1
|
Chen Q, Zhong G, Fang X, Lin C, Wang S, Li M. The multifaceted role of Sestrin 3 (SESN3) in oxidative stress, inflammation and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119938. [PMID: 40174866 DOI: 10.1016/j.bbamcr.2025.119938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
The pathogenesis of inflammation and tumors is a focal point of scientific inquiry, with oxidative stress often serving as the primary initiator. Within the human genome, the SESN3 gene encodes the SESN3 protein, a crucial antioxidant stress protein. Acting as a regulatory factor, SESN3 intricately modulates cellular oxidative stress, actively participating in cellular protection and repair mechanisms. Its functions span antioxidative, anti-aging, and anti-tumor properties. The expression of SESN3 is closely linked to cellular and oxidative stress, metabolic status, and specific signaling pathways. This review aims to delve into the origins and functions of SESN3, its role within signaling pathways, and its contributions to inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Qiusan Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guoqiang Zhong
- Department of Gastroenterology, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Xianmei Fang
- Department of Ultrasonography, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Chuangzhen Lin
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Department of Gastroenterology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Haidurov A, Budanov AV. Sestrins in Carcinogenesis-The Firefighters That Sometimes Stoke the Fire. Cancers (Basel) 2025; 17:1578. [PMID: 40361504 PMCID: PMC12071529 DOI: 10.3390/cancers17091578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Sestrins (SESN1-3) are a family of stress-responsive proteins that regulate cellular metabolism and redox balance, both of which are frequently disrupted in cancer. As direct targets of stress-responsive transcription factors, including tumour suppressor p53, Sestrins function as leucine-dependent inhibitors of mTORC1 and potent antioxidants. Their downregulation is widely observed across multiple cancers and is associated with increased tumour growth and poor prognosis. Despite their consistent tumour-suppressive effects through mTORC1 inhibition and promotion of p53-dependent apoptosis, Sestrins exhibit a limited role in tumour initiation, which appears to be context-dependent. Their antioxidant activity reduces oxidative damage, thereby protecting against genomic instability and other cancer-promoting events. However, in certain contexts, Sestrins may promote tumour survival and progression by stimulating pro-survival pathways, such as AKT signalling through mTORC2 activation. This review examines the molecular mechanisms underlying these dual functions, with a particular focus on mTOR signalling and oxidative stress. We also discuss Sestrin expression patterns and functional outcomes in various cancer types, including lung, liver, colon, skin, prostate, and follicular lymphomas, highlighting their potential as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Alexander Haidurov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, D02 R590 Dublin, Ireland
| | - Andrei V. Budanov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, D02 R590 Dublin, Ireland
| |
Collapse
|
3
|
Zhirong Z, Kexin J, Mu Y, Lichen Z, Zhen T, Hongyin L, Ruiwu D. Suppression of TP Rat Pancreatic Acinar Cell Apoptosis by hucMSC-Ex Carrying hsa-miR-21-5p via PTEN/PI3K Regulation. Stem Cells Int 2025; 2025:8883585. [PMID: 40129959 PMCID: PMC11932749 DOI: 10.1155/sci/8883585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/19/2025] [Indexed: 03/26/2025] Open
Abstract
Objective: The traumatic pancreatitis (TP) has an alarmingly high mortality rate. Our previous research has demonstrated that human umbilical cord mesenchymal stem cells-derived exosomes (hucMSC-Exs) could treat TP by inhibiting acinar cell apoptosis. Accordingly, the objective of this study is to unravel the intricate mechanism behind the repair of pancreatic injury in TP rats. Methods: A gene interaction network of miRNA was constructed based on the Gene Expression Omnibus (GEO) database (GSE 159814). Our investigation was divided into two groups, and appropriate controls were implemented for each group. The expression levels of inflammatory factors in each group were detected, along with the pathological damage of pancreatic tissue, the percentage of apoptotic cells, and key mRNA and protein expression levels. Results: The miRNA-mRNA gene interaction network suggests that hsa-miR-21-5p/phosphatase and tensin homolog (PTEN) are positioned at the core of this interaction network. Enzyme-linked immunosorbent assay (ELISA) and histological examination (HE) results suggest that pancreatic damage increased in the miR-21 inhibitor and EXW groups, whereas it decreased in the miR-21 activator and EXC groups compared to the EX group. PCR, western blot (WB), and TdT-mediated dUTP Nick-End Labeling (TUNEL) results indicate that hucMSC-Ex carrying hsa-miR-21-5p suppresses excessive activation of PTEN by phosphoinositide 3-kinase (PI3K), exerting therapeutic effects. Conclusion: This study has discovered that hucMSC-Ex effectively inhibits the translation of PTEN via the transported hsa-miR-21-5p, consequently affecting the PI3K/serine-threonine kinase (AKT) signaling pathway. This results in reduced inflammation and inhibition of acinar cell apoptosis by regulating pancreatic enzyme leakage, thereby providing a therapeutic effect on TP.
Collapse
Affiliation(s)
- Zhao Zhirong
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jiang Kexin
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
- The General Hospital of Western Theater Command, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yuan Mu
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Zhou Lichen
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Tan Zhen
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Liang Hongyin
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Dai Ruiwu
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
- The General Hospital of Western Theater Command, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Hashemi M, Rezaei M, Rezaeiaghdam H, Jamali B, Koohpar ZK, Tanha M, Bizhanpour A, Asadi S, Jafari AM, Khosroshahi EM, Eslami M, Salimimoghadam S, Nabavi N, Rashidi M, Fattah E, Taheriazam A, Entezari M. Highlighting function of Wnt signalling in urological cancers: Molecular interactions, therapeutic strategies, and (nano)strategies. Transl Oncol 2024; 50:102145. [PMID: 39357465 PMCID: PMC11474201 DOI: 10.1016/j.tranon.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a complex, multistep process characterized by abnormal cell growth and metastasis as well as the capacity of the tumor cells in therapy resistance development. The urological system is particularly susceptible to a group of malignancies known as urological cancers, where an accumulation of genetic alterations drives carcinogenesis. In various human cancers, Wnt singalling is dysregulated; following nuclear transfer of β-catenin, it promotes tumor progression and affects genes expression. Elevated levels of Wnt have been documented in urological cancers, where its overexpression enhances growth and metastasis. Additionally, increased Wnt singalling contributes to chemoresistance in urological cancers, leading to reduced sensitivity to chemotherapy agents like cisplatin, doxorubicin, and paclitaxel. Wnt upregulation can change radiotherapy response of urological cancers. The regulation of Wnt involves various molecular pathways, including Akt, miRNAs, lncRNAs, and circRNAs, all of which play roles in carcinogenesis. Targeting and silencing Wnt or its associated pathways can mitigate tumorigenesis in urological cancers. Anti-cancer compounds such as curcumin and thymoquinone have shown efficacy in suppressing tumorigenesis through the downregulation of Wnt singalling. Notably, nanoparticles have proven effective in treating urological cancers, with several studies in prostate cancer (PCa) using nanoparticles to downregulate Wnt and suppress tumor growth. Future research should focus on developing small molecules that inhibit Wnt singalling to further suppress tumorigenesis and advance the treatment of urological cancers. Moreover, Wnt can be used as reliable biomarker for the diagnosis and prognosis of urological cancers.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Hadi Rezaeiaghdam
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Zeinab Khazaei Koohpar
- Department Of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahsa Tanha
- Department Of Biological Sciences, University Of Alabama, Tuscaloosa, Al, United States
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Zhang Z, Shen Q, Ji Y, Ma Y, Hou H, Yang H, Zhu Y, Chen Y, Hu Y. Structural Optimization of Isoquinoline Derivatives from Lycobetaine and Their Inhibitory Activity against Neuroendocrine Prostate Cancer Cells. Molecules 2024; 29:4503. [PMID: 39339498 PMCID: PMC11435415 DOI: 10.3390/molecules29184503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly aggressive cancer that is resistant to hormone therapy and characterized by poor prognosis, as well as limited therapeutic options. Since the natural product lycobetaine was reported to exhibit good antitumor activities against various types of cancers, we initially simplified the scaffold of lycobetaine to obtain the active compound 1, an isoquinoline derivative with an aryl moiety substitution at the 4-position, which showed apparent antiproliferative activities against NPEC cell line LASCPC-01 in vitro. Subsequently, we carried out structural optimization and systematic structure-activity relationship (SAR) studies on compound 1, leading to the discovery of compound 46, which demonstrated potent inhibitory activities against the LASCPC-01 cell line with an IC50 value of 0.47 μM. Moreover, compound 46 displayed remarkable selectivity over prostate cancer cell line PC-3 with a selectivity index greater than 190-fold. Further cell-based mechanism studies revealed that compound 46 and lycobetaine can effectively induce G1 cell cycle arrest and apoptosis dose dependently. However, lycobetaine inhibited the expression of neuroendocrine markers, while compound 46 slightly upregulated these proteins. This suggested that compound 46 might exert its antitumor activities through a different mechanism than lycobetaine, warranting further study.
Collapse
Affiliation(s)
- Zhuo Zhang
- School of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China;
| | - Qianqian Shen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.S.); (H.H.); (Y.C.)
| | - Yiyi Ji
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China;
| | - Yanjie Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-ChongZhi Road, Shanghai 201203, China; (Y.M.); (H.Y.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Haiyang Hou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.S.); (H.H.); (Y.C.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Huajie Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-ChongZhi Road, Shanghai 201203, China; (Y.M.); (H.Y.)
