1
|
Yan H, Miao H, Hu J, Pan J, Ge M, Yao J, Du Y, Li X, Li L, Dong WF, Zhang L. Oxidative stress induced paclitaxel-derived carbon dots inhibit glioblastoma proliferation and EMT process. J Nanobiotechnology 2025; 23:310. [PMID: 40269908 PMCID: PMC12020310 DOI: 10.1186/s12951-025-03406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
Glioblastoma represents the most prevalent and deadly form of brain tumor with limited therapeutic drugs. The existence of the blood-brain barrier (BBB) hinders drugs permeate to the brain efficiently. Nowadays, nano-formulations, particularly carbon dots, have emerged as promising candidates for targeting and treating brain diseases. In this study, we report the synthesis of a novel carbon dots, PTX-CDs, using a one-step hydrothermal method with paclitaxel (PTX) as the precursor. PTX-CDs shows increased water solubility by about 1000 times in comparison with PTX. Moreover, PTX-CDs effectively penetrates the BBB and exerts significant anticancer effects. In detail, PTX-CDs accumulates in mitochondria of tumor cells without adding extra targeted molecules, resulting in the damage of mitochondrial membrane potential and increased reactive oxygen species (ROS) level. Transcriptome profiling revealed that PTX-CDs disturbs the cell-cycle by inducing arrest at the G2/M phase, thereby inhibiting cell proliferation. PTX-CDs further decreased cell invasion by inhibiting the epithelial-mesenchymal transition (EMT) process in glioblastoma cells. PTX-CDs significantly inhibited the growth of intracranial tumors in orthotopic glioblastoma mice model and prolonged the survival of tumor-bearing mice. This study presents a viable strategy to develop CDs-based therapeutic agent for glioblastoma using the conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Haiyang Yan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Huimin Miao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Jiukun Hu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Jinlin Pan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Mingfeng Ge
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Jinyu Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Yuwei Du
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Xinlu Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Li Li
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China.
| | - Wen-Fei Dong
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China.
| | - Lixing Zhang
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China.
| |
Collapse
|
2
|
Huo J, Wang Z, Zhao W, Chen M, Li H, He F, Tian X, Ma Y, Husanova F, Ma L, Ni Y, Ding H, Li W, Xu H. Investigating intra-tumoural heterogeneity and microenvironment diversity in primary cardiac angiosarcoma through single-cell RNA sequencing. Clin Transl Med 2024; 14:e70113. [PMID: 39658531 PMCID: PMC11631565 DOI: 10.1002/ctm2.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Primary cardiac angiosarcoma (PCAS) is a rare and aggressive heart tumour with limited treatment options and a poor prognosis. Understanding cellular heterogeneity and tumour microenvironment (TME) is crucial for the development of effective therapies. Here, we investigated the intratumoural heterogeneity and TME diversity of PCAS using single-cell RNA sequencing (scRNA-seq). METHODS We performed scRNA-seq analysis on tumour samples from four patients with PCAS, supplemented with multicolour immunohistochemistry for identification. We used scRNA-seq data from five normal cardiac tissue samples downloaded from public databases for comparative analyses. Bioinformatic analyses, including Cell Ranger, Seurat, Monocle2, hdWGCNA, SCENIC and NicheNet, were utilized to identify distinct cell populations, transcriptional patterns, and co-regulating gene modules. RESULTS Our analysis revealed significant intratumoural heterogeneity in PCAS driven by diverse biological processes such as protein synthesis, degradation, and RIG-I signalling inhibition. The SCENIC analysis identified three primary transcription factors' clusters (CEBPB, MYC and TAL1). T-cell subset analysis showed exhausted antigen-specific T-cells, complicating the efficacy of immune checkpoint blockade. Furthermore, we observed suppressive macrophages (SPP1+ and OLR1+) and reduced mitochondrial gene MT-RNR2 (MTRNR2L12) expression in TME-infiltrating cells, indicating impaired mitochondrial function. CONCLUSION This study elucidates the complex cellular landscape and immune microenvironment of PCAS, highlighting potential molecular targets for the development of novel therapies. These findings underscore the importance of a multifaceted therapeutic approach for addressing the challenges posed by PCAS's heterogeneity and immune evasion. KEY POINTS Insights into the heterogeneity and transcriptional patterns of sarcoma cells may explain the challenges in treating primary cardiac angiosarcoma (PCAS) using the current therapeutic modalities. Characterization of the immune microenvironment revealed significant immunosuppression mediated by specific myeloid cell populations (SPP1+ and OLR1+ macrophages). Identification of mitochondrial dysfunction in immune cells within the PCAS microenvironment, particularly the notable downregulation of the MTRNR2L12 protein, suggests a new avenue for therapeutic targeting.
Collapse
Affiliation(s)
- Jingyuan Huo
- Department of Cardiovascular SurgerySchool of Medicinethe First Affiliated Hospital of Zhejiang UniversityHangzhouChina
| | - Zhen Wang
- Department of Cardiovascular SurgerySchool of Medicinethe First Affiliated Hospital of Zhejiang UniversityHangzhouChina
| | - Wenting Zhao
- Department of CardiologySchool of Medicinethe First Affiliated Hospital of Zhejiang UniversityHangzhouChina
| | - Miao Chen
- Department of Cardiovascular SurgerySchool of Medicinethe First Affiliated Hospital of Zhejiang UniversityHangzhouChina
| | - Haoyang Li
- Department of Cardiovascular SurgerySchool of Medicinethe First Affiliated Hospital of Zhejiang UniversityHangzhouChina
| | - Fengpu He
- Department of Cardiovascular SurgerySchool of Medicinethe First Affiliated Hospital of Zhejiang UniversityHangzhouChina
| | - Xiao Tian
- Department of Cardiovascular SurgerySchool of Medicinethe First Affiliated Hospital of Zhejiang UniversityHangzhouChina
| | - Yaqi Ma
- Department of PathologySchool of Medicinethe First Affiliated Hospital of Zhejiang UniversityHangzhouChina
| | - Firyuza Husanova
- Department of Cardiovascular SurgerySchool of Medicinethe First Affiliated Hospital of Zhejiang UniversityHangzhouChina
| | - Liang Ma
- Department of Cardiovascular SurgerySchool of Medicinethe First Affiliated Hospital of Zhejiang UniversityHangzhouChina
| | - Yiming Ni
- Department of Cardiovascular SurgerySchool of Medicinethe First Affiliated Hospital of Zhejiang UniversityHangzhouChina
| | - Hongda Ding
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Weidong Li
- Department of Cardiovascular SurgerySchool of Medicinethe First Affiliated Hospital of Zhejiang UniversityHangzhouChina
| | - Hongfei Xu
- Department of Cardiovascular SurgerySchool of Medicinethe First Affiliated Hospital of Zhejiang UniversityHangzhouChina
| |
Collapse
|
3
|
Xing X, Zhou Z, Peng H, Cheng S. Anticancer role of flubendazole: Effects and molecular mechanisms (Review). Oncol Lett 2024; 28:558. [PMID: 39355784 PMCID: PMC11443308 DOI: 10.3892/ol.2024.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Flubendazole, an anthelmintic agent with a well-established safety profile, has emerged as a promising anticancer drug that has demonstrated efficacy against a spectrum of cancer types over the past decade. Its anticancer properties encompass a multifaceted mechanism of action, including the inhibition of cancer cell proliferation, disruption of microtubule dynamics, regulation of cell cycle, autophagy, apoptosis, suppression of cancer stem cell characteristics, promotion of ferroptosis and inhibition of angiogenesis. The present review aimed to provide a comprehensive overview of the molecular underpinnings of the anticancer activity of flubendazole, highlighting key molecules and regulatory pathways. Given the breadth of the potential of flubendazole, further research is imperative to identify additional cancer types sensitive to flubendazole, refine experimental methodologies for enhancing its reliability, uncover synergistic drug combinations, improve its bioavailability and explore innovative administration methods. The present review provided a foundation for future studies on the role of flubendazole in oncology and described its molecular mechanisms of action.
