratified treatment with ICIs in clinical HCC patients.
Collapse
Affiliation(s)
- Shaoqing Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Shiguang Yang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Min Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Qiang Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jialei Weng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zhiqiu Hu
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Minghao Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wenxin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yi Shi
- Biomedical Research Centre, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
3
|
Wang Y, Liu H, Zhang M, Xu J, Zheng L, Liu P, Chen J, Liu H, Chen C. Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives. MedComm (Beijing) 2024; 5:e670. [PMID: 39184862 PMCID: PMC11344282 DOI: 10.1002/mco2.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Liuxian Zheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengpeng Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Zhou Y, Chu P, Wang Y, Li N, Gao Q, Wang S, Wei J, Xue G, Zhao Y, Jia H, Song J, Zhang Y, Pang Y, Zhu H, Sun J, Ma S, Su C, Hu B, Zhao Z, Zhang H, Lu J, Wang J, Wang H, Sun Z, Fang D. Epinephrine promotes breast cancer metastasis through a ubiquitin-specific peptidase 22-mediated lipolysis circuit. SCIENCE ADVANCES 2024; 10:eado1533. [PMID: 39151008 PMCID: PMC11328899 DOI: 10.1126/sciadv.ado1533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
Chronic stress-induced epinephrine (EPI) accelerates breast cancer progression and metastasis, but the molecular mechanisms remain unclear. Herein, we found a strong positive correlation between circulating EPI levels and the tumoral expression of ubiquitin-specific peptidase 22 (USP22) in patients with breast cancer. USP22 facilitated EPI-induced breast cancer progression and metastasis by enhancing adipose triglyceride lipase (ATGL)-mediated lipolysis. Targeted USP22 deletion decreased ATGL expression and lipolysis, subsequently inhibiting EPI-mediated breast cancer lung metastasis. USP22 acts as a bona fide deubiquitinase for the Atgl gene transcription factor FOXO1, and EPI architects a lipolysis signaling pathway to stabilize USP22 through AKT-mediated phosphorylation. Notably, USP22 phosphorylation levels are positively associated with EPI and with downstream pathways involving both FOXO1 and ATGL in breast cancers. Pharmacological USP22 inhibition synergized with β-blockers in treating preclinical xenograft breast cancer models. This study reveals a molecular pathway behind EPI's tumor-promoting effects and provides a strong rationale for combining USP22 inhibition with β-blockers to treat aggressive breast cancer.
Collapse
Affiliation(s)
- Yuanzhang Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Peng Chu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ya Wang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Na Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Qiong Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shengnan Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Juncheng Wei
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guoqing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Yue Zhao
- Department of Clinical Laboratory, Dalian Municipal Central Hospital, Dalian 116000, China
| | - Huijun Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Jiankun Song
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Yue Zhang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Yujie Pang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Houyu Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Jia Sun
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Suxian Ma
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chen Su
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Bingjin Hu
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhuoyue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Hui Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Janice Lu
- Department of Medicine & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Hongjiang Wang
- Department of Breast Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Zhaolin Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
- Dalian College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Deyu Fang
- Department of Pathology & Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Huang Y, He W, Zhang Y, Zou Z, Han L, Luo J, Wang Y, Tang X, Li Y, Bao Y, Huang Y, Long XD, Fu Y, He M. Targeting SIRT2 in Aging-Associated Fibrosis Pathophysiology. Aging Dis 2024:AD.202.0513. [PMID: 39226168 DOI: 10.14336/ad.202.0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/05/2024] [Indexed: 09/05/2024] Open
Abstract
Aging is a complex biological process that involves multi-level structural and physiological changes. Aging is a major risk factor for many chronic diseases. The accumulation of senescent cells changes the tissue microenvironment and is closely associated with the occurrence and development of tissue and organ fibrosis. Fibrosis is the result of dysregulated tissue repair response in the development of chronic inflammatory diseases. Recent studies have clearly indicated that SIRT2 is involved in regulating the progression of fibrosis, making it a potential target for anti-fibrotic drugs. SIRT2 is a NAD+ dependent histone deacetylase, shuttling between nucleus and cytoplasm, and is highly expressed in liver, kidney and heart, playing an important role in the occurrence and development of aging and fibrosis. Therefore, we summarized the role of SIRT2 in liver, kidney and cardiac fibrosis during aging.