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China;
| | - Yi Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Q.S.); (H.H.); (Y.C.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Youhong Hu
- School of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-ChongZhi Road, Shanghai 201203, China; (Y.M.); (H.Y.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1st Xiangshan Branch Alley, Hangzhou 310024, China
| |
Collapse
|
6
|
Zhang W, Lee A, Lee L, Dehm SM, Huang RS. Computational drug discovery pipelines identify NAMPT as a therapeutic target in neuroendocrine prostate cancer. Clin Transl Sci 2024; 17:e70030. [PMID: 39295559 PMCID: PMC11411198 DOI: 10.1111/cts.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive advanced subtype of prostate cancer that exhibits poor prognosis and broad resistance to therapies. Currently, few treatment options are available, highlighting a need for new therapeutics to help curb the high mortality rates of this disease. We designed a comprehensive drug discovery pipeline that quickly generates drug candidates ready to be tested. Our method estimated patient response to various therapeutics in three independent prostate cancer patient cohorts and selected robust candidate drugs showing high predicted potency in NEPC tumors. Using this pipeline, we nominated NAMPT as a molecular target to effectively treat NEPC tumors. Our in vitro experiments validated the efficacy of NAMPT inhibitors in NEPC cells. Compared with adenocarcinoma LNCaP cells, NAMPT inhibitors induced significantly higher growth inhibition in the NEPC cell line model NCI-H660. Moreover, to further assist clinical development, we implemented a causal feature selection method to detect biomarkers indicative of sensitivity to NAMPT inhibitors. Gene expression modifications of selected biomarkers resulted in changes in sensitivity to NAMPT inhibitors consistent with expectations in NEPC cells. Validation of these markers in an independent prostate cancer patient dataset supported their use to inform clinical efficacy. Our findings pave the way for new treatments to combat pervasive drug resistance and reduce mortality. Furthermore, this research highlights the use of drug sensitivity-related biomarkers to understand mechanisms and potentially indicate clinical efficacy.
Collapse
Affiliation(s)
- Weijie Zhang
- Bioinformatics and Computational BiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Experimental and Clinical PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Adam Lee
- Department of Experimental and Clinical PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lauren Lee
- Department of Experimental and Clinical PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Scott M. Dehm
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of UrologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - R. Stephanie Huang
- Bioinformatics and Computational BiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Experimental and Clinical PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
7
|
Kouroukli O, Bravou V, Giannitsas K, Tzelepi V. Tissue-Based Diagnostic Biomarkers of Aggressive Variant Prostate Cancer: A Narrative Review. Cancers (Basel) 2024; 16:805. [PMID: 38398199 PMCID: PMC10887410 DOI: 10.3390/cancers16040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Prostate cancer (PC) is a common malignancy among elderly men, characterized by great heterogeneity in its clinical course, ranging from an indolent to a highly aggressive disease. The aggressive variant of prostate cancer (AVPC) clinically shows an atypical pattern of disease progression, similar to that of small cell PC (SCPC), and also shares the chemo-responsiveness of SCPC. The term AVPC does not describe a specific histologic subtype of PC but rather the group of tumors that, irrespective of morphology, show an aggressive clinical course, dictated by androgen receptor (AR) indifference. AR indifference represents an adaptive response to androgen deprivation therapy (ADT), driven by epithelial plasticity, an inherent ability of tumor cells to adapt to their environment by changing their phenotypic characteristics in a bi-directional way. The molecular profile of AVPC entails combined alterations in the tumor suppressor genes retinoblastoma protein 1 (RB1), tumor protein 53 (TP53), and phosphatase and tensin homolog (PTEN). The understanding of the biologic heterogeneity of castration-resistant PC (CRPC) and the need to identify the subset of patients that would potentially benefit from specific therapies necessitate the development of prognostic and predictive biomarkers. This review aims to discuss the possible pathophysiologic mechanisms of AVPC development and the potential use of emerging tissue-based biomarkers in clinical practice.
Collapse
Affiliation(s)
- Olga Kouroukli
- Department of Pathology, Evaggelismos General Hospital, 10676 Athens, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504 Patras, Greece;
| | | | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
8
|
Liu R, Xu Z, Huang X, Xu B, Chen M. Yin Yang 1 promotes the neuroendocrine differentiation of prostate cancer cells via the non-canonical WNT pathway (FYN/STAT3). Clin Transl Med 2023; 13:e1422. [PMID: 37771187 PMCID: PMC10539684 DOI: 10.1002/ctm2.1422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND A growing number of studies have shown that Yin Yang 1 (YY1) promotes the development of multiple tumours. The purpose of the current study was to determine the mechanism by which YY1 mediates neuroendocrine differentiation of prostate cancer (NEPC) cells undergoing cellular plasticity. METHODS Using the Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases, we bioinformatically analyzed YY1 expression in prostate cancer (PCa). Aberrant YY1 expression was validated in different PCa tissues and cell lines via quantitative reverse transcription polymerase chain reaction, western blotting, and immunohistochemistry. In vivo and in vitro functional assays verified the oncogenicity of YY1 in PCa. Further functional assays showed that ectopic expression of YY1 promoted cellular plasticity in PCa cells via epithelial-mesenchymal transition induction and neuroendocrine differentiation. RESULTS Androgen deprivation therapy induced a decrease in YY1 protein ubiquitination, enhanced its stability, and thus enhanced the transcriptional activity of FZD8. Castration enhanced FZD8 binding to Wnt9A and mediated cellular plasticity by activating the non-canonical Wnt (FZD8/FYN/STAT3) pathway. CONCLUSIONS We identified YY1 as a novel dysregulated transcription factor that plays an important role in NEPC progression in this study. We believe that an in-depth investigation of the mechanism underlying YY1-mediated disease may lead to improved NEPC therapies.
Collapse
Affiliation(s)
- Rui‐ji Liu
- Department of Urology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
- Surgical Research Center, Institute of UrologySoutheast University Medical SchoolNanjingChina
| | - Zhi‐Peng Xu
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
- Surgical Research Center, Institute of UrologySoutheast University Medical SchoolNanjingChina
| | - Xiang Huang
- Department of Urology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bin Xu
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
- Surgical Research Center, Institute of UrologySoutheast University Medical SchoolNanjingChina
| | - Ming Chen
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
- Surgical Research Center, Institute of UrologySoutheast University Medical SchoolNanjingChina
- Department of Urology, Nanjing Lishui District People's HospitalZhongda Hospital Lishui BranchSoutheast UniversityNanjingChina
| |
Collapse
|
9
|
Zamora I, Freeman MR, Encío IJ, Rotinen M. Targeting Key Players of Neuroendocrine Differentiation in Prostate Cancer. Int J Mol Sci 2023; 24:13673. [PMID: 37761978 PMCID: PMC10531052 DOI: 10.3390/ijms241813673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PC) that commonly emerges through a transdifferentiation process from prostate adenocarcinoma and evades conventional therapies. Extensive molecular research has revealed factors that drive lineage plasticity, uncovering novel therapeutic targets to be explored. A diverse array of targeting agents is currently under evaluation in pre-clinical and clinical studies with promising results in suppressing or reversing the neuroendocrine phenotype and inhibiting tumor growth and metastasis. This new knowledge has the potential to contribute to the development of novel therapeutic approaches that may enhance the clinical management and prognosis of this lethal disease. In the present review, we discuss molecular players involved in the neuroendocrine phenotype, and we explore therapeutic strategies that are currently under investigation for NEPC.
Collapse
Affiliation(s)
- Irene Zamora
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Michael R. Freeman
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ignacio J. Encío
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarre Institute for Health Research, 31008 Pamplona, Spain
| | - Mirja Rotinen
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarre Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
10
|
Silvestri R, Nicolì V, Gangadharannambiar P, Crea F, Bootman MD. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol 2023; 20:524-543. [PMID: 36964408 DOI: 10.1038/s41585-023-00738-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
Cancer cells proliferate, differentiate and migrate by repurposing physiological signalling mechanisms. In particular, altered calcium signalling is emerging as one of the most widespread adaptations in cancer cells. Remodelling of calcium signalling promotes the development of several malignancies, including prostate cancer. Gene expression data from in vitro, in vivo and bioinformatics studies using patient samples and xenografts have shown considerable changes in the expression of various components of the calcium signalling toolkit during the development of prostate cancer. Moreover, preclinical and clinical evidence suggests that altered calcium signalling is a crucial component of the molecular re-programming that drives prostate cancer progression. Evidence points to calcium signalling re-modelling, commonly involving crosstalk between calcium and other cellular signalling pathways, underpinning the onset and temporal progression of this disease. Discrete alterations in calcium signalling have been implicated in hormone-sensitive, castration-resistant and aggressive variant forms of prostate cancer. Hence, modulation of calcium signals and downstream effector molecules is a plausible therapeutic strategy for both early and late stages of prostate cancer. Based on this premise, clinical trials have been undertaken to establish the feasibility of targeting calcium signalling specifically for prostate cancer.
Collapse
Affiliation(s)
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Martin D Bootman
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
11
|
Azani A, Omran SP, Ghasrsaz H, Idani A, Eliaderani MK, Peirovi N, Dokhani N, Lotfalizadeh MH, Rezaei MM, Ghahfarokhi MS, KarkonShayan S, Hanjani PN, Kardaan Z, Navashenagh JG, Yousefi M, Abdolahi M, Salmaninejad A. MicroRNAs as biomarkers for early diagnosis, targeting and prognosis of prostate cancer. Pathol Res Pract 2023; 248:154618. [PMID: 37331185 DOI: 10.1016/j.prp.2023.154618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Globally, prostate cancer (PC) is leading cause of cancer-related mortality in men worldwide. Despite significant advances in the treatment and management of this disease, the cure rates for PC remains low, largely due to late detection. PC detection is mostly reliant on prostate-specific antigen (PSA) and digital rectal examination (DRE); however, due to the low positive predictive value of current diagnostics, there is an urgent need to identify new accurate biomarkers. Recent studies support the biological role of microRNAs (miRNAs) in the initiation and progression of PC, as well as their potential as novel biomarkers for patients' diagnosis, prognosis, and disease relapse. In the advanced stages, cancer-cell-derived small extracellular vesicles (SEVs) may constitute a significant part of circulating vesicles and cause detectable changes in the plasma vesicular miRNA profile. Recent computational model for the identification of miRNA biomarkers discussed. In addition, accumulating evidence indicates that miRNAs can be utilized to target PC cells. In this article, the current understanding of the role of microRNAs and exosomes in the pathogenesis and their significance in PC prognosis, early diagnosis, chemoresistance, and treatment are reviewed.
