1
|
Zhang X, Subbanna S, Williams CRO, Canals-Baker S, Hashim A, Wilson DA, Weiss LM, Shukla S, Chokkalingam P, Das S, Das BC, Saito M. Methionine Aminopeptidase 2 (MetAP2) Inhibitor BL6 Attenuates Inflammation in Cultured Microglia and in a Mouse Model of Alzheimer's Disease. Molecules 2025; 30:620. [PMID: 39942725 PMCID: PMC11820257 DOI: 10.3390/molecules30030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Methionine aminopeptidase 2 (MetAP2) plays an important role in the regulation of protein synthesis and post-translational processing. Preclinical/clinical applications of MetAP2 inhibitors for the treatment of various diseases have been explored because of their antiangiogenic, anticancer, antiobesity, antidiabetic, and immunosuppressive properties. However, the effects of MetAP2 inhibitors on CNS diseases are rarely examined despite the abundant presence of MetAP2 in the brain. Previously, we synthesized a novel boron-containing MetAP2 inhibitor, BL6, and found that it suppressed angiogenesis and adipogenesis yet improved glucose uptake. Here, we studied the anti-inflammatory effects of BL6 in SIM-A9 microglia and in a mouse model of Alzheimer's disease generated by the intracerebroventricular (icv) injection of streptozotocin (STZ). We found that BL6 reduced proinflammatory molecules, such as nitric oxide, iNOS, IL-1β, and IL-6, together with phospho-Akt and phospho-NF-κB p65, which were elevated in lipopolysaccharide (LPS)-activated microglial SIM-A9 cells. However, the LPS-induced reduction in Arg-1 and CD206 was attenuated by BL6, suggesting that BL6 promotes microglial M1 to M2 polarization. BL6 also decreased glial activation along with a reduction in phospho-tau and an elevation in synaptophysin in the icv-STZ mouse model. Thus, our experiments demonstrate an anti-neuroinflammatory action of BL6, suggesting possible clinical applications of MetAP2 inhibitors for brain disorders in which neuroinflammation is involved.
Collapse
Affiliation(s)
- Xiuli Zhang
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Shivakumar Subbanna
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Colin R. O. Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Audrey Hashim
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY 10016, USA
| | - Louis M. Weiss
- Department of Pathology/Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Srushti Shukla
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Parthiban Chokkalingam
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Sasmita Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Bhaskar C. Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
2
|
Garcia RCT, Spelta LEW, Udo MSB, Bruno V, Fonseca DA, de Faria Almeida CA, Dos Reis TM, Torres LH, Marcourakis T. Neurotoxicity of crack cocaine exposure: evidence from a systematic review of in vitro and in vivo studies. Arch Toxicol 2024; 98:2797-2816. [PMID: 38769171 DOI: 10.1007/s00204-024-03782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Several studies suggest that crack cocaine users exhibit higher prevalence of both psychiatric and psychosocial problems, with an aggressive pattern of drug use. Nevertheless, few experimental studies attempted to verify the neurotoxicity after crack cocaine exposure, especially when compared with other routes of cocaine administration. This systematic review aimed to verify whether in vitro and/or in vivo crack cocaine exposure is more neurotoxic than cocaine exposure (snorted or injected). A search was performed in the PubMed, EMBASE, Scopus, Web of Science, and LILACS databases for in vitro and in vivo toxicological studies conducted with either rats or mice, with no distinction with regard to sex or age. Other methods including BioRxiv, BDTD, Academic Google, citation searching, and specialist consultation were also adopted. Two independent investigators screened the titles and abstracts of retrieved studies and subsequently performed full-text reading and data extraction. The quality of the included studies was assessed by the Toxicological data Reliability assessment Tool (ToxRTool). The study protocol was registered with the Prospective Registry of Systematic Reviews (PROSPERO; CRD42022332250). Of the twelve studies included, three were in vitro and nine were in vivo studies. According to the ToxRTool, most studies were considered reliable either with or without restrictions, with no one being considered as not reliable. The studies found neuroteratogenic effects, decreased threshold for epileptic seizures, schizophrenic-like symptoms, and cognitive deficits to be associated with crack cocaine exposure. Moreover, both in vitro and in vivo studies reported a worsening in cocaine neurotoxic effect caused by the anhydroecgonine methyl ester (AEME), a cocaine main pyrolysis product, which is in line with the more aggressive pattern of crack cocaine use. This systematic review suggests that crack cocaine exposure is more neurotoxic than other routes of cocaine administration. However, before the scarcity of studies on this topic, further toxicological studies are necessary.