Collapse
Affiliation(s)
- Xing Xing
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Zongning Zhou
- Human Genetic Resources Preservation Center of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hongwei Peng
- Human Genetic Resources Preservation Center of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shaoping Cheng
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
4
|
Teng W, Ling Y, Long N, Cen W, Zhang H, Jiang L, Liu J, Zhou X, Chu L. Repurposing flubendazole for glioblastoma ferroptosis by affecting xCT and TFRC proteins. J Cell Mol Med 2024; 28:e70188. [PMID: 39543084 PMCID: PMC11563996 DOI: 10.1111/jcmm.70188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
New uses of old drugs hold great promise for clinical translation. Flubendazole, an FDA-approved antiparasitic drug, has been shown to target p53 and promote apoptosis in glioblastoma (GBM) cells. However, its damaging mechanism in GBM remains elusive. Herein, we explored the ferroptosis-inducing ability of flubendazole on GBM cells. After treating glioma cell lines U251 and LN229 with the flubendazole (DMSO <1‰), cell viability was inhibited in a concentration-dependent manner (IC50 for LN229 = 0.5331 μM, IC50 for U251 = 0.6809 μM), attributed to the induction of ferroptosis, as evidenced by increased MDA levels, accumulation of ROS and lipid peroxides, change in mitochondrial membrane potential and structure. Protein analysis related to ferroptosis showed upregulation of TFRC, DMT1 and p53, alongside downregulation of xCT, FHC and GPX4 (p < 0.05). All-atom docking studies demonstrated that flubendazole bound closely with xCT, and TFRC, validating its role in inducing glioma ferroptosis via modulation of these proteins. Notably, flubendazole could damage the glioblastoma stem cells (GSC) that are typically resistant to other therapies, thereby possessing advantages in stopping glioma recurrence. This study delved into the mechanisms of flubendazole-induced ferroptosis in glioma, broadening its application and providing new ideas for new uses of other old drugs.
Collapse
Affiliation(s)
- Wei Teng
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- Department of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Yuanguo Ling
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- Department of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Niya Long
- Department of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Wu Cen
- Department of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Hongzhi Zhang
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Lishi Jiang
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Jian Liu
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- Department of Neurosurgery, Guizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Xingwang Zhou
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- Department of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Liangzhao Chu
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- Department of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
5
|
Liang M, Wang Y, Liu L, Deng D, Yan Z, Feng L, Kong C, Li C, Li Y, Li G. Synergistic intravesical instillation for bladder cancer: CRISPR-Cas13a and fenbendazole combination therapy. J Exp Clin Cancer Res 2024; 43:223. [PMID: 39128990 PMCID: PMC11318243 DOI: 10.1186/s13046-024-03146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND CRISPR-Cas13a is renowned for its precise and potent RNA editing capabilities in cancer therapy. While various material systems have demonstrated efficacy in supporting CRISPR-Cas13a to execute cellular functions in vitro efficiently and specifically, the development of CRISPR-Cas13a-based therapeutic agents for intravesical instillation in bladder cancer (BCa) remains unexplored. METHODS In this study, we introduce a CRISPR-Cas13a nanoplatform, which effectively inhibits PDL1 expression following intravesical instillation. This system utilizes a fusion protein CAST, created through the genetic fusion of CRISPR-Cas13 and the transmembrane peptide TAT. CAST acts as a potent transmembrane RNA editor and is assembled with the transepithelial delivery carrier fluorinated chitosan (FCS). Upon intravesical administration into the bladder, the CAST-crRNAa/FCS nanoparticles (NPs) exhibit remarkable transepithelial capabilities, significantly suppressing PDL1 expression in tumor tissues.To augment immune activation within the tumor microenvironment, we integrated a fenbendazole (FBZ) intravesical system (FBZ@BSA/FCS NPs). This system is formulated through BSA encapsulation followed by FCS coating, positioning FBZ as a powerful chemo-immunological agent. RESULTS In an orthotropic BCa model, the FBZ@BSA/FCS NPs demonstrated pronounced tumor cell apoptosis, synergistically reduced PDL1 expression, and restructured the immune microenvironment. This culminated in an enhanced synergistic intravesical instillation approach for BCa. Consequently, our study unveils a novel RNA editor nanoagent formulation and proposes a potential synergistic therapeutic strategy. This approach significantly bolsters therapeutic efficacy, holding promise for the clinical translation of CRISPR-Cas13-based cancer perfusion treatments.
Collapse
Affiliation(s)
- Mingkang Liang
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Institute of Urology, Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Yongqiang Wang
- Department of Urology, Health Science Center, South China Hospital, Shenzhen University, Shenzhen, Guangdomg, 518116, China
| | - Lisha Liu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Dashi Deng
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Zeqin Yan
- Department of Urology, Health Science Center, South China Hospital, Shenzhen University, Shenzhen, Guangdomg, 518116, China
| | - Lida Feng
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Chenfan Kong
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Chenchen Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Yuqing Li
- Institute of Urology, Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China.
- Department of Urology, Health Science Center, South China Hospital, Shenzhen University, Shenzhen, Guangdomg, 518116, China.
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, 518000, China.
- Institute of Urology, Luohu Clinical College of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515000, China.
- Department of Urology, Health Science Center, South China Hospital, Shenzhen University, Shenzhen, Guangdomg, 518116, China.
| |
Collapse
|
6
|
Li D, Lin L, Xu F, Feng T, Tao Y, Miao H, Yang F. Protein crotonylation: Basic research and clinical diseases. Biochem Biophys Rep 2024; 38:101694. [PMID: 38586826 PMCID: PMC10997999 DOI: 10.1016/j.bbrep.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Crotonylation is an importantly conserved post-translational modification, which is completely different from acetylation. In recent years, it has been confirmed that crotonylation occurs on histone and non-histone. Crotonylated Histone primarily affects gene expression through transcriptional regulation, while non-histone Crotonylation mainly regulates protein functions including protein activity, localization, and stability, as well as protein-protein interactions. The change in protein expression and function will affect the physiological process of cells and even cause disease. Reviewing previous studies, this article summarizes the mechanisms of histone and non-histone crotonylation in regulating diseases and cellular physiological processes to explore the possibility of precise regulation of crotonylation sites as potential targets for disease treatment.
Collapse
Affiliation(s)
- Dongling Li
- School of Medicine, Chongqing University, Chongqing, 400044, China
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Ling Lin
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Fan Xu
- School of Medicine, Chongqing University, Chongqing, 400044, China
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Tianlin Feng
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yang Tao
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
- Department of Critical Care Medicine, Chongqing University Central Hospital, Chongqing, 400000, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fan Yang
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
7
|
Dressler FF, Diedrichs F, Sabtan D, Hinrichs S, Krisp C, Gemoll T, Hennig M, Mackedanz P, Schlotfeldt M, Voß H, Offermann A, Kirfel J, Roesch MC, Struck JP, Kramer MW, Merseburger AS, Gratzke C, Schoeb DS, Miernik A, Schlüter H, Wetterauer U, Zubarev R, Perner S, Wolf P, Végvári Á. Proteomic analysis of the urothelial cancer landscape. Nat Commun 2024; 15:4513. [PMID: 38802361 PMCID: PMC11130393 DOI: 10.1038/s41467-024-48096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Urothelial bladder cancer (UC) has a wide tumor biological spectrum with challenging prognostic stratification and relevant therapy-associated morbidity. Most molecular classifications relate only indirectly to the therapeutically relevant protein level. We improve the pre-analytics of clinical samples for proteome analyses and characterize a cohort of 434 samples with 242 tumors and 192 paired normal mucosae covering the full range of UC. We evaluate sample-wise tumor specificity and rank biomarkers by target relevance. We identify robust proteomic subtypes with prognostic information independent from histopathological groups. In silico drug prediction suggests efficacy of several compounds hitherto not in clinical use. Both in silico and in vitro data indicate predictive value of the proteomic clusters for these drugs. We underline that proteomics is relevant for personalized oncology and provide abundance and tumor specificity data for a large part of the UC proteome ( www.cancerproteins.org ).