Collapse
Affiliation(s)
- Yongjiao Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medicine, DeHong Vocational College, Dehong, Yunnan, China
- School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medicine, Kunming Medical University, Kunming, China
- Toxicology Department, Sichuan Center For Disease Control and Prevention, Chengdu, Sichuan, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihui Zou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longchuan Han
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Luo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Yunqiu Wang
- Department of Biomedical Sciences and Synthetic Organic Chemistry, University College London, United Kingdom
| | - Xinxin Tang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Bao
- Department of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Dai Long
- Clinicopathological Diagnosis &;amp Research Center, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Yinkun Fu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
6
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
7
|
Xie B, Zhang M, Li J, Cui J, Zhang P, Liu F, Wu Y, Deng W, Ma J, Li X, Pan B, Zhang B, Zhang H, Luo A, Xu Y, Li M, Pu Y. KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis. Proc Natl Acad Sci U S A 2024; 121:e2314128121. [PMID: 38359291 PMCID: PMC10895275 DOI: 10.1073/pnas.2314128121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
Aberrant lysine lactylation (Kla) is associated with various diseases which are caused by excessive glycolysis metabolism. However, the regulatory molecules and downstream protein targets of Kla remain largely unclear. Here, we observed a global Kla abundance profile in colorectal cancer (CRC) that negatively correlates with prognosis. Among lactylated proteins detected in CRC, lactylation of eEF1A2K408 resulted in boosted translation elongation and enhanced protein synthesis which contributed to tumorigenesis. By screening eEF1A2 interacting proteins, we identified that KAT8, a lysine acetyltransferase that acted as a pan-Kla writer, was responsible for installing Kla on many protein substrates involving in diverse biological processes. Deletion of KAT8 inhibited CRC tumor growth, especially in a high-lactic tumor microenvironment. Therefore, the KAT8-eEF1A2 Kla axis is utilized to meet increased translational requirements for oncogenic adaptation. As a lactyltransferase, KAT8 may represent a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Mengdi Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Jie Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Jianxin Cui
- Department of General Surgery & Institute of General Surgery, the First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing100583, China
| | - Pengju Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Fangming Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Yuxi Wu
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Weiwei Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Jihong Ma
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Xinyu Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Bingchen Pan
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, Shenyang110122, China
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing100081, China
| | - Yinzhe Xu
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing100583, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing10091, China
| | - Yang Pu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| |
Collapse
|
8
|
Wu X, Wang S, Guo Y, Song S, Zeng S. KAT8 functions in redox homeostasis and mitochondrial dynamics during mouse oocyte meiosis progression. FASEB J 2024; 38:e23435. [PMID: 38243686 DOI: 10.1096/fj.202301946r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
As a histone acetyltransferase, lysine acetyltransferase 8 (KAT8) participates in diverse biological processes. However, the effect of KAT8 on oocyte maturation in mice remains unclear. In this study, we found that mouse oocytes overexpressing Kat8-OE induced maturation failure manifested reduced rates of GVBD and first polar body emission. In addition, immunostaining results revealed that Kat8 overexpressing oocytes showed inappropriate mitochondrial distribution patterns, overproduction of reactive oxygen species (ROS), accumulation of phosphorylated γH2AX, hyperacetylation of α-tubulin, and severely disrupted spindle/chromosome organization. Moreover, we revealed that Kat8 overexpression induced a decline in SOD1 proteins and KAT8's interaction with SOD1 in mouse ovaries via immunoprecipitation. Western blotting data confirmed that Kat8-OE induced downregulation of SOD1 expression, which is a key factor for the decline of oocyte quality in advanced maternal age. Also, the injection of Myc-Sod1 cRNA could partially rescue maternal age-induced meiotic defects in oocytes. In conclusion, our data demonstrated that high level of KAT8 inhibited SOD1 activity, which in turn induced defects of mitochondrial dynamics, imbalance of redox homeostasis, and spindle/chromosome disorganization during mouse oocyte maturation.
Collapse
Affiliation(s)
- Xuan Wu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiwei Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajun Guo
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuang Song
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenming Zeng
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Wang J, Liu M, Sun J, Zhang Z. Immunogenic profiling of metastatic uveal melanoma discerns a potential signature related to prognosis. J Cancer Res Clin Oncol 2024; 150:23. [PMID: 38246894 PMCID: PMC10800307 DOI: 10.1007/s00432-023-05542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Uveal melanoma (UM) is an aggressive intraocular malignant tumor. The present study aimed to identify the key genes associated with UM metastasis and established a gene signature to analyze the relationship between the signature and prognosis and immune cell infiltration. Later, a predictive model combined with clinical variables was developed and validated. METHODS Two UM gene expression profile chip datasets were downloaded from TCGA and GEO databases. Immune-related genes (IRGs) were obtained from IMPORT database. First, these mRNAs were intersected with IRGs, and weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression of genes primarily associated with metastasis of UM. Univariate Cox regression analysis screened the genes related to prognosis. LASSO-Cox established a risk score to distinguish high-risk group and low-risk group. Then the GSEA