1
|
Meng F, Bai H, Ke K, Fang L, Huang H, Liang X, Li W, Chen X, Chen C. tRF5-22-SerGCT-1 protects the heart against myocardial injury by targeting MSK1. Epigenomics 2025; 17:439-451. [PMID: 40269521 PMCID: PMC12026222 DOI: 10.1080/17501911.2025.2495544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
AIM This study aims to explore the expression profiles and potential functions of tsRNAs in MI. METHODS Using a mouse model of MI induced by coronary artery ligation, we used smallRNA array to obtain tsRNAs expression profiles. Reverse transcription quantitative polymerase chain reaction(RT-qPCR), Western Blot, tRF5-22-SerGCT-1 mimics and inhibitors, cell proliferation and apoptosis detection, luciferase reporter assay, and bioinformatics analysis were employed to screen differentially expressed tsRNAs and identify the functions of tsRNAs after MI. RESULTS A total of 175 significantly different tsRNAs (FC > 1.5, p < 0.05) were identified in MI mice, including 98 upregulated and 77 downregulated tsRNAs. Bioinformatics and target gene prediction revealed that two differentially expressed tsRNAs (5'tiRNA-34-GlnCTG-4, tRF5-22-SerGCT-1) may be involved in processes like autophagy and apoptosis, as well as in key signaling pathways such as MAPK and autophagy. Further investigation of tRF5-22-SerGCT-1 revealed that its overexpression or inhibition in vitro affected MSK1 levels and cardiomyocytes apoptosis following oxygen-glucose deprivation, providing a protective effect. Dual-luciferase assays confirmed that tRF5-22-SerGCT-1 targets MSK1. CONCLUSION We found differentially expressed tsRNAs in MI. In addition, our research showed first that tRF5-22-SerGCT-1 might be involved in the MAPK pathways by targeting the MSK1, modulating apoptosis.
Collapse
Affiliation(s)
- Fanji Meng
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
- Department of Biopharmaceutical Sciences, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics and School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Hemanyun Bai
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Kangling Ke
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Lingyan Fang
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Haitao Huang
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Xiao Liang
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Weiyan Li
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Xiongwen Chen
- Department of Biopharmaceutical Sciences, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics and School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Can Chen
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
2
|
Shi J, Zhao G, Wang S, Wei Y, Wu J, Huang G, Chen J, Xia J. tsRNA-12391-Modified Adipose Mesenchymal Stem Cell-Derived Exosomes Mitigate Cartilage Degeneration in Osteoarthritis by Enhancing Mitophagy. Biotechnol J 2025; 20:e202400611. [PMID: 40178220 DOI: 10.1002/biot.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025]
Abstract
Osteoarthritis (OA) is a cartilage-degenerative joint disease. Mitophagy impacts articular cartilage damage. tRNA-derived small RNAs (tsRNAs) are one of the contents of adipose mesenchymal stem cell (AMSC)-derived exosomes (AMSC-exos) and are involved in disease progression. However, whether tsRNAs regulate mitophagy and whether tsRNA-modified AMSC-exos improve OA via mitophagy remain unclear. We performed small RNA sequencing to identify OA-related tsRNAs, which were then loaded into AMSC-exos, exploring the function and mechanisms related to mitophagy in vitro and in vivo. Overall, 53 differentially expressed tsRNAs (DEtsRNAs) were identified between OA and normal cartilage tissues, among which 42 DEtsRNAs, including tsRNA-12391, were downregulated in the OA group. Target genes of tsRNA-12391 mainly participated in mitophagy-related pathways such as Rap1 signaling pathway. Compared to the control group, tsRNA-12391 mimics significantly promoted mitophagy, as shown by the upregulated expression of PINK1 and LC3 and the co-localization of Mito-Tracker Green and PINK1. Furthermore, tsRNA-12391 mimics effectively enhanced chondrogenesis in chondrocytes, as demonstrated by the elevated expression of collagen II and ACAN. AMSC-exos with tsRNA-12391 overexpression also facilitated mitophagy and chondrogenesis in vitro and in vivo. Mechanistically, tsRNA-12391 bound to ATAD3A restricted ATAD31 from degrading PINK1, leading to PINK1 accumulation. ATAD31 overexpression reversed the effects of tsRNA-12391 mimics on mitophagy and chondrogenesis. AMSC-exos loaded with tsRNA-12391 promoted mitophagy and chondrogenesis by interacting with ATAD31; this may be a novel therapeutic strategy for OA.