Collapse
Affiliation(s)
- Franz F Dressler
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - Falk Diedrichs
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Deema Sabtan
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sofie Hinrichs
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Christoph Krisp
- Section Mass Spectrometry and Proteomics, Campus Forschung N27 00.008, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Martin Hennig
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Paulina Mackedanz
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Mareile Schlotfeldt
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Hannah Voß
- Section Mass Spectrometry and Proteomics, Campus Forschung N27 00.008, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Offermann
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Marie C Roesch
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Julian P Struck
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Urology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| | - Mario W Kramer
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik S Schoeb
- Department of Urology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arkadiusz Miernik
- Department of Urology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Campus Forschung N27 00.008, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Wetterauer
- Department of Urology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Roman Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- The National Medical Research Center for Endocrinology, Moscow, Russia
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sven Perner
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Center for Precision Oncology, Tuebingen, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Li Y, Li J, Chen H, Lu B, Lu F, Chen H, Liu H, Qian C. TCAF2 is associated with the immune microenvironment, promotes pathogenesis, and impairs prognosis in glioma. Gene 2023; 883:147667. [PMID: 37506986 DOI: 10.1016/j.gene.2023.147667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
PURPOSE Glioma is the most common primary intracranial tumor and exhibits rapid growth and aggressiveness. TRPM8 channel-associated factor 2 (TCAF2), located in cell junctions and the plasma membrane, plays a key role in the pathogeneses of several cancers in humans. However, the role of TCAF2 in glioma has been elusive. METHODS A combination of bioinformatic analysis using The Cancer Genome Atlas database and biological experiments, including 5-ethynyl-2'-deoxyuridine, transwell, and immunohistochemistry assays and xenotransplantation, was performed to analyze the expression level of TCAF2 and to mechanistically explore the relationship of TCAF2 with malignancy, prognosis, and the immune microenvironment in glioma. RESULTS TCAF2 was upregulated in glioma, and its expression level correlated with tumor grade and clinical outcome. The role of TCAF2 in promoting glioma malignancy was characterized through in vitro and in vivo experiments. Additionally, we observed that TCAF2 can modulate the metabolic pathways and immune microenvironment. CONCLUSION TCAF2 acts as an oncogene and may serve as a therapeutic target and prognostic marker in glioma.
Collapse
Affiliation(s)
- Yongshuai Li
- Department of Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu 221009, China
| | - Jiaqiong Li
- Department of Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu 221009, China
| | - Huaqing Chen
- Department of Pathology, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu 221009, China
| | - Bo Lu
- Department of Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu 221009, China
| | - Fei Lu
- Department of Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu 221009, China
| | - Hairong Chen
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Chunfa Qian
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University. Nanjing, Jiangsu 210029, China.
| |
Collapse
|
9
|
Miyagi MYS, de Oliveira Faria R, de Souza GB, Lameu C, Tagami T, Ozeki T, Bezzon VDN, Yukuyama MN, Bou-Chacra NA, de Araujo GLB. Optimizing adjuvant inhaled chemotherapy: Synergistic enhancement in paclitaxel cytotoxicity by flubendazole nanocrystals in a cycle model approach. Int J Pharm 2023; 644:123324. [PMID: 37591475 DOI: 10.1016/j.ijpharm.2023.123324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Lung cancer is the leading cause of cancer-related death. In addition to new innovative approaches, practical strategies that improve the efficacy of already available drugs are urgently needed. In this study, an inhalable dry powder formulation is used to repurpose flubendazole, a poorly soluble anthelmintic drug with potential against a variety of cancer lineages. Flubendazole nanocrystals were obtained through nanoprecipitation, and dry powder was produced by spray drying. Through fractional factorial design, the spray drying parameters were optimized and the impact of formulation on aerolization properties was clarified. The loading limitations were clarified through response surface methodology, and a 15% flubendazole loading was feasible through the addition of 20% L-leucine, leading to a flubendazole particle size of 388.6 nm, median mass aerodynamic diameter of 2.9 μm, 50.3% FPF, emitted dose of 83.2% and triple the initial solubility. Although the cytotoxicity of this formulation in A549 cells was limited, the formulation showed a synergistic effect when associated with paclitaxel, leading to a surprising 1000-fold reduction in the IC50. Compared to 3 cycles of paclitaxel alone, a 3-cycle model combined treatment increased the threshold of cytotoxicity by 25% for the same dose. Our study suggests, for the first time, that orally inhaled flubendazole nanocrystals show high potential as adjuvants to increase cytotoxic agents' potency and reduce adverse effects.
Collapse
Affiliation(s)
- Mariana Yasue Saito Miyagi
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Rafael de Oliveira Faria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Gabriel Batista de Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Claudiana Lameu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil.
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Vinícius Danilo Nonato Bezzon
- Departamento de Física, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 786, Quatro Road, 35402-136 Ouro Preto, MG, Brazil
| | - Megumi Nishitani Yukuyama
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Nadia Araci Bou-Chacra
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Gabriel Lima Barros de Araujo
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Song IH, Park SJ, Yeom GS, Song KS, Kim T, Nimse SB. Not all benzimidazole derivatives are microtubule destabilizing agents. Biomed Pharmacother 2023; 164:114977. [PMID: 37271075 DOI: 10.1016/j.biopha.2023.114977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023] Open
Abstract
In recent years, microtubule-targeting agents (MTAs) have gained considerable interest in developing novel small-molecule anticancer drugs. MTAs demonstrate anticancer activity either as microtubule-stabilizing agents (paclitaxel) or microtubule-destabilizing agents (nocodazole). FDA-approved drugs containing a benzimidazole ring (nocodazole, albendazole, mebendazole, etc.) are well-known microtubule-destabilizing agents. Thus, most recent research on benzimidazole scaffold-based MTAs focuses on developing microtubule-destabilizing agents. However, there is no report on the benzimidazole scaffold-based microtubule-stabilizing agent. Here, we present the benzimidazole derivatives NI-11 and NI-18 that showed a profound anticancer activity as microtubule-stabilization agents. About twenty benzimidazole analogues were synthesized with excellent yield (80.0% ∼ 98.0%) and tested for their anticancer activity using two cancer cell lines (A549, MCF-7) and one normal cell line (MRC-5). NI-11 showed IC50 values of 2.90, 7.17, and 16.9 µM in A549, MCF-7, and MRC-5 cell lines. NI-18 showed IC50 values of 2.33, 6.10, and 12.1 µM in A549, MCF-7, and MRC-5 cell lines. Thus, NI-11 and NI-18 demonstrated selectivity indexes of 5.81 and 5.20, respectively, which are much higher than the currently available anticancer agents. NI-11 and NI-18 inhibited the cancer cell motility and migration, induced the early phase apoptosis. Both of these comounds were found to show an upregulation of DeY-α-tubulin and downregulation of Ac-α-tubulin expressions in cancer cells. Eventhough the reported benzimidazole scaffold-based commercially available drugs are known to be microtubule-destabilizing agents, the analogues NI-11 and NI-18 were found to have microtubule-stabilizing activity. The in vitro tubulin polymerization assay and the immunofluorescence assay results indicate that the NI-11 and NI-18 exhibit anticancer activity by stabilizing the microtubule network.
Collapse
Affiliation(s)
- In-Ho Song
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea; Biometrix Technology, Inc., 2-2 Bio Venture Plaza 56, Chuncheon 24232, South Korea
| | - Su Jeong Park
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Gyu Seong Yeom
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Keum-Soo Song
- Biometrix Technology, Inc., 2-2 Bio Venture Plaza 56, Chuncheon 24232, South Korea
| | - Taisun Kim
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea.
| |
Collapse
|
11
|
Vítovcová B, Skarková V, Havelek R, Soukup J, Pande A, Caltová K, Rudolf E. Flubendazole exhibits anti-glioblastoma effect by inhibiting STAT3 and promoting cell cycle arrest. Sci Rep 2023; 13:5993. [PMID: 37045903 PMCID: PMC10097688 DOI: 10.1038/s41598-023-33047-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Glioblastoma multiforme (GBM) belongs to most aggressive and invasive primary brain tumor in adults whose prognosis and survival remains poor. Potential new treatment modalities include targeting the cytoskeleton. In our study, we demonstrated that repurposed drug flubendazole (FLU) significantly inhibits proliferation and survival of GBM cells. FLU exerted its effect by affecting microtubule structure and our results also suggest that FLU influences tubulins expression to a certain degree. Moreover, FLU effects decreased activation of STAT3 and also partially inhibited its expression, leading to upregulation of p53 signaling pathway and subsequent cell cycle arrest at G2/M phase as well as caspase-dependent cell death in GBM cells. These results suggest FLU as a promising agent to be used in GBM treatment and prompting further testing of its effects on GBM.