Collapse
Affiliation(s)
- Alireza Azani
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Parvizi Omran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghasrsaz
- Faculty of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Asra Idani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niloufar Peirovi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Dokhani
- Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | - Sepideh KarkonShayan
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Parisa Najari Hanjani
- Department of Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Zahra Kardaan
- Department of Cellular Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Abdolahi
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
12
|
Zhang X, Barnett E, Smith J, Wilkinson E, Subramaniam RM, Zarrabi A, Rodger EJ, Chatterjee A. Genetic and epigenetic features of neuroendocrine prostate cancer and their emerging applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:41-66. [PMID: 38359970 DOI: 10.1016/bs.ircmb.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Prostate cancer is the second most prevalent cancer in men globally. De novo neuroendocrine prostate cancer (NEPC) is uncommon at initial diagnosis, however, (treatment-induced) t-NEPC emerges in up to 25% of prostate adenocarcinoma (PRAD) cases treated with androgen deprivation, carrying a drastically poor prognosis. The transition from PRAD to t-NEPC is underpinned by several key genetic mutations; TP53, RB1, and MYCN are the main genes implicated, bearing similarities to other neuroendocrine tumours. A broad range of epigenetic alterations, such as aberrations in DNA methylation, histone post-translational modifications, and non-coding RNAs, may drive lineage plasticity from PRAD to t-NEPC. The clinical diagnosis of NEPC is hampered by a lack of accessible biomarkers; recent advances in liquid biopsy techniques assessing circulating tumour cells and ctDNA in NEPC suggest that the advent of non-invasive means of monitoring progression to NEPC is on the horizon. Such techniques are vital for NEPC management; diagnosis of t-NEPC is crucial for implementing effective treatment, and precision medicine will be integral to providing the best outcomes for patients.
Collapse
Affiliation(s)
- Xintong Zhang
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Te Whatu Ora/Health New Zealand, Wellington, New Zealand
| | - Emma Wilkinson
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Faculty of Medicine, Nursing, Midwifery and Health Sciences, The University of Notre Dame Australia, Fremantle, WA, Australia; Department of Radiology, Duke University, Durham, NC, United States
| | - Amir Zarrabi
- Te Whatu Ora/Health New Zealand, Wellington, New Zealand; Precision Urology, Dunedin, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Honorary Professor, School of Health Sciences and Technology, UPES University, Dehradun, India.
| |
Collapse
|
13
|
Imamura J, Ganguly S, Muskara A, Liao RS, Nguyen JK, Weight C, Wee CE, Gupta S, Mian OY. Lineage plasticity and treatment resistance in prostate cancer: the intersection of genetics, epigenetics, and evolution. Front Endocrinol (Lausanne) 2023; 14:1191311. [PMID: 37455903 PMCID: PMC10349394 DOI: 10.3389/fendo.2023.1191311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Androgen deprivation therapy is a cornerstone of treatment for advanced prostate cancer, and the development of castrate-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-related mortality. While CRPC typically develops through a gain in androgen receptor (AR) signaling, a subset of CRPC will lose reliance on the AR. This process involves genetic, epigenetic, and hormonal changes that promote cellular plasticity, leading to AR-indifferent disease, with neuroendocrine prostate cancer (NEPC) being the quintessential example. NEPC is enriched following treatment with second-generation anti-androgens and exhibits resistance to endocrine therapy. Loss of RB1, TP53, and PTEN expression and MYCN and AURKA amplification appear to be key drivers for NEPC differentiation. Epigenetic modifications also play an important role in the transition to a neuroendocrine phenotype. DNA methylation of specific gene promoters can regulate lineage commitment and differentiation. Histone methylation can suppress AR expression and promote neuroendocrine-specific gene expression. Emerging data suggest that EZH2 is a key regulator of this epigenetic rewiring. Several mechanisms drive AR-dependent castration resistance, notably AR splice variant expression, expression of the adrenal-permissive 3βHSD1 allele, and glucocorticoid receptor expression. Aberrant epigenetic regulation also promotes radioresistance by altering the expression of DNA repair- and cell cycle-related genes. Novel therapies are currently being developed to target these diverse genetic, epigenetic, and hormonal mechanisms promoting lineage plasticity-driven NEPC.
Collapse
Affiliation(s)
- Jarrell Imamura
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shinjini Ganguly
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andrew Muskara
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ross S. Liao
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jane K. Nguyen
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher Weight
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher E. Wee
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shilpa Gupta
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Omar Y. Mian
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
14
|
Chu YH, Huang YC, Chiu PY, Kuo WH, Pan YR, Kuo YT, Wang RH, Kao YC, Wang YH, Lin YF, Lin KT. Combating breast cancer progression through combination therapy with hypomethylating agent and glucocorticoid. iScience 2023; 26:106597. [PMID: 37128608 PMCID: PMC10148121 DOI: 10.1016/j.isci.2023.106597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related death in women. Among breast cancer types, triple-negative breast cancer (TNBC) accounts for 15% of all breast cancers with aggressive tumor behavior. By using bioinformatic approaches, we observed that the microRNA-708 promoter is highly methylated in breast carcinomas, and this methylation is linked to a poor prognosis. Moreover, microRNA-708 expression correlates with better clinical outcomes in TNBC patients. Combination treatment with the hypomethylating agent decitabine and synthetic glucocorticoid significantly increased the expression of microRNA-708, reactivated DNMT-suppressed pathways, and decreased the expression of multiple metastasis-promoting genes such as matrix metalloproteinases (MMPs) and IL-1β, leading to the suppression of breast cancer cell proliferation, migration, and invasion, as well as reduced tumor growth and distant metastasis in the TNBC xenograft mouse model. Overall, our study reveals a therapeutic opportunity in which a combined regimen of decitabine with glucocorticoid may have therapeutic potential in treating TNBC patients.
Collapse
Affiliation(s)
- Yu-Hsin Chu
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Chen Huang
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Yun Chiu
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yan-Ru Pan
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yuan-Ting Kuo
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Rong-Hsuan Wang
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chin Kao
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hsiang Wang
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Fan Lin
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Ti Lin
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Corresponding author
| |
Collapse
|
15
|
Huang Z, Tang Y, Wei Y, Qian J, Kang Y, Wang D, Xu M, Nie L, Chen X, Chen N, Zhou Q. Prognostic Significance of Chromogranin A Expression in the Initial and Second Biopsies in Metastatic Prostate Cancer. J Clin Med 2023; 12:jcm12103362. [PMID: 37240468 DOI: 10.3390/jcm12103362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Neuroendocrine differentiation (NED) characterized by the expression of neuroendocrine markers, such as chromogranin A (CgA), is frequently observed in advanced prostate cancer (PCa), the prognostic significance of which is still controversial. Here we specifically addressed the issue of the potential prognostic value of CgA expression in advanced-stage PCa patients with distant metastases and its change over time from metastatic hormone-sensitive (mHSPC) to metastatic castration-resistant prostate cancer (mCRPC). CgA expression was assessed immunohistochemically in initial biopsies of mHSPC, as well as in second biopsies of mCRPC in sixty-eight patients, and its correlation with prognosis (together with conventional clinicopathologic parameters) was analyzed using the Kaplan-Meier method and Cox proportional hazard model. We found that CgA expression was an independent adverse prognostic factor for both mHSPC (CgA positivity ≥ 1%, HR = 2.16, 95% CI: 1.04-4.26, p = 0.031) and mCRPC (CgA ≥ 10%, HR = 20.19, 95% CI: 3.04-329.9, p = 0.008). CgA positivity generally increased from mHSPC to mCRPC and was a negative prognosticator. The assessment of CgA expression may help with the clinical evaluation of advanced-stage patients with distant metastases.
Collapse
Affiliation(s)
- Zhuo Huang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Tang
- Department of Pathology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Yuyan Wei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingyu Qian
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yifan Kang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Duohao Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Miao Xu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiao Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Sreekumar A, Saini S. Role of transcription factors and chromatin modifiers in driving lineage reprogramming in treatment-induced neuroendocrine prostate cancer. Front Cell Dev Biol 2023; 11:1075707. [PMID: 36711033 PMCID: PMC9879360 DOI: 10.3389/fcell.2023.1075707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Therapy-induced neuroendocrine prostate cancer (NEPC) is a highly lethal variant of prostate cancer that is increasing in incidence with the increased use of next-generation of androgen receptor (AR) pathway inhibitors. It arises via a reversible trans-differentiation process, referred to as neuroendocrine differentiation (NED), wherein prostate cancer cells show decreased expression of AR and increased expression of neuroendocrine (NE) lineage markers including enolase 2 (ENO2), chromogranin A (CHGA) and synaptophysin (SYP). NEPC is associated with poor survival rates as these tumors are aggressive and often metastasize to soft tissues such as liver, lung and central nervous system despite low serum PSA levels relative to disease burden. It has been recognized that therapy-induced NED involves a series of genetic and epigenetic alterations that act in a highly concerted manner in orchestrating lineage switching. In the recent years, we have seen a spurt in research in this area that has implicated a host of transcription factors and epigenetic modifiers that play a role in driving this lineage switching. In this article, we review the role of important transcription factors and chromatin modifiers that are instrumental in lineage reprogramming of prostate adenocarcinomas to NEPC under the selective pressure of various AR-targeted therapies. With an increased understanding of the temporal and spatial interplay of transcription factors and chromatin modifiers and their associated gene expression programs in NEPC, better therapeutic strategies are being tested for targeting NEPC effectively.