Collapse
Affiliation(s)
- Raphael Caio Tamborelli Garcia
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.
| | - Lidia Emmanuela Wiazowski Spelta
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariana Sayuri Berto Udo
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Neurology, McGovern Medical School, University of Texas Health at Houston, Houston, TX, USA
| | - Vitor Bruno
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Danilo Aguiar Fonseca
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | | | - Tiago Marques Dos Reis
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Larissa Helena Torres
- Department of Neurology, McGovern Medical School, University of Texas Health at Houston, Houston, TX, USA
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Campàs M, Reverté J, Tudó À, Alkassar M, Diogène J, Sureda FX. Automated Patch Clamp for the Detection of Tetrodotoxin in Pufferfish Samples. Mar Drugs 2024; 22:176. [PMID: 38667793 PMCID: PMC11050952 DOI: 10.3390/md22040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Tetrodotoxin (TTX) is a marine toxin responsible for many intoxications around the world. Its presence in some pufferfish species and, as recently reported, in shellfish, poses a serious health concern. Although TTX is not routinely monitored, there is a need for fast, sensitive, reliable, and simple methods for its detection and quantification. In this work, we describe the use of an automated patch clamp (APC) system with Neuro-2a cells for the determination of TTX contents in pufferfish samples. The cells showed an IC50 of 6.4 nM for TTX and were not affected by the presence of muscle, skin, liver, and gonad tissues of a Sphoeroides pachygaster specimen (TTX-free) when analysed at 10 mg/mL. The LOD achieved with this technique was 0.05 mg TTX equiv./kg, which is far below the Japanese regulatory limit of 2 mg TTX equiv./kg. The APC system was applied to the analysis of extracts of a Lagocephalus sceleratus specimen, showing TTX contents that followed the trend of gonads > liver > skin > muscle. The APC system, providing an in vitro toxicological approach, offers the advantages of being sensitive, rapid, and reliable for the detection of TTX-like compounds in seafood.
Collapse
Affiliation(s)
- Mònica Campàs
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
| | - Jaume Reverté
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Àngels Tudó
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Mounira Alkassar
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Jorge Diogène
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
| | - Francesc X. Sureda
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| |
Collapse
|
4
|
Raposo-Garcia S, Cao A, Costas C, Louzao MC, Vilariño N, Vale C, Botana LM. Mouse N2a Neuroblastoma Assay: Uncertainties and Comparison with Alternative Cell-Based Assays for Ciguatoxin Detection. Mar Drugs 2023; 21:590. [PMID: 37999414 PMCID: PMC10672529 DOI: 10.3390/md21110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmen Vale
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.R.-G.); (A.C.); (C.C.); (M.C.L.); (N.V.)
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.R.-G.); (A.C.); (C.C.); (M.C.L.); (N.V.)
| |
Collapse
|
5
|
Damuka N, Martin TJ, Bansode AH, Krizan I, Martin CW, Miller M, Whitlow CT, Nader MA, Solingapuram Sai KK. Initial Evaluations of the Microtubule-Based PET Radiotracer, [11C]MPC-6827 in a Rodent Model of Cocaine Abuse. Front Med (Lausanne) 2022; 9:817274. [PMID: 35295607 PMCID: PMC8918945 DOI: 10.3389/fmed.2022.817274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeMicrotubules (MTs) are structural units made of α and β tubulin subunits in the cytoskeleton responsible for axonal transport, information processing, and signaling mechanisms—critical for healthy brain function. Chronic cocaine exposure affects the function, organization, and stability of MTs in the brain, thereby impairing overall neurochemical and cognitive processes. At present, we have no reliable, non-invasive methods to image MTs for cocaine use disorder (CUD). Recently we reported the effect of cocaine in patient-derived neuroblastoma SH-SY5Y cells. Here we report preliminary results of a potential imaging biomarker of CUD using the brain penetrant MT-based radiotracer, [11C]MPC-6827, in an established rodent model of cocaine self-administration (SA).MethodsCell uptake studies were performed with [11C]MPC-6827 in SH-SY5Y cells, treated with or without cocaine (n = 6/group) at 30 and 60 min incubations. MicroPET/CT brain scans were performed in rats at baseline and 35 days after cocaine self-administration and compared with saline-treated rats as controls (n = 4/sex). Whole-body post-PET biodistribution, plasma metabolite assay, and brain autoradiography were performed in the same rats from imaging.ResultsCocaine-treated SH-SY5Y cells demonstrated a ∼26(±4)% decrease in radioactive uptake compared to non-treated controls. Both microPET/CT imaging and biodistribution results showed lower (∼35 ± 3%) [11C]MPC-6827 brain uptake in rats that had a history of cocaine self-administration compared to the saline-treated controls. Plasma metabolite assays demonstrate the stability (≥95%) of the radiotracer in both groups. In vitro autoradiography also demonstrated lower radioactive uptake in cocaine rats compared to the control rats. [11C]MPC-6827’s in vitro SH-SY5Y neuronal cell uptake, in vivo positron emission tomography (PET) imaging, ex vivo biodistribution, and in vitro autoradiography results corroborated well with each other, demonstrating decreased radioactive brain uptake in cocaine self-administered rats versus controls. There were no significant differences either in cocaine intake or in [11C]MPC-6827 uptake between the male and female rats.ConclusionsThis project is the first to validate in vivo imaging of the MT-associations with CUD in a rodent model. Our initial observations suggest that [11C]MPC-6827 uptake decreases in cocaine self-administered rats and that it may selectively bind to destabilized tubulin units in the brain. Further longitudinal studies correlating cocaine intake with [11C]MPC-6827 PET brain measures could potentially establish the MT scaffold as an imaging biomarker for CUD, providing researchers and clinicians with a sensitive tool to better understand the biological underpinnings of CUD and tailor new treatments.