Collapse
Affiliation(s)
- Barbora Vítovcová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic.
| | - Veronika Skarková
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Jiří Soukup
- The Fingerland Department of Pathology, Faculty of Medicine and University Hospital in Hradec Králové, Charles University, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Ananya Pande
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Kateřina Caltová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
12
|
Sui JSY, Martin P, Keogh A, Murchan P, Ryan L, Nicholson S, Cuffe S, Broin PÓ, Finn SP, Fitzmaurice GJ, Ryan R, Young V, Gray SG. Altered expression of ACOX2 in non-small cell lung cancer. BMC Pulm Med 2022; 22:321. [PMID: 35999530 PMCID: PMC9396774 DOI: 10.1186/s12890-022-02115-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
Peroxisomes are organelles that play essential roles in many metabolic processes, but also play roles in innate immunity, signal transduction, aging and cancer. One of the main functions of peroxisomes is the processing of very-long chain fatty acids into metabolites that can be directed to the mitochondria. One key family of enzymes in this process are the peroxisomal acyl-CoA oxidases (ACOX1, ACOX2 and ACOX3), the expression of which has been shown to be dysregulated in some cancers. Very little is however known about the expression of this family of oxidases in non-small cell lung cancer (NSCLC). ACOX2 has however been suggested to be elevated at the mRNA level in over 10% of NSCLC, and in the present study using both standard and bioinformatics approaches we show that expression of ACOX2 is significantly altered in NSCLC. ACOX2 mRNA expression is linked to a number of mutated genes, and associations between ACOX2 expression and tumour mutational burden and immune cell infiltration were explored. Links between ACOX2 expression and candidate therapies for oncogenic driver mutations such as KRAS were also identified. Furthermore, levels of acyl-CoA oxidases and other associated peroxisomal genes were explored to identify further links between the peroxisomal pathway and NSCLC. The results of this biomarker driven study suggest that ACOX2 may have potential clinical utility in the diagnosis, prognosis and stratification of patients into various therapeutically targetable options.
Collapse
Affiliation(s)
- Jane S Y Sui
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Petra Martin
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland
- Midland Regional Hospital Tullamore, Tullamore, Ireland
| | - Anna Keogh
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland
| | - Pierre Murchan
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin, Ireland
- School of Mathematics, Statistics, and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Lisa Ryan
- Department of Histopathology, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Siobhan Nicholson
- Department of Histopathology, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Sinead Cuffe
- HOPE Directorate, St James's Hospital, Dublin, Ireland
| | - Pilib Ó Broin
- School of Mathematics, Statistics, and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin, Ireland
- Department of Histopathology, Labmed Directorate, St. James's Hospital, Dublin, Ireland
- Cancer Molecular Diagnostics, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Gerard J Fitzmaurice
- Surgery, Anaesthesia and Critical Care Directorate, St James's Hospital, Dublin, Ireland
| | - Ronan Ryan
- Surgery, Anaesthesia and Critical Care Directorate, St James's Hospital, Dublin, Ireland
| | - Vincent Young
- Surgery, Anaesthesia and Critical Care Directorate, St James's Hospital, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, D08RX0X, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
- School of Biological Sciences, Technological University Dublin, Dublin, Ireland.
| |
Collapse
|
13
|
Li Y, Peng L, Cao X, Yang K, Wang Z, Xiao Y, Xiao H, Qian C, Liu H. The Long Non-Coding RNA HOXC-AS3 Promotes Glioma Progression by Sponging miR-216 to Regulate F11R Expression. Front Oncol 2022; 12:845009. [PMID: 35402226 PMCID: PMC8984117 DOI: 10.3389/fonc.2022.845009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
HOXC cluster antisense RNA 3 (HOXC-AS3) is a long noncoding RNA (lncRNA) that plays a crucial role in various tumors; nevertheless, its role in glioma and its mechanism have not been completely elucidated. In this research, we discovered that HOXC-AS3 was over-expression in glioma cells and tissues and was associated with prognosis. Next, we determined that HOXC-AS3 targeted miR-216 as a sponge and that the F11 receptor (F11R) was the target of miR-216 by online databases analysis, qRT–PCR, and luciferase reporter assay. In addition, the rescue experiments confirmed that HOXC-AS3 regulated the expression of F11R by competitively binding miR-216 and functioning as a competing endogenous RNA (ceRNA). The intracranial glioblastoma mouse model suggested that HOXC-AS3 could promote glioma malignant progression in vivo. In summary, our study shows that the HOXC-AS3/miR-216/F11R axis plays an important role in the malignant progression of glioma, and may provide new ideas for the treatment of glioma.
Collapse
Affiliation(s)
- Yongshuai Li
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Lu Peng
- Department of Clinical Laboratory, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xianwen Cao
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Xiao
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chunfa Qian
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Chunfa Qian, ; Hongyi Liu,
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Chunfa Qian, ; Hongyi Liu,
| |
Collapse
|
14
|
Zhao A, Wang Y, Lin F, Bai K, Gu C. Long noncoding RNA LBX2‐AS1 promotes colorectal cancer progression via binding with PTBP1 and stabilizing KAT2A expression. J Biochem Mol Toxicol 2022; 36:e23020. [PMID: 35253306 DOI: 10.1002/jbt.23020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Andong Zhao
- Department of Anorectal Surgery Affiliated Hospital of Shandong University of Traditional Chinese Medicine Jinan Shandong People's Republic of China
| | - Yu Wang
- Department of Radiology Affiliated Hospital of Shandong University of Traditional Chinese Medicine Jinan Shandong People's Republic of China
| | - Fuliang Lin
- Department of Anorectal Surgery Shanghe Traditional Chinese Medical Hospital Jinan Shandong People's Republic of China
| | - Keyun Bai
- Department of Anorectal Surgery Affiliated Hospital of Shandong University of Traditional Chinese Medicine Jinan Shandong People's Republic of China
| | - Chao Gu
- Department of Anorectal Surgery Affiliated Hospital of Shandong University of Traditional Chinese Medicine Jinan Shandong People's Republic of China
| |
Collapse
|
15
|
Zhang Y, Chen Y, Zhang Z, Tao X, Xu S, Zhang X, Zurashvili T, Lu Z, Bayascas JR, Jin L, Zhao J, Zhou X. Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice. Cell Death Dis 2022; 13:279. [PMID: 35351852 PMCID: PMC8964741 DOI: 10.1038/s41419-022-04725-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022]
Abstract
Acyl-CoA oxidase 2 (Acox2) is an enzyme involved in peroxisomal bile acid synthesis and branched-chain fatty acid degradation. Acox2 knockout (−/−) mice spontaneously developed liver cancer with marked lymphocytic infiltrate. Tandem-affinity purification coupled with mass spectrometry analysis revealed that Acox2 interacted with methylcrotonoyl-CoA carboxylase followed by co-immunoprecipitation confirmation. Here we reported that non-histone lysine crotonylation (Kcr) levels were downregulated in Acox2−/− mice livers. Interestingly, Kcr signals were concentrated in the nucleus of tumor cells but mostly located in the cytoplasm of adjacent normal liver cells of Acox2−/− mice. Quantitative analysis of the global crotonylome further revealed that 54% (27/50) of downregulated non-histone Kcr sites were located in mitochondrial (11/50) and peroxisomal (17/50) enzymes including Ehhadh, Scp2, Hsd17b4, Crot, Etfa, Cpt1a, Eci1/2, Hadha, Etfdh, and Idh2. Subsequent site-directed mutagenesis and transcriptome analysis revealed that Ehhadh K572cr might have site-specific regulatory roles by downregulating TOP3B expression that lead to increased DNA damage in vitro. Our findings suggested Acox2 is a regulator of Kcr that might play critical role on hepatic metabolic homeostasis.
Collapse
|
16
|
Gousias K, Theocharous T, Simon M. Mechanisms of Cell Cycle Arrest and Apoptosis in Glioblastoma. Biomedicines 2022; 10:biomedicines10030564. [PMID: 35327366 PMCID: PMC8945784 DOI: 10.3390/biomedicines10030564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cells of glioblastoma, the most frequent primary malignant brain tumor, are characterized by their rapid growth and infiltration of adjacent healthy brain parenchyma, which reflects their aggressive biological behavior. In order to maintain their excessive proliferation and invasion, glioblastomas exploit the innate biological capacities of the patients suffering from this tumor. The pathways involved in cell cycle regulation and apoptosis are the mechanisms most commonly affected. The following work reviews the regulatory pathways of cell growth in general as well as the dysregulated cell cycle and apoptosis relevant mechanisms observed in glioblastomas. We then describe the molecular targeting of the current established adjuvant therapy and present ongoing trials or completed studies on specific promising therapeutic agents that induce cell cycle arrest and apoptosis of glioblastoma cells.