Collapse
|
17
|
Carvalho de Oliveira J, Mathias C, Oliveira VC, Pezuk JA, Brassesco MS. The Double Face of miR-708: A Pan-Cancer Player with Dissociative Identity Disorder. Genes (Basel) 2022; 13:genes13122375. [PMID: 36553642 PMCID: PMC9777992 DOI: 10.3390/genes13122375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Over the last decades, accumulating evidence has shown tumor-dependent profiles of miR-708, being either up- or downregulated, and thus, acting as a "Janus" regulator of oncogenic pathways. Herein, its functional duality was assessed through a thorough review of the literature and further validation in silico using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. In the literature, miR-708 was found with an oncogenic role in eight tumor types, while a suppressor tumor role was described in seven cancers. This double profile was also found in TCGA and GEO databases, with some tumor types having a high expression of miR-708 and others with low expression compared with non-tumor counterparts. The investigation of validated targets using miRBase, miRTarBase, and miRecords platforms, identified a total of 572 genes that appeared enriched for PI3K-Akt signaling, followed by cell cycle control, p53, Apellin and Hippo signaling, endocrine resistance, focal adhesion, and cell senescence regulations, which are all recognized contributors of tumoral phenotypes. Among these targets, a set of 15 genes shared by at least two platforms was identified, most of which have important roles in cancer cells that influence either tumor suppression or progression. In a clinical scenario, miR-708 has shown to be a good diagnostic and prognosis marker. However, its multitarget nature and opposing roles in diverse human tumors, aligned with insufficient experimental data and the lack of proper delivery strategies, hamper its potential as a sequence-directed therapeutic.
Collapse
Affiliation(s)
| | - Carolina Mathias
- Department of Genetics, Federal University of Paraná, Curitiba 80060-000, Brazil
- Laboratory of Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | - Verônica Cristina Oliveira
- Department of Biotechnology and Health Innovation, Anhanguera University of São Paulo, Pirituba 05145-200, Brazil
| | - Julia Alejandra Pezuk
- Department of Biotechnology and Health Innovation, Anhanguera University of São Paulo, Pirituba 05145-200, Brazil
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
- Correspondence:
| |
Collapse
|
18
|
Su Z, Zhang M, Luo H, Zhong J, Tan J, Xu Y, Pan X, Zeng H, Nie L, Xu M, Chen N, Chen X, Zhou Q. circEZH2 E2 /E3 is a dual suppressor of miR363/miR708 to promote EZH2 expression and prostate cancer progression. Cancer Sci 2022; 114:1378-1395. [PMID: 36519785 PMCID: PMC10067432 DOI: 10.1111/cas.15694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The histone methyltransferase enhancer of zeste homolog 2 (EZH2) is overexpressed in a variety of malignancies including prostate cancer (PCa) and may play important roles in tumor progression. Gene copy number gains, enhanced transcription, and a few circRNAs have been reported to upregulate EZH2. It was not known whether EZH2 itself generates circRNAs that promote its own expression. We here report the identification of circEZH2E2/E3 that is derived from exons 2 and 3 of the EZH2 gene and overexpressed in PCa. We show that circEZH2E2/E3 functions as a dual inhibitor for both miR363 and miR708 that target the EZH2 3'UTR and CDS, respectively, resulting in the upregulation of EZH2 expression and hence the downregulation of EZH2-repressed genes (e.g., CDH1 and DAB2IP), and enhancement of PCa cell proliferation, migration, invasion, and xenograft PCa growth. Overexpression of circEZH2E2/E3 is significantly correlated with higher tumor grade, tumor progression, and unfavorable progression-free and disease-specific survival in PCa patients. These findings show a novel autoenhancing EZH2-circEZH2E2/E3 -miR363/miR708-EZH2 regulatory loop, by which circEZH2E2/E3 plays important roles in PCa tumorigenesis and progression by upregulating EZH2, and may have potential diagnostic, prognostic, and therapeutic uses in PCa management.
Collapse
Affiliation(s)
- Zhengzheng Su
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Mengni Zhang
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jinjing Zhong
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Junya Tan
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yunyi Xu
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xiuyi Pan
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Miao Xu
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xueqin Chen
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qiao Zhou
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Urabe F, Yamamoto Y, Kimura T. miRNAs in prostate cancer: Intercellular and extracellular communications. Int J Urol 2022; 29:1429-1438. [PMID: 36122303 DOI: 10.1111/iju.15043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 12/23/2022]
Abstract
Prostate cancer is the most prevalent male cancer in Western Europe and North America. Although new drugs were recently approved, clinical challenges such as accurately predicting and screening drug-resistant prostate cancer remain. microRNAs are short noncoding RNA molecules that participate in gene regulation at the post-transcriptional level by targeting messenger RNAs. There is accumulating evidence that intracellular microRNAs play important roles as promoters or inhibitors of prostate cancer progression. Additionally, recent studies showed that microRNAs are encapsulated in extracellular vesicles and shuttled into the extracellular space. Transfer of extracellular microRNAs contributes to intercellular communication between prostate cancer cells and components of the tumor microenvironment, which can promote prostate cancer progression. Furthermore, due to their encapsulation in extracellular vesicles, extracellular microRNAs can be stably present in body fluids which contain high levels of RNase. Thus, circulating microRNAs have great potential as noninvasive diagnostic and prognostic biomarkers for prostate cancer. Here, we summarize the roles of intracellular and extracellular microRNAs in prostate cancer progression and discuss the potential of microRNA-based therapeutics as a novel treatment strategy for prostate cancer.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Liu S, Alabi BR, Yin Q, Stoyanova T. Molecular mechanisms underlying the development of neuroendocrine prostate cancer. Semin Cancer Biol 2022; 86:57-68. [PMID: 35597438 DOI: 10.1016/j.semcancer.2022.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023]
Abstract
Prostate cancer is the most common non-cutaneous cancer and the second leading cause of cancer-associated deaths among men in the United States. Androgen deprivation therapy (ADT) is the standard of care for advanced prostate cancer. While patients with advanced prostate cancer initially respond to ADT, the disease frequently progresses to a lethal metastatic form, defined as castration-resistant prostate cancer (CRPC). After multiple rounds of anti-androgen therapies, 20-25% of metastatic CRPCs develop a neuroendocrine (NE) phenotype. These tumors are classified as neuroendocrine prostate cancer (NEPC). De novo NEPC is rare and accounts for less than 2% of all prostate cancers at diagnosis. NEPC is commonly characterized by the expression of NE markers and the absence of androgen receptor (AR) expression. NEPC is usually associated with tumor aggressiveness, hormone therapy resistance, and poor clinical outcome. Here, we review the molecular mechanisms underlying the emergence of NEPC and provide insights into the future perspectives on potential therapeutic strategies for NEPC.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Busola Ruth Alabi
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Qingqing Yin
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
21
|
Regulation and Therapeutic Targeting of MTHFD2 and EZH2 in KRAS-Mutated Human Pulmonary Adenocarcinoma. Metabolites 2022; 12:metabo12070652. [PMID: 35888776 PMCID: PMC9324032 DOI: 10.3390/metabo12070652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Activating KRAS mutations occur in about 30% of pulmonary adenocarcinoma (AC) cases and the discovery of specific inhibitors of G12C-mutated KRAS has considerably improved the prognosis for a subgroup of about 14% of non-small cell lung cancer (NSCLC) patients. However, even in patients with a KRAS G12C mutation, the overall response rate only reaches about 40% and mutations other than G12C still cannot be targeted. Despite the fact that one-carbon metabolism (1CM) and epigenetic regulation are known to be dysregulated by aberrant KRAS activity, we still lack evidence that co-treatment with drugs that regulate these factors might ameliorate response rates and patient prognosis. In this study, we show a direct dependency of Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) and Enhancer of Zeste Homolog 2 (EZH2) expression on mutationally activated KRAS and their prognostic relevance in KRAS-mutated AC. We show that aberrant KRAS activity generates a vulnerability of AC cancer cell lines to both MTHFD2 and EZH2 inhibitors. Importantly, co-inhibition of both factors was synergistically effective and comparable to KRASG12C inhibition alone, paving the way for their use in a therapeutic approach for NSCLC cancer patients.
Collapse
|
22
|
Ganapathy K, Ngo C, Andl T, Coppola D, Park J, Chakrabarti R. Anti-cancer function of microRNA-30e is mediated by negative regulation of HELLPAR, a noncoding macroRNA, and genes involved in ubiquitination and cell cycle progression in prostate cancer. Mol Oncol 2022; 16:2936-2958. [PMID: 35612714 PMCID: PMC9394257 DOI: 10.1002/1878-0261.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022] Open
Abstract
Prostate cancer (PCa) progression relies on androgen receptor (AR) function, making AR a top candidate for PCa therapy. However, development of drug resistance is common, which eventually leads to development of castration‐resistant PCa. This warrants a better understanding of the pathophysiology of PCa that facilitates the aberrant activation of key signaling pathways including AR. MicroRNAs (miRNAs) function as regulators of cancer progression as they modulate various cellular processes. Here, we demonstrate a multidimensional function of miR‐30e through the regulation of genes involved in various signaling pathways. We noted loss of miR‐30e expression in prostate tumors, which, when restored, led to cell cycle arrest, induction of apoptosis, improved drug sensitivity of PCa cells and reduced tumor progression in xenograft models. We show that experimental upregulation of miR‐30e reduces expression of mRNAs including AR, FBXO45, SRSF7 and MYBL2 and a novel long noncoding RNA (lncRNA) HELLPAR, which are involved in cell cycle, apoptosis and ubiquitination, and the effects could be rescued by inhibition of miR‐30e expression. RNA immunoprecipitation analysis confirmed direct interactions between miR‐30e and its RNA targets. We noted a newly identified reciprocal relationship between miR‐30e and HELLPAR, as inhibition of HELLPAR improved stabilization of miR‐30e. Transcriptome profiling and quantitative real‐time PCR (qRT‐PCR) validation of miR‐30e‐expressing PCa cells showed differential expression of genes involved in cell cycle progression, apoptosis and ubiquitination, which supports our in vitro study. This study demonstrates an integrated function of miR‐30e on dysregulation of miRNA/lncRNA/mRNA axes that may have diagnostic and therapeutic significance in aggressive PCa.