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas J. Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Avinash H. Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Conner W. Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher T. Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael A. Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kiran Kumar Solingapuram Sai
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- *Correspondence: Kiran Kumar Solingapuram Sai,
| |
Collapse
|
6
|
Merve AO, Sobiecka P, Remeškevičius V, Taylor L, Saskoy L, Lawton S, Jones BP, Elwakeel A, Mackenzie FE, Polycarpou E, Bennett J, Rooney B. Metabolites of Cannabis Induce Cardiac Toxicity and Morphological Alterations in Cardiac Myocytes. Int J Mol Sci 2022; 23:ijms23031401. [PMID: 35163321 PMCID: PMC8835806 DOI: 10.3390/ijms23031401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
Cannabis is one of the most commonly used recreational drugs worldwide. Rrecent epidemiology studies have linked increased cardiac complications to cannabis use. However, this literature is predominantly based on case incidents and post-mortem investigations. This study elucidates the molecular mechanism of Δ9-tetrahydrocannabinol (THC), and its primary metabolites 11-Hydroxy-Δ9-THC (THC-OH) and 11-nor-9-carboxy-Δ⁹-tetrahydrocannabinol (THC-COOH). Treatment of cardiac myocytes with THC-OH and THC-COOH increased cell migration and proliferation (p < 0.05), with no effect on cell adhesion, with higher doses (250–100 ng/mL) resulting in increased cell death and significant deterioration in cellular architecture. Conversely, no changes in cell morphology or viability were observed in response to THC. Expression of key ECM proteins α-SMA and collagen were up-regulated in response to THC-OH and THC-COOH treatments with concomitant modulation of PI3K and MAPK signalling. Investigations in the planarian animal model Polycelis nigra demonstrated that treatments with cannabinoid metabolites resulted in increased protein deposition at transection sites while higher doses resulted in significant lethality and decline in regeneration. These results highlight that the key metabolites of cannabis elicit toxic effects independent of the parent and psychoactive compound, with implications for cardiotoxicity relating to hypertrophy and fibrogenesis.
Collapse
Affiliation(s)
- Ayse Orme Merve
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Pola Sobiecka
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Vytautas Remeškevičius
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Luke Taylor
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Lili Saskoy
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Scott Lawton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Ben P. Jones
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Ahmed Elwakeel
- Centre for Sport, Exercise and Life Sciences (CSELS), Coventry University, Pharmacology and Therapeutics, Alison Gingell Building, Whitefriars Street, Coventry CV1 2DS, UK; (A.E.); (J.B.)
| | - Francesca E. Mackenzie
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Elena Polycarpou
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Jason Bennett
- Centre for Sport, Exercise and Life Sciences (CSELS), Coventry University, Pharmacology and Therapeutics, Alison Gingell Building, Whitefriars Street, Coventry CV1 2DS, UK; (A.E.); (J.B.)
| | - Brian Rooney
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
- Correspondence:
| |
Collapse
|
7
|
The role of mitochondria in cocaine addiction. Biochem J 2021; 478:749-764. [PMID: 33626141 DOI: 10.1042/bcj20200615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/03/2023]
Abstract
The incidence of cocaine abuse is increasing especially in the U.K. where the rates are among the highest in Europe. In addition to its role as a psychostimulant, cocaine has profound effect on brain metabolism, impacting glycolysis and impairing oxidative phosphorylation. Cocaine exposure alters metabolic gene expression and protein networks in brain regions including the prefrontal cortex, the ventral tegmental area and the nucleus accumbens, the principal nuclei of the brain reward system. Here, we focus on how cocaine impacts mitochondrial function, in particular through alterations in electron transport chain function, reactive oxygen species (ROS) production and oxidative stress (OS), mitochondrial dynamics and mitophagy. Finally, we describe the impact of cocaine on brain energy metabolism in the developing brain following prenatal exposure. The plethora of mitochondrial functions altered following cocaine exposure suggest that therapies maintaining mitochondrial functional integrity may hold promise in mitigating cocaine pathology and addiction.