Collapse
Affiliation(s)
- Konstantinos Gousias
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, 44534 Luenen, Germany;
- Medical School, Westfälische Wilhelms University of Muenster, 48149 Muenster, Germany
- Medical School, University of Nicosia, Nicosia 2414, Cyprus
- Correspondence: ; Tel.: +49-2306-773151
| | - Theocharis Theocharous
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, 44534 Luenen, Germany;
| | - Matthias Simon
- Department of Neurosurgery, Bethel Clinic, University of Bielefeld Medical School, 33617 Bielefeld, Germany;
| |
Collapse
|
17
|
Cui Y, Han L, Shang J, Fang W, Zhao M, Chen D, Liu H. Primary cardiac undifferentiated pleomorphic sarcoma is associated with TP53 mutation during lack of MDM2 amplification, and targeted sequencing analysis reveals potentially actionable targets. Hum Pathol 2022; 123:113-122. [PMID: 35181378 DOI: 10.1016/j.humpath.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Cardiac undifferentiated pleomorphic sarcoma (UPS) is a rare malignancy. Several studies have revealed frequent MDM2, CDK4, PDFGRA, and KIT amplifications and CDKN2A and CDKN2B deletions. Cases lacking the above copy number alterations may harbor alternative driver mutations; however, little is known about such occurrences. This study was conducted to gain further insights into the molecular features of cardiac UPS using targeted sequencing of 560 cancer-related genes, and fluorescence in situ hybridization and immunohistochemistry of MDM2, CDK4, CDKN2A, TP53, and RB1 in 9 cardiac UPS cases. TP53 mutation or CDKN2A deletion was found in cases lacking MDM2 amplification. Further, p53 overexpression was detected in the case with TP53 mutation, while p16 expression was completely lost in the case with CDKN2A homozygous deletion. p16 overexpression was found in cases with MDM2 and CDK4 amplification but without CDKN2A deletion. Immunohistochemistry of MDM2, CDK4, p53, and p16 is expected to be preliminarily used for gene status analysis. As cardiac UPS and intimal sarcomas are merging into a single spectrum, mutation data for 3 cardiac UPS and 9 intimal sarcomas from the literature, as well as data for 5 cardiac UPS in our study were evaluated, and known recurrently mutated cancer driver genes, including PDGFRB, TP53, ALK, PTCH1, RET, ERBB4, JAK3, GATA1, PIK3CG, and RARA, were identified. Several new potentially actionable mutations, including those in RARA, ALK, PTCH1, RET, ROS1, ABL1, and MET, were also found. These findings improve the molecular understanding of this rare malignancy and are expected to provide a basis for developing precision therapeutics for cardiac UPS and intimal sarcomas.
Collapse
Affiliation(s)
- Yayan Cui
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing, 100005, China; Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Liyuan Han
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jianfeng Shang
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Wei Fang
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Meng Zhao
- The Scientific and Technical Department, Novogene Bioinformatics Institute, Beijing, 102206, China
| | - Dong Chen
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Honggang Liu
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing, 100005, China.
| |
Collapse
|
18
|
Park D. Fenbendazole Suppresses Growth and Induces Apoptosis of Actively Growing H4IIE Hepatocellular Carcinoma Cells via p21-Mediated Cell-Cycle Arrest. Biol Pharm Bull 2022; 45:184-193. [PMID: 35110505 DOI: 10.1248/bpb.b21-00697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bendimidazole anthelmintics (BAs) have gained interest for their anticancer activity. The anticancer activity is mediated via multiple intracellular changes, which are not consistent under different conditions even in the same cells. We investigated the anticancer activity of fenbendazole (FZ, one of BAs) under two different growth conditions. The growth rate of H4IIE cells was dose-dependently decreased by FZ only in actively growing cells but not in fully confluent quiescent cells. Apoptosis-associated changes were also induced by FZ in actively growing cells. Markers of autophagy were not changed by FZ. The number of cells was markedly increased in sub-G1 phase but decreased in S- and G2/M phases by FZ. FZ up-regulated p21 (an inhibitor of cyclin-CDK) but suppressed the expression of cell cycle-promoting proteins (cyclin D1 and cyclin B1). FZ did not affect integrin αV or n-cadherin expression as well as cell migration. Glycolytic changes (glucose consumption and lactate production) and the generation of reactive oxygen species (ROS) were not affected by FZ. Although the activity of mitogen-activated protein kinases (MAPKs) was altered by FZ, the inhibition of MAPKs did not affect the pro-apoptotic activity of FZ. Taken together, FZ selectively suppressed the growth of cells via p21-mediated cell cycle arrest at G1/S and G2/M, and resulted in apoptosis only in actively growing cells but not in quiescent cells. Glucose metabolism, ROS generation, and MAPKs are unlikely targets of FZ at least in H4IIE rat hepatocellular carcinoma cells used in this study.
Collapse
Affiliation(s)
- Deokbae Park
- Department of Histology, School of Medicine, Institute of Medical Science, Jeju National University
| |
Collapse
|
19
|
Qi Z, Le Z, Han F, Feng Y, Yang M, Ji C, Zhao L. Inhibitory regulation of purple sweet potato polysaccharide on the hepatotoxicity of tri-(2,3-dibromopropyl) isocyanate. Int J Biol Macromol 2022; 194:445-451. [PMID: 34813788 DOI: 10.1016/j.ijbiomac.2021.11.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 01/27/2023]
Abstract
Tri-(2,3-dibromopropyl) isocyanate (TBC), a new emerged persistent organic pollutant, is widely used in fields of flame retardant, textile, rubber and plastic with strong hepatotoxicity. Purple Sweet Potato Polysaccharide (PSPP) has antioxidant and hepatoprotective effects. This study aims to answer the scientific question whether PSPP has a protective effect on TBC induced liver injury. The effect of PSPP on the apoptosis of HepG2 cells was detected by MTT assay, the morphological changes were observed by morphological observation, and the apoptosis rate was determined by flow cytometry. The apoptotic genes were detected by qPCR assay, the relevant protein express was detected by western blot. The correlation between proteins and genes in the apoptosis pathway of HepG2 cells was calculated. To further reveal the apoptosis mechanism of TBC hepatotoxicity in vivo, 19 target genes and 14 apoptotic related proteins of inhibiting apoptosis via death receptor and mitochondria were discussed, all the above results proved that PSPP had protective effect on liver injury induced by TBC. This study not only provided a scientific basis for clarifying the mechanism of TBC hepatotoxicity and the protective effect of PSPP, but also generated the new point and method in terms of the prevention in advance and early intervention of diseases caused by environmental pollution.
Collapse
Affiliation(s)
- Zheng Qi
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China.
| | - Zhiwei Le
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China
| | - Furui Han
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China
| | - Yajie Feng
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China
| | - Ming Yang
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China
| | - Chenfeng Ji
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China.
| | - Liangliang Zhao
- Department of Colorectal Surgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
20
|
Dong T, Lu Z, Li J, Liu Y, Wen J. [Flubendazole Inhibits the Proliferation of A549 and H460 Cells and Promotes Autophagy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:306-313. [PMID: 32429634 PMCID: PMC7260388 DOI: 10.3779/j.issn.1009-3419.2020.104.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
背景与目的 氟苯达唑是一种苯并咪唑类驱虫药, 既往研究发现其对结肠癌、乳腺癌细胞增殖具有抑制作用。本研究旨在探讨氟苯达唑对非小细胞肺癌A549、H460细胞增殖的影响及机制。 方法 通过CCK-8(Cell Counting Kit-8)法检测不同浓度的氟苯达唑对A549、H460细胞活力的影响; Western blot法检测氟苯达唑处理后细胞自噬相关蛋白p62、LC3的表达水平; 自噬双标腺病毒(mRFP-GFP-LC3)转染细胞, 分析细胞内自噬流变化。 结果 氟苯达唑抑制A549、H460细胞增殖, 并呈剂量依赖关系(P < 0.001)。2 μmol/L氟苯达唑处理A549、H460细胞24 h、48 h后p62减少, LC3 II/I比值升高(P < 0.005)。mRFP-GFP-LC3转染细胞显示氟苯达唑处理组红色荧光增加, 提示自噬流增强。 结论 氟苯达唑可以抑制A549、H460细胞增殖并促进自噬。
Collapse
Affiliation(s)
- Tingjun Dong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China.,Tumor Diagnosis and Treatment Center, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Zejun Lu
- Tumor Diagnosis and Treatment Center, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Jingjiao Li
- Tumor Diagnosis and Treatment Center, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yongzhen Liu
- Tumor Diagnosis and Treatment Center, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Juyi Wen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China.,Tumor Diagnosis and Treatment Center, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| |
Collapse
|
21
|
Zhou X, Zou L, Chen W, Yang T, Luo J, Wu K, Shu F, Tan X, Yang Y, Cen S, Li C, Mao X. Flubendazole, FDA-approved anthelmintic, elicits valid antitumor effects by targeting P53 and promoting ferroptosis in castration-resistant prostate cancer. Pharmacol Res 2021; 164:105305. [PMID: 33197601 DOI: 10.1016/j.phrs.2020.105305] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
On account of incurable castration-resistant prostate cancer (CRPC) inevitably developing after treating with androgen deprivation therapy, it is an urgent need to find new therapeutic strategies. Flubendazole is a well-known anti-malarial drug that is recently reported to be a potential anti-tumor agent in various types of human cancer cells. However, whether flubendazole could inhibit the castration-resistant prostate cancer has not been well charified. Thus, the aim of the present study was to characterize the precise mechanism of action of flubendazole on the CRPC. In this study, we investigated the potential effect of flubendazole on cell proliferation, cell cycle and cell death in CRPC cells (PC3 and DU145). We found that flubendazole inhibited cell proliferation, caused cell cycle arrest in G2/M phase and promoted cell death in vitro, and suppressed growth of CRPC tumor in xenograft models. In addition, we reported that flubendazole induced the expression of P53, which partly accounted for the G2/M phase arrest and led to inhibition of the transcription of SLC7A11, and then downregulated the GPX4, which is a major ferroptosis-related gene. Furthermore, flubendazole exhibited synergistic effect with 5-fluorouracil (5-Fu) in chemotherapy of CRPC. This study provides biological evidence that flubendazole is a novel P53 inducer which exerts anti-proliferation and pro-apoptosis effects in CRPC through hindering the cell cycle and activating the ferroptosis, and indicates that a novel utilization of flubendazole in neoadjuvant chemotherapy of CRPC.