Collapse
Affiliation(s)
- Kavya Ganapathy
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Christopher Ngo
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Domenico Coppola
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, USA.,Florida Digestive Health Specialists, Bradenton, Florida, USA
| | - Jong Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
23
|
Role of MicroRNAs in Neuroendocrine Prostate Cancer. Noncoding RNA 2022; 8:ncrna8020025. [PMID: 35447888 PMCID: PMC9029336 DOI: 10.3390/ncrna8020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Therapy-induced neuroendocrine prostate cancer (t-NEPC/NEPC) is an aggressive variant of prostate cancer (PCa) that frequently emerges in castration-resistant prostate cancer (CRPC) under the selective pressure of androgen receptor (AR)-targeted therapies. This variant is extremely aggressive, metastasizes to visceral organs, tissues, and bones despite low serum PSA, and is associated with poor survival rates. It arises via a reversible trans-differentiation process, referred to as ‘neuroendocrine differentiation’ (NED), wherein PCa cells undergo a lineage switch and exhibit neuroendocrine features, characterized by the expression of neuronal markers such as enolase 2 (ENO2), chromogranin A (CHGA), and synaptophysin (SYP). The molecular and cellular mechanisms underlying NED in PCa are complex and not clearly understood, which contributes to a lack of effective molecular biomarkers for diagnosis and therapy of this variant. NEPC is thought to derive from prostate adenocarcinomas by clonal evolution. A characteristic set of genetic alterations, such as dual loss of retinoblastoma (RB1) and tumor protein (TP53) tumor suppressor genes and amplifications of Aurora kinase A (AURKA), NMYC, and EZH2, has been reported to drive NEPC. Recent evidence suggests that microRNAs (miRNAs) are important epigenetic players in driving NED in advanced PCa. In this review, we highlight the role of miRNAs in NEPC. These studies emphasize the diverse role that miRNAs play as oncogenes and tumor suppressors in driving NEPC. These studies have unveiled the important role of cellular processes such as the EMT and cancer stemness in determining NED in PCa. Furthermore, miRNAs are involved in intercellular communication between tumor cells and stromal cells via extracellular vesicles/exosomes that contribute to lineage switching. Recent studies support the promising potential of miRNAs as novel diagnostic biomarkers and therapeutic targets for NEPC.
Collapse
|
24
|
Sakellakis M, Flores L, Ramachandran S. Patterns of indolence in prostate cancer (Review). Exp Ther Med 2022; 23:351. [PMID: 35493432 PMCID: PMC9019743 DOI: 10.3892/etm.2022.11278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Although prostate cancer is a major cause of cancer-related mortality worldwide, most patients will have a relatively indolent clinical course. Contrary to most other types of cancer, even the diagnosis of locally advanced or metastatic disease is not always lethal. The present review aimed to summarize what is known regarding the underlying mechanisms related to the indolent course of subsets of prostate cancer, at various stages. The data suggested that no specific gene alteration by itself was responsible for carcinogenesis or disease aggressiveness. However, pathway analysis identified genetic aberrations in multiple critical pathways that tend to accumulate over the course of the disease. The progression from indolence into aggressive disease is associated with a complex interplay in which genetic and epigenetic factors are involved. The effect of the immune tumor microenvironment is also very important. Emerging evidence has suggested that the upregulation of pathways related to cellular aging and senescence can identify patients with indolent disease. In addition, a number of tumors enter a long-lasting quiescent state. Further research will determine whether halting tumor evolution is a feasible option, and whether the life of patients can be markedly prolonged by inducing tumor senescence or long-term dormancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, 18547 Athens, Greece
| | - Laura Flores
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| |
Collapse
|
25
|
Pardo JC, Ruiz de Porras V, Gil J, Font A, Puig-Domingo M, Jordà M. Lipid Metabolism and Epigenetics Crosstalk in Prostate Cancer. Nutrients 2022; 14:851. [PMID: 35215499 PMCID: PMC8874497 DOI: 10.3390/nu14040851] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignant neoplasm in men in the Western world. Localized low-risk PCa has an excellent prognosis thanks to effective local treatments; however, despite the incorporation of new therapeutic strategies, metastatic PCa remains incurable mainly due to disease heterogeneity and the development of resistance to therapy. The mechanisms underlying PCa progression and therapy resistance are multiple and include metabolic reprogramming, especially in relation to lipid metabolism, as well as epigenetic remodelling, both of which enable cancer cells to adapt to dynamic changes in the tumour. Interestingly, metabolism and epigenetics are interconnected. Metabolism can regulate epigenetics through the direct influence of metabolites on epigenetic processes, while epigenetics can control metabolism by directly or indirectly regulating the expression of metabolic genes. Moreover, epidemiological studies suggest an association between a high-fat diet, which can alter the availability of metabolites, and PCa progression. Here, we review the alterations of lipid metabolism and epigenetics in PCa, before focusing on the mechanisms that connect them. We also discuss the influence of diet in this scenario. This information may help to identify prognostic and predictive biomarkers as well as targetable vulnerabilities.
Collapse
Affiliation(s)
- Juan C. Pardo
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| | - Joan Gil
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Medicine, CIBERER U747, ISCIII, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Albert Font
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Manel Puig-Domingo
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Nutrition, University Germans Trias i Pujol Hospital, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona (UAB), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Mireia Jordà
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| |
Collapse
|
26
|
Sun Y, Meng C, Liu G. MicroRNA-506-3p inhibits ovarian cancer metastasis by down-regulating the expression of EZH2. J Cancer 2022; 13:943-950. [PMID: 35154460 PMCID: PMC8824902 DOI: 10.7150/jca.66959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/11/2021] [Indexed: 11/26/2022] Open
Abstract
Objective: To investigate the role of miR-506-3p in ovarian cancer (OvCa) metastasis. Methods: We overexpressed miR-506-3p in OvCa cells, and cell migration and invasion capacities were assessed in vitro using Transwell assays and wound healing assay. EZH2 is a target of miR-506-3p. We overexpressed and knocked down EZH2 in SKOV3 cells, and assessed its impact on cell migration and invasion. The orthotopic OvCa mouse models were conducted to confirm the role of miR-506-3p in OvCa metastasis. Results: In this research, we found that miR-506-3p reduced EZH2 expression and obviously suppressed the cell migration and invasion in ovarian cancer (OvCa). Moreover, the knockout of EZH2 mimicked the effect of miR-506-3p on invasion and migration, whereas EZH2 overexpression rescued the inhibitory effect of miR-506-3p. The orthotopic OvCa mouse models and clinical cases also confirmed the negative correlation between miR-506-3p and EZH2 in OvCa Conclusions: MiR-506-3p can suppress cell migration and invasion by targeting EZH2 in OvCa. Our study provides evidence supporting miR-506-3p-based therapy in OvCa.
Collapse
Affiliation(s)
- Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China
| | - Chao Meng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China
| |
Collapse
|
27
|
Bolis M, Bossi D, Vallerga A, Ceserani V, Cavalli M, Impellizzieri D, Di Rito L, Zoni E, Mosole S, Elia AR, Rinaldi A, Pereira Mestre R, D’Antonio E, Ferrari M, Stoffel F, Jermini F, Gillessen S, Bubendorf L, Schraml P, Calcinotto A, Corey E, Moch H, Spahn M, Thalmann G, Kruithof-de Julio M, Rubin MA, Theurillat JPP. Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. Nat Commun 2021; 12:7033. [PMID: 34857732 PMCID: PMC8640014 DOI: 10.1038/s41467-021-26840-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Comprehensive genomic studies have delineated key driver mutations linked to disease progression for most cancers. However, corresponding transcriptional changes remain largely elusive because of the bias associated with cross-study analysis. Here, we overcome these hurdles and generate a comprehensive prostate cancer transcriptome atlas that describes the roadmap to tumor progression in a qualitative and quantitative manner. Most cancers follow a uniform trajectory characterized by upregulation of polycomb-repressive-complex-2, G2-M checkpoints, and M2 macrophage polarization. Using patient-derived xenograft models, we functionally validate our observations and add single-cell resolution. Thereby, we show that tumor progression occurs through transcriptional adaption rather than a selection of pre-existing cancer cell clusters. Moreover, we determine at the single-cell level how inhibition of EZH2 - the top upregulated gene along the trajectory - reverts tumor progression and macrophage polarization. Finally, a user-friendly web-resource is provided enabling the investigation of dynamic transcriptional perturbations linked to disease progression.
Collapse
Affiliation(s)
- Marco Bolis
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI, 6500, Switzerland. .,Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, 20156, Milano, Italy. .,Bioinformatics Core Unit, Swiss Institute of Bioinformatics, TI, 6500, Bellinzona, Switzerland.