Collapse
|
8
|
Effect of ethanol and cocaine on [ 11C]MPC-6827 uptake in SH-SY5Y cells. Mol Biol Rep 2021; 48:3871-3876. [PMID: 33880672 PMCID: PMC8172511 DOI: 10.1007/s11033-021-06336-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/02/2021] [Indexed: 10/26/2022]
Abstract
Microtubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.
Collapse
|
9
|
Agharahimi M, Badisa RB, Mazzio E, Soliman KF, Goodman CB. Cocaine potentiates an inflammatory response in C6 astroglia-like cells. Biomed Rep 2021; 14:45. [PMID: 33786174 PMCID: PMC7995314 DOI: 10.3892/br.2021.1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
Cocaine is a highly addictive drug that mediates its effect through altering dopamine metabolism in the central nervous system (CNS), resulting in a feeling of euphoria. Owing to its high lipophilicity, cocaine easily crosses the blood brain barrier of the CNS and reaches various domains of the brain, where it can trigger cellular damage. Cocaine-induced CNS damage may arise due to increased levels of free radicals and nitric oxide (NO) in immunecompetent astroglial cells. In the present study, the potential ability of cocaine to exacerbate the production of inflammatory products, primarily superoxide free radicals (O2-), hydrogen peroxide (H2O2) and NO/nitrite (NO2-) was examined in rat C6 astroglia-like cells challenged with lipopolysaccharide (LPS), a bacterial endotoxin, and interferon gamma (IFNγ), a pro-inflammatory cytokine. Furthermore, the role of cocaine in increasing the expression of hypoxia inducible factor-1 (HIF-1α) and vascular endothelial growth factor (VEGF) in cells was also determined. First, the viability of the cells was assessed when treated with cocaine (0.5-7 mM) for 24 and 48 h. The results showed that cocaine toxicity was both time and dose-dependent. In subsequent studies, cells were challenged with or without LPS and IFNγ, followed by co-treatment with cocaine (1-4 mM) for 24 h. Cocaine treatment did not increase O2- or H2O2 production in the challenged or unchallenged cells. Similarly, cocaine treatment did not increase NO/NO2- production in the unchallenged cells; however, NO/NO2- levels in the challenged cells was increased 40-50-fold upon cocaine treatment compared with the corresponding unchallenged group. The HIF-1α and VEGF levels were significantly increased in the challenged cells at higher cocaine doses compared with the unchallenged cells. Since high concentrations of NO are associated with inflammation, the high levels of NO production observed in the present study suggested that cocaine may have potentiated the inflammatory response in the challenged C6 astroglia-like cells.
Collapse
Affiliation(s)
- Maryam Agharahimi
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Ramesh B Badisa
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Elizabeth Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Karam F Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Carl B Goodman
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| |
Collapse
|
10
|
Udo MSB, da Silva MAA, de Souza Prates S, Dal'Jovem LF, de Oliveira Duro S, Faião-Flores F, Garcia RCT, Maria-Engler SS, Marcourakis T. Anhydroecgonine methyl ester, a cocaine pyrolysis product, contributes to cocaine-induced rat primary hippocampal neuronal death in a synergistic and time-dependent manner. Arch Toxicol 2021; 95:1779-1791. [PMID: 33674969 DOI: 10.1007/s00204-021-03017-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/25/2021] [Indexed: 01/11/2023]
Abstract
Crack cocaine users are simultaneously exposed to volatilized cocaine and to its main pyrolysis product, anhydroecgonine methyl ester (AEME). Although the neurotoxic effects of cocaine have been extensively studied, little is known about AEME or its combination. We investigated cell death processes using rat primary hippocampal cells exposed to cocaine (2 mM), AEME (1 mM) and their combination (C + A), after 1, 3, 6 and 12 h. Cocaine increased LC3 I after 6 h and LC3 II after 12 h, but reduced the percentage of cells with acid vesicles, suggesting failure in the autophagic flux, which activated the extrinsic apoptotic pathway after 12 h. AEME neurotoxicity did not involve the autophagic process; rather, it activated caspase-9 after 6 h and caspase-8 after 12 h leading to a high percentage of cells in early apoptosis. C + A progressively reduced the percentage of undamaged cells, starting after 3 h; it activated both apoptotic pathways after 6 h, and was more neurotoxic than cocaine and AEME alone. Also, C + A increased the phosphorylation of p62 after 12 h, but there was little difference in LC3 I or II, and a small percentage of cells with acid vesicles at all time points investigated. In summary, the present study provides new evidence for the neurotoxic mechanism and timing response of each substance alone and in combination, indicating that AEME is more than just a biological marker for crack cocaine consumption, as it may intensify and hasten cocaine neurotoxicity.