enrichment pathway and immune cell infiltration of the two groups were compared. And combined with clinical variables, a predictive model was constructed. The time-dependent receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) curve were used to verify the stability and accuracy of the final predictive model, and a nomogram was then drawn. RESULTS The MEblack, MEpurple, and MEblue modules were significantly associated with the metastasis of UM patients (P value < 0.001, = 0.001, = 0.022, respectively). Four genes (UBXN2B, OTUD3, KAT8, LAMTOR2) were obtained by Pearson correlation analysis, weighted gene correlation network analysis (WGCNA), univariate Cox, and LASSO-Cox. And a novel prognostic risk score was established. Immune-related prognostic signature can well classify UM patients into high-risk and low-risk groups. Kaplan-Meier curve showed that the OS of high-risk patients was worse than that of low-risk patients. In addition, the risk score played an important role in evaluating the signaling pathway and immune cell infiltration of UM patients in high-risk and low-risk groups. Both the training set and validation set of the model showed good predictive accuracy in the degree of differentiation and calibration (e.g., 1-year overall survival: AUC = 0.930 (0.857-1.003)). Finally, a nomogram was established to serve in clinical practice. SIGNIFICANCE UM key gene signature and prognosis predictive model might provide insights for further investigation of the pathogenesis and development of UM at the molecular level, and provide theoretical basis for determining new prognostic markers of UM and immunotherapy.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Miaomiao Liu
- Department of Respiratory, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaxing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zifeng Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
10
|
Chen H, Wang Y, Shao C, Guo K, Liu G, Wang Z, Duan H, Pan M, Ding P, Zhang Y, Han J, Yan X. Molecular subgroup establishment and signature creation of lncRNAs associated with acetylation in lung adenocarcinoma. Aging (Albany NY) 2024; 16:1276-1297. [PMID: 38240708 PMCID: PMC10866443 DOI: 10.18632/aging.205407] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/13/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND The significance of long non-coding RNAs (lncRNAs) as pivotal mediators of histone acetylation and their influential role in predicting the prognosis of lung adenocarcinoma (LUAD) has been increasingly recognized. However, there remains uncertainty regarding the potential utility of acetylation-related lncRNAs (ARLs) in prognosticating the overall survival (OS) of LUAD specimens. METHODS The RNA-Seq and clinical information were downloaded from The Cancer Genome Atlas (TCGA). Through the differential analysis, weighted correlation network analysis (WGCNA), Pearson correlation test and univariate Cox regression, we found out the prognosis associated ARLs and divided LUAD specimens into two molecular subclasses. The ARLs were employed to construct a unique signature through the implementation of the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. Subsequently, the predictive performance was evaluated using ROC analysis and Kaplan-Meier survival curve analysis. Finally, ARL expression in LUAD was confirmed by quantitative real-time PCR (qRT-PCR). RESULTS We triumphantly built a ARLs prognostic model with excellent predictive accuracy for LUAD. Univariate and multivariate Cox analysis illustrated that risk model served as an independent predictor for influencing the overall survival OS of LUAD. Furthermore, a nomogram exhibited strong prognostic validity. Additionally, variations were observed among subgroups in the field of immunity, biological functions, drug sensitivity and gene mutations within the field. CONCLUSIONS Nine ARLs were identified as promising indicators of personalized prognosis and drug selection for people suffering with LUAD.
Collapse
Affiliation(s)
- Hao Chen
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Kai Guo
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Guanglin Liu
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an 71003, China
| |
Collapse
|
11
|
Guo X, Liang K, Xia L, Zhang X, Liu J, Wang C, Li J, Li X, Hou X, Chen L. Mof plays distinct roles in hepatic lipid metabolism under healthy or non-alcoholic fatty liver conditions. iScience 2023; 26:108446. [PMID: 38034359 PMCID: PMC10687339 DOI: 10.1016/j.isci.2023.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
The disturbance of hepatic lipid metabolism has a strong association with non-alcoholic fatty liver disease (NAFLD) and diabetes. Mof, an acetyltransferase involved in obesity and carbon metabolism, has not been thoroughly examined in its connection to hepatic metabolism. We aimed to explore the impact of Mof on hepatic lipid metabolism. The alteration of Mof expression was found in both obese mice and NAFLD human liver. The genes regulated by Mof were closely associated with lipid metabolism. In normal mice or hepatic cells, the down-regulation or inhibition of Mof resulted in increased lipid accumulation due to decreased PPARα expression. Conversely, in diet-induced obesity (DIO) mice or hepatic cells treated with palmitic acid, the inhibition of Mof led to improved lipid metabolism, attributed to the reduction in p-mTOR/mTOR levels. In summary, Mof exhibited distinct roles in lipid metabolism under different conditions. The inhibition of Mof may hold potential as a therapeutic target for hepatic lipid metabolism disturbances.
Collapse
Affiliation(s)
- Xinghong Guo
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong 250012, China
| | - Kai Liang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong 250012, China
| | - Longqing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xu Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Life Science School of Shandong University, Qingdao, Shandong 266237, China
| | - Jinbo Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong 250012, China
| | - Chuan Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong 250012, China
| | - Jinquan Li
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong 250012, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Life Science School of Shandong University, Qingdao, Shandong 266237, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong 250012, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, Shandong 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, Shandong 250012, China
| |
Collapse
|