| | - Daniela Bossi
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Arianna Vallerga
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland ,grid.419765.80000 0001 2223 3006Bioinformatics Core Unit, Swiss Institute of Bioinformatics, TI 6500 Bellinzona, Switzerland
| | - Valentina Ceserani
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Manuela Cavalli
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Daniela Impellizzieri
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Laura Di Rito
- grid.4527.40000000106678902Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche ‘Mario Negri’ IRCCS, 20156 Milano, Italy
| | - Eugenio Zoni
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Simone Mosole
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Angela Rita Elia
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Andrea Rinaldi
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Ricardo Pereira Mestre
- grid.419922.5Oncology Institute of Southern Switzerland, Bellinzona, TI 6500 Switzerland
| | - Eugenia D’Antonio
- grid.419922.5Oncology Institute of Southern Switzerland, Bellinzona, TI 6500 Switzerland
| | - Matteo Ferrari
- grid.469433.f0000 0004 0514 7845Urology Department, Ente Ospedaliero Cantonale, Bellinzona, TI Switzerland
| | - Flavio Stoffel
- grid.469433.f0000 0004 0514 7845Urology Department, Ente Ospedaliero Cantonale, Bellinzona, TI Switzerland
| | - Fernando Jermini
- grid.469433.f0000 0004 0514 7845Urology Department, Ente Ospedaliero Cantonale, Bellinzona, TI Switzerland
| | - Silke Gillessen
- grid.419922.5Oncology Institute of Southern Switzerland, Bellinzona, TI 6500 Switzerland ,grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, University of Southern Switzerland (USI), TI 6900 Lugano, Switzerland
| | - Lukas Bubendorf
- grid.410567.1Institute of Surgical Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Peter Schraml
- grid.412004.30000 0004 0478 9977Department of Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Arianna Calcinotto
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Eva Corey
- grid.34477.330000000122986657Department of Urology, University of Washington, Seattle, WA 98195 USA
| | - Holger Moch
- grid.412004.30000 0004 0478 9977Department of Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Martin Spahn
- grid.415941.c0000 0004 0509 4333Lindenhofspital Bern, Prostate Center Bern, 3012 Bern, Switzerland
| | - George Thalmann
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland ,grid.411656.10000 0004 0479 0855Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland ,grid.411656.10000 0004 0479 0855Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Mark A. Rubin
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Bern Center for Precision Medicine, University of Bern and Inselspital, 3012 Bern, Switzerland
| | - Jean-Philippe P. Theurillat
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| |
Collapse
|
28
|
Wen YC, Liu YN, Yeh HL, Chen WH, Jiang KC, Lin SR, Huang J, Hsiao M, Chen WY. TCF7L1 regulates cytokine response and neuroendocrine differentiation of prostate cancer. Oncogenesis 2021; 10:81. [PMID: 34799554 PMCID: PMC8604986 DOI: 10.1038/s41389-021-00371-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/01/2021] [Accepted: 11/03/2021] [Indexed: 01/07/2023] Open
Abstract
Neuroendocrine differentiation (NED) is associated with WNT signaling activation and can be significantly observed after failure of androgen-deprivation therapy (ADT) for prostatic adenocarcinomas. Cytokine signaling is stimulated in NED prostate cancer; however, how ADT-upregulated WNT signaling promotes activation of cytokine signaling and contributes to NED of prostate cancer is poorly understood. In this study, we identified ADT-mediated upregulation of transcription factor 7 like 1 (TCF7L1), which increases the cytokine response and enhances NED of prostate cancer through interleukin (IL)-8/C-X-C motif chemokine receptor type 2 (CXCR2) signaling activation. ADT induced the secretion of WNT4 which upon engagement of TCF7L1 in prostate cancer cells, enhanced IL-8 and CXCR2 expressions. TCF7L1 directly binds to the regulatory sequence region of IL-8 and CXCR2 through WNT4 activation, thus upregulating IL-8/CXCR2 signaling-driven NED and cell motility. Analysis of prostate tissue samples collected from small-cell neuroendocrine prostate cancer (SCPC) and castration-resistant prostate cancer (CRPC) tumors showed an increased intensity of nuclear TCF7L1 associated with CXCR2. Our results suggest that induction of WNT4/TCF7L1 results in increased NED and malignancy in prostate cancer that is linked to dysregulation of androgen receptor signaling and activation of the IL-8/CXCR2 pathway.
Collapse
Affiliation(s)
- Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Lien Yeh
- General Education Development Center, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shian-Ren Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
29
|
Ganini C, Amelio I, Bertolo R, Candi E, Cappello A, Cipriani C, Mauriello A, Marani C, Melino G, Montanaro M, Natale ME, Tisone G, Shi Y, Wang Y, Bove P. Serine and one-carbon metabolisms bring new therapeutic venues in prostate cancer. Discov Oncol 2021; 12:45. [PMID: 35201488 PMCID: PMC8777499 DOI: 10.1007/s12672-021-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Serine and one-carbon unit metabolisms are essential biochemical pathways implicated in fundamental cellular functions such as proliferation, biosynthesis of important anabolic precursors and in general for the availability of methyl groups. These two distinct but interacting pathways are now becoming crucial in cancer, the de novo cytosolic serine pathway and the mitochondrial one-carbon metabolism. Apart from their role in physiological conditions, such as epithelial proliferation, the serine metabolism alterations are associated to several highly neoplastic proliferative pathologies. Accordingly, prostate cancer shows a deep rearrangement of its metabolism, driven by the dependency from the androgenic stimulus. Several new experimental evidence describes the role of a few of the enzymes involved in the serine metabolism in prostate cancer pathogenesis. The aim of this study is to analyze gene and protein expression data publicly available from large cancer specimens dataset, in order to further dissect the potential role of the abovementioned metabolism in the complex reshaping of the anabolic environment in this kind of neoplasm. The data suggest a potential role as biomarkers as well as in cancer therapy for the genes (and enzymes) belonging to the one-carbon metabolism in the context of prostatic cancer.
Collapse
Affiliation(s)
- Carlo Ganini
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Ivano Amelio
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Riccardo Bertolo
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Angela Cappello
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Carla Marani
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Maria Emanuela Natale
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
| | - Yufang Shi
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Pierluigi Bove
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome Tor Vergata, a Montpellier 1, 00133 Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| |
Collapse
|
30
|
Tong D. Unravelling the molecular mechanisms of prostate cancer evolution from genotype to phenotype. Crit Rev Oncol Hematol 2021; 163:103370. [PMID: 34051300 DOI: 10.1016/j.critrevonc.2021.103370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PC) is the most frequently diagnosed cancer and the second leading cause of cancer-related death in men in the Western society. Unfortunately, although the vast majority of patients are initially responsive to androgen-deprivation therapy (ADT), most cases eventually develop from hormone-sensitive prostate cancer (HSPC) to castration-resistant prostate cancer (CRPC). The main reason is PC heterogeneity and evolution during therapy. PC evolution is a continuously progressive process with combination of genomic alterations including canonical AR, TMPRSS2-ERG fusion, SPOP/FOXA1, TP53/RB1/PTEN, BRCA2. Meanwhile, signaling pathways including PI3K, WNT/β-catenin, SRC, IL-6/STAT3 are activated, to promote epithelial mesenchymal transition (EMT), cancer stem cell (CSC)-like features/stemness and neuroendocrine differentiation (NED) of PC. These improve our understanding of the genotype-phenotype relationships. The identification of canonical genetic alterations and signaling pathway activation in PC has shed more insight into genetic background, molecular subtype and disease landscape of PC evolution, resulting in a more flexible role of individual therapies targeting diverse genotype and phenotype presentation.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
31
|
Hasan MF, Ganapathy K, Sun J, Khatib A, Andl T, Soulakova JN, Coppola D, Zhang W, Chakrabarti R. LncRNA PAINT is associated with aggressive prostate cancer and dysregulation of cancer hallmark genes. Int J Cancer 2021; 149:10.1002/ijc.33569. [PMID: 33729568 PMCID: PMC9211384 DOI: 10.1002/ijc.33569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022]
Abstract
Long noncoding RNAs (lncRNAs) play regulatory role in cellular processes and their aberrant expression may drive cancer progression. Here we report the function of a lncRNA PAINT (prostate cancer associated intergenic noncoding transcript) in promoting prostate cancer (PCa) progression. Upregulation of PAINT was noted in advanced stage and metastatic PCa. Inhibition of PAINT decreased cell proliferation, S-phase progression, increased expression of apoptotic markers, and improved sensitivity to docetaxel and Aurora kinase inhibitor VX-680. Inhibition of PAINT decreased cell migration and reduced expression of Slug and Vimentin. Ectopic expression of PAINT suppressed E-cadherin, increased S-phase progression and cell migration. PAINT expression in PCa cells induced larger colony formation, increased tumor growth and higher expression of mesenchymal markers. Transcriptome analysis followed by qRT-PCR validation showed differentially expressed genes involved in epithelial mesenchymal transition (EMT), apoptosis and drug resistance in PAINT-expressing cells. Our study establishes an oncogenic function of PAINT in PCa.
Collapse
Affiliation(s)
- Md Faqrul Hasan
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Kavya Ganapathy
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, Florida
| | - Ayman Khatib
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Julia N. Soulakova
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Domenico Coppola
- Moffitt Cancer Center, Tampa, Florida
- Florida Digestive Health Specialists, Bradenton, Florida
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, Florida
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| |
Collapse
|
32
|
Monteleone NJ, Lutz CS. miR-708 Negatively Regulates TNF α/IL-1 β Signaling by Suppressing NF- κB and Arachidonic Acid Pathways. Mediators Inflamm 2021; 2021:5595520. [PMID: 33776573 PMCID: PMC7969122 DOI: 10.1155/2021/5595520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/14/2023] Open
Abstract
Two pathways commonly dysregulated in autoimmune diseases and cancer are tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL-1β) signaling. Researchers have also shown that both signaling cascades positively regulate arachidonic acid (AA) signaling. More specifically, TNFα/IL-1β promotes expression of the prostaglandin E2- (PGE2-) producing enzymes, cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1). Exacerbated TNFα, IL-1β, and AA signaling have been associated with many diseases. While some TNFα therapies have significantly improved patients' lives, there is still an urgent need to develop novel therapeutics that more comprehensively treat inflammatory-related diseases. Recently, researchers have begun to use RNA interference (RNAi) to treat various diseases in the clinic. One type of RNAi is microRNA (miRNA), a class of small noncoding RNA found within cells. One miRNA in particular, miR-708, has been shown to target COX-2 and mPGES-1. Previous studies have also suggested that miR-708 may be a negative regulator of TNFα/IL-1β signaling. Therefore, we studied the relationship between miR-708, TNFα/IL-1β, and AA signaling in diseased lung cells. We found that miR-708 negatively regulates TNFα/IL-1β signaling in nondiseased lung cells, which is lost in diseased lung cells. Transient transfection of miR-708 suppressed TNFα/IL-1β-induced changes in COX-2, mPGES-1, and PGE2 levels. Moreover, miR-708 also suppressed TNFα/IL-1β-induced IL-6 independent of AA signaling. Mechanistically, we determined that miR-708 suppressed IL-6 signaling by reducing expression of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activator inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ). Collectively, our data suggest miR-708 regulates TNFα/IL-1β signaling by inhibiting multiple points of the signaling cascade.
Collapse
Affiliation(s)
- Nicholas J. Monteleone
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers School of Graduate Studies-RBHS, Newark, NJ 07005, USA
| | - Carol S. Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers School of Graduate Studies-RBHS, Newark, NJ 07005, USA
| |
Collapse
|
33
|
Zolghadr F, Bakhshinejad B, Davuchbabny S, Sarrafpour B, Seyedasli N. Critical regulatory levels in tumor differentiation: Signaling pathways, epigenetics and non-coding transcripts. Bioessays 2021; 43:e2000190. [PMID: 33644880 DOI: 10.1002/bies.202000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/07/2022]
Abstract
Approaches to induce tumor differentiation often result in manageable and therapy-naïve cellular states in cancer cells. This transformation is achieved by activating pathways that drive tumor cells away from plasticity, a state that commonly correlates with enhanced aggression, metastasis and resistance to therapy. Here, we discuss signaling pathways, epigenetics and non-coding RNAs as three main regulatory levels with the potential to drive tumor differentiation and hence as potential targets in differentiation therapy approaches. The success of an effective therapeutic regimen in one cancer, however, does not necessarily sustain across cancer types; a phenomenon largely resulting from heterogeneity in the genetic and physiological landscapes of tumor types necessitating an approach designed for each cancer's unique genetic and phenotypic build-up.