Collapse
Affiliation(s)
- Mariana Sayuri Berto Udo
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Sara de Souza Prates
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro Ferreira Dal'Jovem
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stephanie de Oliveira Duro
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Faião-Flores
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raphael Caio Tamborelli Garcia
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Silvya Stuchi Maria-Engler
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tania Marcourakis
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Cocaine Induces Cytoskeletal Changes in Cardiac Myocytes: Implications for Cardiac Morphology. Int J Mol Sci 2021; 22:ijms22052263. [PMID: 33668403 PMCID: PMC7956613 DOI: 10.3390/ijms22052263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023] Open
Abstract
Cocaine is one of the most widely abused illicit drugs worldwide and has long been recognised as an agent of cardiac dysfunction in numerous cases of drug overdose. Cocaine has previously been shown to up-regulate cytoskeletal rearrangements and morphological changes in numerous tissues; however, previous literature observes such changes primarily in clinical case reports and addiction studies. An investigation into the fundamental cytoskeletal parameters of migration, adhesion and proliferation were studied to determine the cytoskeletal and cytotoxic basis of cocaine in cardiac cells. Treatment of cardiac myocytes with cocaine increased cell migration and adhesion (p < 0.05), with no effect on cell proliferation, except with higher doses eliciting (1–10 μg/mL) its diminution and increase in cell death. Cocaine downregulated phosphorylation of cofilin, decreased expression of adhesion modulators (integrin-β3) and increased expression of ezirin within three hours of 1 μg/mL treatments. These functional responses were associated with changes in cellular morphology, including alterations in membrane stability and a stellate-like phenotype with less compaction between cells. Higher dose treatments of cocaine (5–10 μg/mL) were associated with significant cardiomyocyte cell death (p < 0.05) and loss of cellular architecture. These results highlight the importance of cocaine in mediating cardiomyocyte function and cytotoxicity associated with the possible loss of intercellular contacts required to maintain normal cell viability, with implications for cardiotoxicity relating to hypertrophy and fibrogenesis.
Collapse
|
12
|
Repeated exposure of cocaine alters mitochondrial dynamics in mouse neuroblastoma Neuro2a. Neurotoxicology 2019; 75:70-77. [DOI: 10.1016/j.neuro.2019.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/10/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022]
|
13
|
Identification of cytotoxic markers in methamphetamine treated rat C6 astroglia-like cells. Sci Rep 2019; 9:9412. [PMID: 31253835 PMCID: PMC6599005 DOI: 10.1038/s41598-019-45845-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Methamphetamine (METH) is a powerfully addictive psychostimulant that has a pronounced effect on the central nervous system (CNS). The present study aimed to assess METH toxicity in differentiated C6 astroglia-like cells through biochemical and toxicity markers with acute (1 h) and chronic (48 h) treatments. In the absence of external stimulants, cellular differentiation of neuronal morphology was achieved through reduced serum (2.5%) in the medium. The cells displayed branched neurite-like processes with extensive intercellular connections. Results indicated that acute METH treatment neither altered the cell morphology nor killed the cells, which echoed with lack of consequence on reactive oxygen species (ROS), nitric oxide (NO) or inhibition of any cell cycle phases except induction of cytoplasmic vacuoles. On the other hand, chronic treatment at 1 mM or above destroyed the neurite-like processors and decreased the cell viability that paralleled with increased levels of ROS, lipid peroxidation and lactate, depletion in glutathione (GSH) level and inhibition at G0/G1 phase of cell cycle, leading to apoptosis. Pre-treatment of cells with N-acetyl cysteine (NAC, 2.5 mM for 1 h) followed by METH co-treatment for 48 h rescued the cells completely from toxicity by decreasing ROS through increased GSH. Our results provide evidence that increased ROS and GSH depletion underlie the cytotoxic effects of METH in the cells. Since loss in neurite connections and intracellular changes can lead to psychiatric illnesses in drug users, the evidence that we show in our study suggests that these are also contributing factors for psychiatric-illnesses in METH addicts.
Collapse
|