Collapse
Affiliation(s)
- Xumin Zhou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China; Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Libin Zou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Wenbin Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Taowei Yang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Junqi Luo
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Kaihui Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Fangpeng Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, PR China
| | - Xiao Tan
- Department of Urology, The First Affiliated Hospital, Southwest Medical University, Luzhou 646000, PR China
| | - Yu Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Shengren Cen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Chuanyin Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China.
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China.
| |
Collapse
|
22
|
Mary YS, Kumar VS, Mary YS, K. S. R, Thomas R. Detailed Quantum Mechanical Studies on Three Bioactive Benzimidazole Derivatives and Their Raman Enhancement on Adsorption over Graphene Sheets. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Y. Shyma Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Veena S. Kumar
- Department of Physics, SN College, Kollam, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Y. Sheena Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Resmi K. S.
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Renjith Thomas
- Department of Chemistry, St. Berchmans College (Autonomous), Changanassery, Kerala, India
| |
Collapse
|
23
|
Vitovcova B, Skarkova V, Rudolf K, Rudolf E. Biology of Glioblastoma Multiforme-Exploration of Mitotic Catastrophe as a Potential Treatment Modality. Int J Mol Sci 2020; 21:ijms21155324. [PMID: 32727112 PMCID: PMC7432846 DOI: 10.3390/ijms21155324] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) represents approximately 60% of all brain tumors in adults. This malignancy shows a high biological and genetic heterogeneity associated with exceptional aggressiveness, leading to a poor survival of patients. This review provides a summary of the basic biology of GBM cells with emphasis on cell cycle and cytoskeletal apparatus of these cells, in particular microtubules. Their involvement in the important oncosuppressive process called mitotic catastrophe will next be discussed along with select examples of microtubule-targeting agents, which are currently explored in this respect such as benzimidazole carbamate compounds. Select microtubule-targeting agents, in particular benzimidazole carbamates, induce G2/M cell cycle arrest and mitotic catastrophe in tumor cells including GBM, resulting in phenotypically variable cell fates such as mitotic death or mitotic slippage with subsequent cell demise or permanent arrest leading to senescence. Their effect is coupled with low toxicity in normal cells and not developed chemoresistance. Given the lack of efficient cytostatics or modern molecular target-specific compounds in the treatment of GBM, drugs inducing mitotic catastrophe might offer a new, efficient alternative to the existing clinical management of this at present incurable malignancy.
Collapse
|
24
|
Urbini M, Astolfi A, Indio V, Nannini M, Pizzi C, Paolisso P, Tarantino G, Pantaleo MA, Saponara M. Genetic aberrations and molecular biology of cardiac sarcoma. Ther Adv Med Oncol 2020; 12:1758835920918492. [PMID: 32489430 PMCID: PMC7238448 DOI: 10.1177/1758835920918492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac tumors are rare and complex entities. Early assessment and differentiation between non-neoplastic and neoplastic masses, be they benign or malignant, is essential for guiding diagnosis, determining prognosis, and planning therapy. Cardiac sarcomas represent the most frequent primary malignant histotype. They could have manifold presentations so that the diagnosis is often belated. Moreover, considering their rarity and the limitation due to the cardiac location itself, the optimal multimodal management of patients affected by primary cardiac sarcomas still remains highly difficult and outcome dismal. Therefore, there is an urgent need to improve these results mainly focusing on more adequate tools for prompt diagnosis and exploring new and more effective therapies. Knowledge about the molecular landscape and pathogenesis of cardiac sarcoma is even more limited due to the rarity of this disease. In this sense, the molecular characterization of heart tumors could unfold potentially novel, druggable targets. In this review, we focused on genetic aberrations and molecular biology of cardiac sarcomas, collecting the scarce information available and resuming all the molecular findings discovered in each tumor subtype, with the aim to get further insights on mechanisms involved in tumor growth and to possibly highlight specific molecular profiles that can be used as diagnostic tests and unveil new clinically actionable targets in this tricky and challenging disease.
Collapse
Affiliation(s)
- Milena Urbini
- “Giorgio Prodi” Cancer Research Center,
University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- “Giorgio Prodi” Cancer Research Center,
University of Bologna, Bologna, Italy
| | - Valentina Indio
- “Giorgio Prodi” Cancer Research Center,
University of Bologna, Bologna, Italy
| | - Margherita Nannini
- Department of Specialized, Experimental and
Diagnostic Medicine, Medical Oncology Unit, Sant’Orsola-Malpighi Hospital,
University of Bologna, Bologna, Italy
| | - Carmine Pizzi
- Department of Specialized, Experimental and
Diagnostic Medicine, Cardiology and Transplantation, Sant’Orsola-Malpighi
Hospital, University of Bologna, Bologna, Italy
| | - Pasquale Paolisso
- Department of Specialized, Experimental and
Diagnostic Medicine, Cardiology and Transplantation, Sant’Orsola-Malpighi
Hospital, University of Bologna, Bologna, Italy
| | - Giuseppe Tarantino
- “Giorgio Prodi” Cancer Research Center,
University of Bologna, Bologna, Italy
| | - Maria Abbondanza Pantaleo
- “Giorgio Prodi” Cancer Research Center,
University of Bologna, Bologna, Italy
- Department of Specialized, Experimental and
Diagnostic Medicine, Medical Oncology Unit, Sant’Orsola-Malpighi Hospital,
University of Bologna, Bologna, Italy
| | - Maristella Saponara
- Department of Specialized, Experimental and
Diagnostic Medicine, Medical Oncology Unit, Sant’Orsola-Malpighi Hospital,
University of Bologna, Via Massarenti, 9, Bologna, Bologna 40138,
Italy
| |
Collapse
|
25
|
Li Q, Sun Y, Liu B, Li J, Hao X, Ge W, Zhang X, Bao S, Gong J, Jiang Z, Qiu C, Zhao L, Zhao Y, Chen Y, Yang X, Ding Y, Wu Z. ACT001 modulates the NF-κB/MnSOD/ROS axis by targeting IKKβ to inhibit glioblastoma cell growth. J Mol Med (Berl) 2020; 98:263-277. [PMID: 31901951 DOI: 10.1007/s00109-019-01839-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022]
Abstract
Glioblastomas are high-grade brain tumors with poor prognoses, and new therapeutic approaches for these tumors are critically needed. This study revealed the underlying mechanisms of a new orphan drug, ACT001, that is currently in clinical trials for the treatment of advanced glioblastoma in Australia and China. ACT001 significantly suppressed glioma cell proliferation and induced apoptosis and cell cycle arrest in vitro, as determined by Cell Counting Kit-8 assays and flow cytometry. In addition, U-118 MG cells with high expression of p-IKKβ were sensitive to ACT001. Changes in the oxidative stress pathway in U-118 MG cells were detected with the isobaric tags for relative and absolute quantitation (iTRAQ) method. We further verified that ACT001 elevated the levels of reactive oxygen species (ROS) by regulating NF-κB-targeted MnSOD. ACT001 markedly inhibited NF-κB activation by directly binding IKKβ and inhibiting its phosphorylation. Overexpression of IKKβ markedly attenuated the changes in MnSOD and NOX1, indicating that ACT001 increased the levels of ROS by reducing the protein expression of p-IKKβ. Furthermore, ACT001 reduced cyclin B1/CDC2 expression and triggered G2/M phase arrest by increasing ROS production. ACT001 also upregulated the expression of Bax and Bim and induced apoptosis in a ROS-dependent manner. ACT001 effectively suppressed the growth of U-118 MG tumors in BALB/c nude mice and GL-261-luciferase tumors in C57BL/6 J mice. Finally, ACT001 downregulated the expression of p-p65, MnSOD, cyclin B1, CDC2, and Ki67 in U-118 MG tumor tissues. Patients with activated NF-κB signaling should thus be given priority for enrollment in future phase II clinical trials. KEY MESSAGES: ACT001 directly bind to IKKβ and inhibited its phosphorylation. The inhibition of p-IKKβ induced the generation of ROS. ACT001 promoted the generation of ROS by regulating MnSOD expression to induce G2/M phase arrest.