Collapse
Affiliation(s)
- Fatemeh Zolghadr
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sapir Davuchbabny
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Sarrafpour
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Naisana Seyedasli
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia.,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
34
|
Cheng WC, Wang HJ. Current advances of targeting epigenetic modifications in neuroendocrine prostate cancer. Tzu Chi Med J 2021; 33:224-232. [PMID: 34386358 PMCID: PMC8323647 DOI: 10.4103/tcmj.tcmj_220_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/05/2020] [Accepted: 10/06/2020] [Indexed: 11/15/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is the most lethal malignancy of prostate cancer (PCa). Treatment with next-generation androgen receptor (AR) pathway inhibitors (ARPIs) has successfully extended patients' lifespan. However, with the emergence of drug resistance, PCa tumors increasingly adapt to potent ARPI therapies by transitioning to alternative cellular lineage. Such therapy-induced drug resistance is largely driven from the cellular plasticity of PCa cells to alter their phenotypes of AR independence for cell growth and survival. Some of the resistant PCa cells undergo cellular reprogramming to form neuroendocrine phenotypes. Recent evidences suggest that this cellular reprogramming or the lineage plasticity is driven by dysregulation of the epigenome and transcriptional networks. Aberrant DNA methylation and altered expression of epigenetic modifiers, such as enhancer of zeste-homolog 2, transcription factors, histone demethylases, are hallmarks of NEPC. In this review, we discuss the nature of the epigenetic and transcriptional landscapes of PCa cells which lose their AR independence and transition to the neuroendocrine lineage. We also discuss how oncogenic signaling and metabolic reprogramming fuel epigenetic and transcriptional alterations. In addition, the current state of epigenetic therapies for NEPC is addressed.
Collapse
Affiliation(s)
- Wen-Chi Cheng
- SDGs Teaching and Research Headquarters, Tzu Chi University, Hualien, Taiwan
| | - Hung-Jung Wang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien, Taiwan
| |
Collapse
|
35
|
Epigenetic reprogramming during prostate cancer progression: A perspective from development. Semin Cancer Biol 2021; 83:136-151. [PMID: 33545340 DOI: 10.1016/j.semcancer.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Conrad Waddington's theory of epigenetic landscape epitomize the process of cell fate and cellular decision-making during development. Wherein the epigenetic code maintains patterns of gene expression in pluripotent and differentiated cellular states during embryonic development and differentiation. Over the years disruption or reprogramming of the epigenetic landscape has been extensively studied in the course of cancer progression. Cellular dedifferentiation being a key hallmark of cancer allow us to take cues from the biological processes involved during development. Here, we discuss the role of epigenetic landscape and its modifiers in cell-fate determination, differentiation and prostate cancer progression. Lately, the emergence of RNA-modifications has also furthered our understanding of epigenetics in cancer. The overview of the epigenetic code regulating androgen signalling, and progression to aggressive neuroendocrine stage of PCa reinforces its gene regulatory functions during the development of prostate gland as well as cancer progression. Additionally, we also highlight the clinical implications of cancer cell epigenome, and discuss the recent advancements in the therapeutic strategies targeting the advanced stage disease.
Collapse
|
36
|
Wen Y, Hou Y, Yi X, Sun S, Guo J, He X, Li T, Cai J, Wang Z. EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics 2021; 11:1795-1813. [PMID: 33408782 PMCID: PMC7778604 DOI: 10.7150/thno.48101] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Ovarian cancer is a fatal malignant gynecological tumor. Ovarian cancer stem cells (OCSCs) contribute to resistance to chemotherapy. The polycomb group protein enhancer of zeste homolog 2 (EZH2) plays a key role in maintaining CSCs. Here, we aimed to investigate the specific mechanism by which EZH2 regulates CSCs to result in chemoresistance and poor prognosis of ovarian cancer. Methods: We used a nude mouse model to obtain a cell line enriched for OCSCs, named SK-3rd cells. The CRISPR and Cas9 endonuclease system was used to establish an EZH2-knockout SK-3rd ovarian cancer cell line. High-throughput PCR array and bioinformatics methods were used to screen the EZH2 target involved in CSC stemness. A luciferase reporter assay and chromatin immunoprecipitation assay were performed to identify activation of CHK1 by EZH2. We evaluated associations between EZH2/CHK1 expression and the chemoresistance and prognosis of ovarian cancer patients. Results: EZH2 plays a critical role in maintaining ovarian CSC stemness and chemo-resistance. CHK1 is an EZH2 target involved in CSC stemness. Knockdown of EZH2 in ovarian CSCs decreased CHK1 expression, while CHK1 overexpression was sufficient to reverse the inhibitory effect on spheroid formation and chemoresistance caused by repression of EZH2. In addition, EZH2 was also shown to play a unique role in activating rather than repressing CHK1 signaling through binding to the CHK1 promoter in epithelial ovarian cancer cells. Finally, in clinical samples, ovarian cancer patients with high levels of EZH2 and CHK1 not only were more resistant to platinum but also had a poorer prognosis. Conclusions: Our data revealed a previously unidentified functional and mechanistic link between EZH2 levels, CHK1 signaling activation, and ovarian CSCs and provided strong evidence that EZH2 promotes ovarian cancer chemoresistance and recurrence.
Collapse
|
37
|
Mo JS, Chae SC. MicroRNA 452 regulates ASB8, NOL8, and CDR2 expression in colorectal cancer cells. Genes Genomics 2021; 43:33-41. [PMID: 33398662 DOI: 10.1007/s13258-020-01016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNAs play important roles in the pathogenesis of human diseases by regulating target gene expression in specific cells or tissues. Previously, we identified microRNA 452 (MIR452), which was specifically up-regulated in early stage human colorectal cancer (CRC) tissue. OBJECTIVE The current study aims to identify and verify the target genes of MIR452 associated with CRC. METHODS A luciferase reporter system was used to confirm the effect of MIR452 on ASB8, NOL8, and CDR2 expression. The expression levels of MIR452 and the target genes were evaluated by quantitative RT-PCR (qRT-PCR) and western blotting. RESULTS We verified the association between MIR452 and three genes, ASB8, NOL8, and CDR2, and showed that their transcripts were down-regulated by MIR452. Up-regulated MIR452 also down-regulated ASB8, NOL8, and CDR2 mRNA and protein levels in CRC cells. CDR2 protein expression was decreased in CRC tissues compared to adjacent non-tumor tissues. CONCLUSIONS These results suggest that ASB8, NOL8, and CDR2 were target genes of MIR452 in CRC cells and that up-regulated MIR452 in CRC tissue regulated ASB8, NOL8, and CDR2 expression during colorectal carcinogenesis.
Collapse
Affiliation(s)
- Ji-Su Mo
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea.
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea.
| |
Collapse
|
38
|
Ro SH, Fay J, Cyuzuzo CI, Jang Y, Lee N, Song HS, Harris EN. SESTRINs: Emerging Dynamic Stress-Sensors in Metabolic and Environmental Health. Front Cell Dev Biol 2020; 8:603421. [PMID: 33425907 PMCID: PMC7794007 DOI: 10.3389/fcell.2020.603421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Proper timely management of various external and internal stresses is critical for metabolic and redox homeostasis in mammals. In particular, dysregulation of mechanistic target of rapamycin complex (mTORC) triggered from metabolic stress and accumulation of reactive oxygen species (ROS) generated from environmental and genotoxic stress are well-known culprits leading to chronic metabolic disease conditions in humans. Sestrins are one of the metabolic and environmental stress-responsive groups of proteins, which solely have the ability to regulate both mTORC activity and ROS levels in cells, tissues and organs. While Sestrins are originally reported as one of several p53 target genes, recent studies have further delineated the roles of this group of stress-sensing proteins in the regulation of insulin sensitivity, glucose and fat metabolism, and redox-function in metabolic disease and aging. In this review, we discuss recent studies that investigated and manipulated Sestrins-mediated stress signaling pathways in metabolic and environmental health. Sestrins as an emerging dynamic group of stress-sensor proteins are drawing a spotlight as a preventive or therapeutic mechanism in both metabolic stress-associated pathologies and aging processes at the same time.
Collapse
Affiliation(s)
- Seung-Hyun Ro
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Julianne Fay
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Cesar I Cyuzuzo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Yura Jang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Naeun Lee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
39
|
Teng X, Wang P, Yang T, Huang W, Yu H, Li W, Chen Z, Fan D. Inhibition of osteoblast proliferation and migration by exogenous and endogenous formaldehyde. Hum Exp Toxicol 2020; 40:882-894. [PMID: 33233951 DOI: 10.1177/0960327120975125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Exogenous and endogenous formaldehyde (FA) both play an important role in cell growth and migration; however, their potential role in osteoblasts remains largely unclear. Cell counting kit-8 (CCK-8) and wound-healing assays revealed that FA exposure at naturally occurring concentrations inhibited the proliferation and migration of mouse preosteoblast MC3T3-E1 cells. Moreover, RNA sequencing (RNA-seq) analysis revealed that FoxO1 signaling pathway components displayed distinct expression patterns upon FA exposure, reflected through significant enrichment of cell migration. In particular, FoxO1-, Sirt1-, and FA-induced protein expression, which was closely associated with cell proliferation and migration, was confirmed by western blotting. The results obtained indicated that the FoxO1 pathway is involved in FA-induced inhibition of cell growth and migration.