Collapse
Affiliation(s)
- Qiuying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yu Sun
- College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Bowen Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, Research Center for Molecular Oncology and Functional Nucleic Acids, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xin Hao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Weizhi Ge
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | | | - Shiqi Bao
- Accendatech Co., Ltd., Tianjin, 300384, China
| | | | - Zhenhuan Jiang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | | | - Liqing Zhao
- College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Yapu Zhao
- People's Liberation Army No. 254 Hospital, Tianjin, 300142, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Yahui Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Zhenzhou Wu
- College of Life Sciences, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
26
|
Khachigian LM. Repurposing Drugs for Skin Cancer. Curr Med Chem 2019; 27:7214-7221. [PMID: 31858902 DOI: 10.2174/0929867327666191220103901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022]
Abstract
Drug repurposing is the process of developing existing or abandoned drugs for a different disease. Repurposing can circumvent higher costs and times associated with conventional drug discovery strategies because toxicity and pharmacokinetics profiles are typically already established. This brief review focuses on efforts to repurpose drugs for skin cancer and includes reuse of antihypertensives, anthelmintics and antifungals among a range of other medicines. Repurposing not only ushers promising known drugs for new indications, the process of repurposing can uncover new mechanistic insights in the pathogenesis of disease and uncover new opportunities for pharmaceutical intervention.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
27
|
Katsarou K, Bardani E, Kallemi P, Kalantidis K. Viral Detection: Past, Present, and Future. Bioessays 2019; 41:e1900049. [PMID: 31441081 DOI: 10.1002/bies.201900049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/04/2019] [Indexed: 12/26/2022]
Abstract
Viruses are essentially composed of a nucleic acid (segmented or not, DNA, or RNA) and a protein coat. Despite their simplicity, these small pathogens are responsible for significant economic and humanitarian losses that have had dramatic consequences in the course of human history. Since their discovery, scientists have developed different strategies to efficiently detect viruses, using all possible viral features. Viruses shape, proteins, and nucleic acid are used in viral detection. In this review, the development of these techniques, especially for plant and mammalian viruses, their strengths and weaknesses as well as the latest cutting-edge technologies that may be playing important roles in the years to come are described.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, GR-70013, Greece.,Department of Biology, University of Crete, Heraklion, GR-70013, Greece
| | - Eirini Bardani
- Department of Biology, University of Crete, Heraklion, GR-70013, Greece
| | - Paraskevi Kallemi
- Department of Biology, University of Crete, Heraklion, GR-70013, Greece
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, GR-70013, Greece.,Department of Biology, University of Crete, Heraklion, GR-70013, Greece
| |
Collapse
|
28
|
Li Y, Acharya G, Elahy M, Xin H, Khachigian LM. The anthelmintic flubendazole blocks human melanoma growth and metastasis and suppresses programmed cell death protein-1 and myeloid-derived suppressor cell accumulation. Cancer Lett 2019; 459:268-276. [PMID: 31128215 DOI: 10.1016/j.canlet.2019.05.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/28/2019] [Accepted: 05/19/2019] [Indexed: 12/24/2022]
Abstract
The incidence of melanoma is increasing faster than any other cancer. In recent years, treatment of melanoma and a range of other deadly cancers has involved immunotherapy with programmed cell death protein-1 (PD-1)/PD-1 ligand (PD-L1) checkpoint blockade which has improved survival. However, many patients do not respond or have partial response, survival benefit is in the order of months and all available PD-1/PD-L1 strategies are antibodies requiring intravenous infusion. There are no clinically approved small molecule pharmacologic inhibitors of the PD-1/PD-L1 system. The benzimidazole derivative flubendazole is a widely used anthelmintic available over the counter in Europe. Here we demonstrate the ability of flubendazole to inhibit human melanoma growth and spread in mice. Flubendazole's ability to block tumor growth and spread was comparable to paclitaxel. Anti-tumor effects were observed when flubendazole was delivered systemically not locally. Flubendazole inhibited CD31/PECAM-1 staining indicating suppression of tumor angiogenesis. Most surprisingly, flubendazole inhibited PD-1 levels within the tumors, but not PD-L1. Western blotting and flow cytometry revealed that flubendazole inhibits PD-1 expression in cultured melanoma cells. Flubendazole also reduced myeloid-derived suppressor cell (MDSC) levels in tumor tissue. Further we found that flubendazole inhibited active (phospho-Tyr705) signal transducer and activator of transcription (STAT3), an upstream regulator of PD-1 expression. These findings uncover that flubendazole is a novel small molecule inhibitor of not only melanoma growth and spread but also of PD-1 and MDSC.
Collapse
Affiliation(s)
- Yue Li
- Vascular Biology and Translational Research, School of Medical Sciences, UNSW Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Grishma Acharya
- Explora BioLabs, Flintkote Avenue, San Diego, CA, 92121, USA
| | - Mina Elahy
- Vascular Biology and Translational Research, School of Medical Sciences, UNSW Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hong Xin
- Explora BioLabs, Flintkote Avenue, San Diego, CA, 92121, USA
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, UNSW Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
29
|
Wang X, Zhou C, He B, Kong B, Wei L, Wang R, Lin J, Shao Y, Zhu J, Jin Y, Fu Z. 8:2 Fluorotelomer alcohol causes G1 cell cycle arrest and blocks granulocytic differentiation in HL-60 cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:666-673. [PMID: 30794351 DOI: 10.1002/tox.22733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Fluorotelomer alcohols (FTOHs) are fluorinated intermediates used in manufacturing specialty polymer and surfactants, with 8:2 FTOH the homologue of largest production. FTOHs were found to pose acute toxicity, hepatotoxicity, nephrotoxicity, developmental toxicity and endocrine-disrupting risks, whereas research regarding immunotoxicity and its underlying mechanism, especially on specific immune cells is limited. Here, we investigated the immunotoxicity of 8:2 FTOH on immature immune cells in an in vitro system. We observed that exposure of HL-60 cells, a human promyelocytic leukemic cell line, to 8:2 FTOH reduced cell viability in a dose- and time-dependent manner. In addition, 8:2 FTOH exposure caused G1 cell cycle arrest in HL-60 cells, while it showed no effect on apoptosis. Exposure to 8:2 FTOH inhibited the mRNA expression of cell cycle-related genes, including CCNA1, CCNA2, CCND1, and CCNE2. Moreover, exposure to 8:2 FTOH inhibited the mRNA expression of granulocytic differentiation-related genes of CD11b, CSF3R, PU.1, and C/EPBε in HL-60 cells . Furthermore, 8:2 FTOH exhibited no effect on intracellular ROS level, while hydralazine hydrochloride (Hyd), one reactive carbonyl species (RCS) scavenger, partially blocked 8:2 FTOH-caused cytotoxicity in HL-60 cells. Overall, the results obtained in the study show that 8:2 FTOH poses immunotoxicity in immature immune cells and RCS may partially underline its mechanism.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chenqian Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Baida Kong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lai Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Rong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jiajia Lin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yiyan Shao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
30
|
Yu CG, Bondada V, Ghoshal S, Singh R, Pistilli CK, Dayaram K, Iqbal H, Sands M, Davis KL, Bondada S, Geddes JW. Repositioning Flubendazole for Spinal Cord Injury. J Neurotrauma 2019; 36:2618-2630. [PMID: 30747048 DOI: 10.1089/neu.2018.6160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We previously reported the serendipitous observation that fenbendazole, a benzimidazole anthelmintic, improved functional and pathological outcomes following thoracic spinal cord contusion injury in mice when administered pre-injury. Fenbendazole is widely used in veterinary medicine. However, it is not approved for human use and it was uncertain if only post-injury administration would offer similar benefits. In the present study we evaluated post-injury administration of a closely related, human anthelmintic drug, flubendazole, using a rat spinal cord contusion injury model. Flubendazole, administered i.p. 5 or 10 mg/kg day, beginning 3 h post-injury and daily thereafter for 2 or 4 weeks, resulted in improved locomotor function after contusion spinal cord injury (SCI) compared with vehicle-treated controls. Histological analysis of spinal cord sections showed that such treatment with flubendazole also reduced lesion volume and improved total tissue sparing, white matter sparing, and gray matter sparing. Flubendazole inhibited the activation of glial fibrillary acidic protein (GFAP); suppressed cyclin B1 expression and Bruton tyrosine kinase activation, markers of B cell activation/proliferation and inflammation; and reduced B cell autoimmune response. Together, these results suggest the use of the benzimidazole anthelmintic flubendazole as a potential therapeutic for SCI.