Collapse
Affiliation(s)
- Xu Teng
- Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, 12517Capital Medical University, Beijing, People's Republic of China
| | - Pei Wang
- Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, 12517Capital Medical University, Beijing, People's Republic of China
| | - Tianshu Yang
- Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, 12517Capital Medical University, Beijing, People's Republic of China
| | - Wei Huang
- Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, 12517Capital Medical University, Beijing, People's Republic of China
| | - Hefeng Yu
- Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, 12517Capital Medical University, Beijing, People's Republic of China
| | - Weishi Li
- Department of Orthopaedics, 66482Peking University Third Hospital, Beijing, People's Republic of China
| | - Zhongqiang Chen
- Department of Orthopaedics, 66482Peking University Third Hospital, Beijing, People's Republic of China
| | - Dongwei Fan
- Department of Orthopaedics, 66482Peking University Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
40
|
Williams SG, Aw Yeang HX, Mitchell C, Caramia F, Byrne DJ, Fox SB, Haupt S, Schittenhelm RB, Neeson PJ, Haupt Y, Keam SP. Immune molecular profiling of a multiresistant primary prostate cancer with a neuroendocrine-like phenotype: a case report. BMC Urol 2020; 20:171. [PMID: 33115461 PMCID: PMC7592533 DOI: 10.1186/s12894-020-00738-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Understanding the drivers of recurrence in aggressive prostate cancer requires detailed molecular and genomic understanding in order to aid therapeutic interventions.
We provide here a case report of histological, transcriptional, proteomic, immunological, and genomic features in a longitudinal study of multiple biopsies from diagnosis, through treatment, and subsequent recurrence.
Case presentation Here we present a case study of a male in 70 s with high-grade clinically-localised acinar adenocarcinoma treated with definitive hormone therapy and radiotherapy. The patient progressed rapidly with rising PSA and succumbed without metastasis 52 months after diagnosis.
We identified the expression of canonical histological markers of neuroendocrine PC (NEPC) including synaptophysin, neuron-specific enolase and thyroid transcription factor 1, as well as intact AR expression, in the recurrent disease only.
The resistant disease was also marked by an extremely low immune infiltrate, extensive genomic chromosomal aberrations, and overactivity in molecular hallmarks of NEPC disease including Aurora kinase and E2F, as well as novel alterations in the cMYB pathway. We also observed that responses to both primary treatments (high dose-rate brachytherapy and androgen deprivation therapies) were consistent with known optimal responses—ruling out treatment inefficacy as a factor in relapse.
Conclusions These data provide novel insights into a case of locally recurrent aggressive prostate cancer harbouring NEPC pathology, in the absence of detected metastasis.
Collapse
Affiliation(s)
- Scott G Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Han Xian Aw Yeang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Catherine Mitchell
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Franco Caramia
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - David J Byrne
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen B Fox
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia. .,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
41
|
Akoto T, Bhagirath D, Saini S. MicroRNAs in treatment-induced neuroendocrine differentiation in prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:804-818. [PMID: 33426506 PMCID: PMC7793563 DOI: 10.20517/cdr.2020.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prostate cancer is a condition commonly associated with men worldwide. Androgen deprivation therapy remains one of the targeted therapies. However, after some years, there is biochemical recurrence and metastatic progression into castration-resistant prostate cancer (CRPC). CRPC cases are treated with second-line androgen deprivation therapy, after which, these CRPCs transdifferentiate to form neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. NEPC arises via a reversible transdifferentiation process, known as neuroendocrine differentiation (NED), which is associated with altered expression of lineage markers such as decreased expression of androgen receptor and increased expression of neuroendocrine lineage markers including enolase 2, chromogranin A and synaptophysin. The etiological factors and molecular basis for NED are poorly understood, contributing to a lack of adequate molecular biomarkers for its diagnosis and therapy. Therefore, there is a need to fully understand the underlying molecular basis for this cancer. Recent studies have shown that microRNAs (miRNAs) play a key epigenetic role in driving therapy-induced NED in prostate cancer. In this review, we briefly describe the role of miRNAs in prostate cancer and CRPCs, discuss some key players in NEPCs and elaborate on miRNA dysregulation as a key epigenetic process that accompanies therapy-induced NED in metastatic CRPC. This understanding will contribute to better clinical management of the disease.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Divya Bhagirath
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
42
|
Dundr P, Bártů M, Hojný J, Michálková R, Hájková N, Stružinská I, Krkavcová E, Hadravský L, Kleissnerová L, Kopejsková J, Hiep BQ, Němejcová K, Jakša R, Čapoun O, Řezáč J, Jirsová K, Franková V. HNF1B, EZH2 and ECI2 in prostate carcinoma. Molecular, immunohistochemical and clinico-pathological study. Sci Rep 2020; 10:14365. [PMID: 32873863 PMCID: PMC7463257 DOI: 10.1038/s41598-020-71427-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte nuclear factor 1 beta (HNF1B) is a tissue specific transcription factor, which seems to play an important role in the carcinogenesis of several tumors. In our study we focused on analyzing HNF1B in prostate carcinoma (PC) and adenomyomatous hyperplasia (AH), as well as its possible relation to the upstream gene EZH2 and downstream gene ECI2. The results of our study showed that on an immunohistochemical level, the expression of HNF1B was low in PC, did not differ between PC and AH, and did not correlate with any clinical outcomes. In PC, mutations of HNF1B gene were rare, but the methylation of its promotor was a common finding and was positively correlated with Gleason score and stage. The relationship between HNF1B and EZH2/ECI2 was equivocal, but EZH2 and ECI2 were positively correlated on both mRNA and protein level. The expression of EZH2 was associated with poor prognosis. ECI2 did not correlate with any clinical outcomes. Our results support the oncosuppressive role of HNF1B in PC, which may be silenced by promotor methylation and other mechanisms, but not by gene mutation. The high expression of EZH2 (especially) and ECI2 in PC seems to be a potential therapeutic target.
Collapse
Affiliation(s)
- Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic.
| | - Michaela Bártů
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Jan Hojný
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Romana Michálková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Nikola Hájková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Ivana Stružinská
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Eva Krkavcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Ladislav Hadravský
- Institute of Pathology, First Faculty of Medicine, Charles University, Prague 2, Czech Republic
| | - Lenka Kleissnerová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Jana Kopejsková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Bui Quang Hiep
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Kristýna Němejcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Radek Jakša
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Otakar Čapoun
- Department of Urology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Jakub Řezáč
- Department of Urology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Kateřina Jirsová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Věra Franková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| |
Collapse
|
43
|
miR-6089/MYH9/β-catenin/c-Jun negative feedback loop inhibits ovarian cancer carcinogenesis and progression. Biomed Pharmacother 2020; 125:109865. [PMID: 32058212 DOI: 10.1016/j.biopha.2020.109865] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/04/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of ovarian cancer remains to be elucidated. Our previous study demonstrated that myosin heavy chain 9 (MYH9) overexpression was associated with poor prognosis of epithelial ovarian cancer. However, the mechanism of MYH9 and its regulation by microRNA (miR) is not clear. The results of the present study demonstrated that miR-6089 was one of the microRNAs targeting MYH9, and miR-6089 overexpression suppressed ovarian cancer cell proliferation, migration, invasion and metastasis in vivo and in vitro. Mechanistic studies confirmed that miR-6089 directly targeted MYH9 to inactivate the Wnt/β-catenin signalling pathway and its downstream epithelial-to-mesenchymal transition (EMT), cell-cycle factors and c-Jun, whereas overexpression of MYH9 reversed the inhibitory effects of miR-6089 overexpression in ovarian cancer cells by upregulating the Wnt/β-catenin and its downstream EMT, cell-cycle factors and c-Jun. Interestingly, miR-6089 was transcriptionally inhibited by c-Jun, a transcription factor which could be induced by MYH9 via the Wnt/β-catenin pathway. Thus miR-6089/MYH9/β-catenin/c-Jun formed a negative feedback loop in ovarian cancer. In clinical samples, miR-6089 negatively correlated with MYH9 expression. Our study is the first to demonstrate that miR-6089 serves as a tumor-suppressive miRNA, and miR-6089/MYH9/β-catenin/c-Jun negative feedback loop inhibits ovarian cancer carcinogenesis and progression.
Collapse
|
44
|
Mo JS, Park WC, Choi SC, Yun KJ, Chae SC. MicroRNA 452 Regulates Cell Proliferation, Cell Migration, and Angiogenesis in Colorectal Cancer by Suppressing VEGFA Expression. Cancers (Basel) 2019; 11:1613. [PMID: 31652600 PMCID: PMC6826374 DOI: 10.3390/cancers11101613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022] Open
Abstract
The human microRNA 452 (MIR452) was identified as a colorectal cancer (CRC)-associated micro RNA (miRNA) by miRNA expression profiling of human CRC tissues versus normal colorectal tissues. It was significantly up-regulated in human CRC tissues. However, the functional mechanisms of MIR452 and its target genes in CRC remain unclear. We identified 27 putative MIR452 target genes, and found that the vascular endothelial growth factor A (VEGFA) was a direct target gene of MIR452. Both cellular and extracellular VEGFA levels were significantly downregulated in CRC cells upon their transfection with MIR452 or siVEGFA. VEGFA expression was frequently downregulated in human CRC tissues in comparison with that in their healthy counterparts. We showed that MIR452 regulated the expression of genes in the VEGFA-mediated signal transduction pathways vascular endothelial growth factor receptor 1 (VEGFR2)-mitogen-activated protein kinase (MAPK) and VEGFR2-SRC proto-oncogene non-receptor tyrosine kinase (SRC) in CRC cells. Immunohistological analyses of xenografted MIR452-overexpressing CRC cells in mice showed that MIR452 regulated cell proliferation and angiogenesis. Furthermore, aortic ring angiogenesis assay in rats clearly showed that the number of microvessels formed was significantly reduced by MIR452 transfection. Our findings suggest that MIR452 regulates cell proliferation, cell migration, and angiogenesis by suppressing VEGFA expression in early CRC progression; therefore, MIR452 may have therapeutic value in relation to human CRC.
Collapse
Affiliation(s)
- Ji Su Mo
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Korea.
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Korea.
| | - Won Cheol Park
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Korea.
| | - Suck-Chei Choi
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Korea.
| | - Ki Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Korea.
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Korea.
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk 54538, Korea.
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk 54538, Korea.
| |
Collapse
|