Collapse
Affiliation(s)
- Chen Guang Yu
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Vimala Bondada
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Sarbani Ghoshal
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Ranjana Singh
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Christina K Pistilli
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Kavi Dayaram
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hina Iqbal
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Madison Sands
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Kate L Davis
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Subarrao Bondada
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
31
|
Tao J, Zhao H, Xie X, Luo M, Gao Z, Sun H, Huang Z. The anthelmintic drug flubendazole induces cell apoptosis and inhibits NF-κB signaling in esophageal squamous cell carcinoma. Onco Targets Ther 2019; 12:471-478. [PMID: 30666126 PMCID: PMC6331185 DOI: 10.2147/ott.s193206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The nuclear factor kappa B (NF-κB) signaling is activated in esophageal squamous cell carcinoma (ESCC) and can be used as a potential target for anti-ESCC drug discovery. In this study, we aimed to investigate the function of flubendazole as a novel NF-κB inhibitor in ESCC cells. MATERIALS AND METHODS Cell Counting Kit-8 assay was carried out to assess cell viability of ESCC cells. Flow cytometry and immunoblotting were performed to examine cell apoptosis. Immunoblotting assay was used to analyze the protein expression of NF-κB signaling. Luciferase assay was performed to explore the activation of NF-κB. Plasmids were transfected into ESCC cells using Lipofectamine® 2000. RESULTS In this study, the anthelmintic drug flubendazole was found to inhibit the activation of IκBα kinases (IKKs), block the activation of IκBα, and decrease the phosphorylation of NF-κB p65, which could be a novel NF-κB inhibitor in ESCC cells. We also found that flubendazole inhibited the cell survival of different ESCC cells and induced cell apoptosis in both EC9706 and TE1 cells. Moreover, overexpression of constitutively activated IKKβ markedly decreased the cytotoxic effect of flubendazole on EC9706 and TE1 cells. In addition, flubendazole also showed a synergistic effect on ESCC cells when combined with doxorubicin. CONCLUSION The results above demonstrated that flubendazole showed its anti-tumor action by suppressing the NF-κB signaling pathway and suggested that flubendazole might be re-purposed for anti-ESCC therapy in clinic as a single agent or in combination with other anti-tumor drugs.
Collapse
Affiliation(s)
- Jiali Tao
- Department of Emergency, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu, China,
| | - Hongmei Zhao
- Department of Emergency, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu, China,
| | - Xiaochen Xie
- Department of Respiratory, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Man Luo
- Department of Emergency, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu, China,
| | - Zhiwei Gao
- Department of Emergency, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu, China,
| | - Hong Sun
- Department of Emergency, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu, China,
| | - Ziming Huang
- Department of Emergency Surgery, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu, China,
| |
Collapse
|
32
|
Wang Q, He Z, Chen Y. Comprehensive Analysis Reveals a 4-Gene Signature in Predicting Response to Temozolomide in Low-Grade Glioma Patients. Cancer Control 2019; 26:1073274819855118. [PMID: 31167546 PMCID: PMC6558750 DOI: 10.1177/1073274819855118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 11/25/2022] Open
Abstract
Low-grade gliomas (LGGs) are a highly heterogeneous group of slow-growing, lethal, diffusive brain tumors. Temozolomide (TMZ) is a frequently used primary chemotherapeutic agent for LGGs. Currently there is no consensus as to the optimal biomarkers to predict the efficacy of TMZ, which calls for decision-making for each patient while considering molecular profiles. Low-grade glioma data sets were retrieved from The Cancer Genome Atlas. Cox regression and survival analyses were applied to identify clinical features significantly associated with survival. Subsequently, Ordinal logistic regression, co-expression, and Cox regression analyses were applied to identify genes that correlate significantly with response rate, disease-free survival, and overall survival of patients receiving TMZ as primary therapy. Finally, gene expression and methylation analyses were exploited to explain the mechanism between these gene expression and TMZ efficacy in LGG patients. Overall survival was significantly correlated with age, Karnofsky Performance Status score, and histological grade, but not with IDH1 mutation status. Using 3 distinct efficacy end points, regression and co-expression analyses further identified a novel 4-gene signature of ASPM, CCNB1, EXO1, and KIF23 which negatively correlated with response to TMZ therapy. In addition, expression of the 4-gene signature was associated with those of genes involved in homologous recombination. Finally, expression and methylation profiling identified a largely unknown olfactory receptor OR51F2 as potential mediator of the roles of the 4-gene signature in reducing TMZ efficacy. Taken together, these findings propose the 4-gene signature as a novel panel of efficacy predictors of TMZ therapy, as well as potential downstream mechanisms, including homologous recombination, OR51F2, and DNA methylation independent of MGMT.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and
Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic
Science and Technology of China, Sichuan, China
| | - Zongze He
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and
Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic
Science and Technology of China, Sichuan, China
| | - Yong Chen
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and
Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic
Science and Technology of China, Sichuan, China
| |
Collapse
|
33
|
Sane S, Hafner A, Srinivasan R, Masood D, Slunecka JL, Noldner CJ, Hanson AD, Kruisselbrink T, Wang X, Wang Y, Yin J, Rezvani K. UBXN2A enhances CHIP-mediated proteasomal degradation of oncoprotein mortalin-2 in cancer cells. Mol Oncol 2018; 12:1753-1777. [PMID: 30107089 PMCID: PMC6166003 DOI: 10.1002/1878-0261.12372] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/12/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023] Open
Abstract
Overexpression of oncoproteins is a major cause of treatment failure using current chemotherapeutic drugs. Drug-induced degradation of oncoproteins is feasible and can improve clinical outcomes in diverse types of cancers. Mortalin-2 (mot-2) is a dominant oncoprotein in several tumors, including colorectal cancer (CRC). In addition to inactivating the p53 tumor suppressor protein, mot-2 enhances tumor cell invasion and migration. Thus, mot-2 is considered a potential therapeutic target in several cancer types. The current study investigated the biological role of a ubiquitin-like protein called UBXN2A in the regulation of mot-2 turnover. An orthogonal ubiquitin transfer technology followed by immunoprecipitation, in vitro ubiquitination, and Magnetic Beads TUBE2 pull-down experiments revealed that UBXN2A promotes carboxyl terminus of the HSP70-interacting protein (CHIP)-dependent ubiquitination of mot-2. We subsequently showed that UBXN2A increases proteasomal degradation of mot-2. A subcellular compartmentalization experiment revealed that induced UBXN2A decreases the level of mot-2 and its chaperone partner, HSP60. Pharmacological upregulation of UBXN2A using a small molecule, veratridine (VTD), decreases the level of mot-2 in cancer cells. Consistent with the in vitro results, UBXN2A+/- mice exhibited selective elevation of mot-2 in colon tissues. An in vitro Anti-K48 TUBE isolation approach showed that recombinant UBXN2A enhances proteasomal degradation of mot-2 in mouse colon tissues. Finally, we observed enhanced association of CHIP with the UBXN2A-mot-2 complex in tumors in an azoxymethane/dextran sulfate sodium-induced mouse CRC model. The existence of a multiprotein complex containing UBXN2A, CHIP, and mot-2 suggests a synergistic tumor suppressor activity of UBXN2A and CHIP in mot-2-enriched tumors. This finding validates the UBXN2A-CHIP axis as a novel and potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Sanam Sane
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Andre Hafner
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Rekha Srinivasan
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Daniall Masood
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - John l. Slunecka
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Collin J. Noldner
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Alex D. Hanson
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Taylor Kruisselbrink
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Xuejun Wang
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| | - Yiyang Wang
- Department of ChemistryCenter for Diagnostics & TherapeuticsGeorgia State UniversityAtlantaGAUSA
| | - Jun Yin
- Department of ChemistryCenter for Diagnostics & TherapeuticsGeorgia State UniversityAtlantaGAUSA
| | - Khosrow Rezvani
- Division of Basic Biomedical SciencesSanford School of MedicineThe University of South DakotaVermillionSDUSA
| |
Collapse
|