Collapse
Affiliation(s)
- Jingsheng Shi
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Guanglei Zhao
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Siqun Wang
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yibing Wei
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jianguo Wu
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Gangyong Huang
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jie Chen
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jun Xia
- Huashan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhang Z, Wu Y, Liang W, Liao Z, Liao H, Xing X, Yi W, Liu Z, Li Y, Shi M, Lin D, Gu T, Wu B, Zou M, Miao H, Wu X. Eurycomalactone switched hepatocellular carcinoma cells into quiescence through 5'tRF Ala/DVL/β-catenin pathway inhibition. Sci Rep 2025; 15:10106. [PMID: 40128187 PMCID: PMC11933253 DOI: 10.1038/s41598-025-86888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/14/2025] [Indexed: 03/26/2025] Open
Abstract
Although tsRNA has been demonstrated to modulate various physiological processes analogous to miRNA, the potential regulatory functions and mechanisms of tsRNAs related to the pharmacological effects of small molecule drugs remain unclear. Herein, it is shown that eurycomalactone (ELT), a natural product, can reversibly switch hepatocellular carcinoma (HCC) PLC/PRF/5 and HUH7 cells into a quiescent state. This quiescence is characterized by cell proliferation inhibition without cytotoxicity, cell cycle arrest at the G0/G1 phase, and cell reactivation following the removal of ELT. Given the established role of β-catenin activity in mediating cancer cellular quiescence or proliferation, a notable reduction in total, cytoplasmic, and nuclear β-catenin expression, along with its downstream targets Survivin, c-myc, and Cyclin D1, was observed in ELT-treated cells. Subsequently, two new tsRNAs, namely 5'tRFAla and 5'tiRNAAla, which match well with the mRNAs of two pivotal upstream regulators (DVL2 and DVL3) of β-catenin based on bioinformatics analyses, were detected to be significantly decreased in ELT-treated PLC/PRF/5 cells using Arraystar small RNA microarray analyses. Consistently, the concentrations of the DVL2 and DVL3 proteins were also found to be reduced by ELT. The mimic of 5'tRFAla could increase the relative expression of DVL2 and DVL3 mRNA and rescue their decrease induced by ELT, while the mimic of 5'tiRNAAla could not. It therefore seems that ELT could down-regulate the expression of 5'tRFAla, leading to the suppression of DVL2 and DVL3 mRNA translation, consequently inhibiting the β-catenin signaling pathway and reversibly switching HCC cells into a quiescent state. Conclusively, our findings imply that tsRNAs, like miRNAs, might activate the translation of their matched mRNAs in non-dividing cells and provide a possible potential for repressing tumor cell growth, although further evidence is still needed.
Collapse
Affiliation(s)
- Zhipeng Zhang
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Yanmei Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Wenqiang Liang
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Zhifang Liao
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Marine Biomedical Research Institute, Guangdong Medical University, 524023, Zhanjiang, Guangdong Province, People's Republic of China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, 523808, Dongguan, Guangdong Province, People's Republic of China
| | - Hongbo Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, 523808, Dongguan, Guangdong Province, People's Republic of China
| | - Xingxing Xing
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Marine Biomedical Research Institute, Guangdong Medical University, 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Wenxin Yi
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Marine Biomedical Research Institute, Guangdong Medical University, 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Zixuan Liu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Yicheng Li
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Mengya Shi
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Dongling Lin
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Ting Gu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Biao Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Mingzhi Zou
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China.
| | - Huilai Miao
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China.
| | - Xin Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China.
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
Zhao S, Wang Y, Zhou L, Li Z, Weng Q. Exploring the Potential of tsRNA as Biomarkers for Diagnosis and Treatment of Neurogenetic Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04760-5. [PMID: 40009263 DOI: 10.1007/s12035-025-04760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
tRNA-derived small RNA (tsRNA) is a recently discovered small non-coding RNA (ncRNA) molecule that widely exists in prokaryotic and eukaryotic transcriptomes and is produced by specific cleavage of mature tRNA or precursor tRNA. In recent years, with the development of high-throughput sequencing technology, tsRNA has been found to have a variety of biological functions, including gene expression regulation, stress signal activation, etc. In addition, it has been found that these molecules are abnormally expressed in various diseases and participate in various pathological processes, which play an important role. At present, more and more studies have shown that the expression level of tsRNA changes significantly during the development of neurogenetic diseases. This review provides an overview of the classification and biological functions of tsRNAs, with a particular emphasis on their roles in neurogenetic disorders and their potential as diagnostic biomarkers and therapeutic targets. Despite the nascent stage of tsRNA research, their relevance to the diagnosis and treatment of neurogenetic diseases warrants further investigation.
Collapse
Affiliation(s)
- Shiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yujia Wang
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Liqun Zhou
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhe Li
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| | - Qiuyan Weng
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
5
|
Yuan L, Li J, Yin L, Lin X, Ni D, Deng C, Liang P, Jiang B. 5'tiRNA-33-CysACA-1 promotes septic cardiomyopathy by targeting PGC-1α-mediated mitochondrial biogenesis. Int J Biochem Cell Biol 2025; 179:106714. [PMID: 39631469 DOI: 10.1016/j.biocel.2024.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND We revealed for the first time that the expression of 158 tRNA-derived small RNAs (tsRNAs) was altered in septic cardiomyopathy (SCM) by microarray analysis, and we selected 5'tiRNA-33-CysACA-1, which was the most significantly up-regulated, as a representative to explore the roles and mechanisms of tsRNAs in SCM. METHODS We constructed a sepsis model by cecum ligation and puncture (CLP) in mice and detected the expression of 5'tiRNA-33-CysACA-1 using quantitative real-time PCR (qRT-PCR). The supernatant generated after LPS stimulation of macrophages was used as the conditional medium (CM) to stimulate H9C2 and established the injured cell model. CCK-8 and LDH release assays were used to detect cell viability and cell death. Mitochondrial membrane potential (MMP), ATP production, ROS production, and Mitotracker Red mitochondrial morphology were assayed to assess mitochondrial function. Expression of mRNA for molecules related to the mitochondrial quality control system was verified by qRT-PCR. The mechanism by which 5'tiRNA-33-CysACA-1 regulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) expression was examined by western blot, mRNA stability analysis, and rescue experiments. RESULTS Expression of 5'tiRNA-33-CysACA-1 was elevated in cardiac tissue and H9C2 cells during septic myocardial injury. Stimulation of the CM resulted in cardiomyocyte injury and impaired mitochondrial function. Transfection of 5'tiRNA-33-CysACA-1 mimic in CM further downregulated PGC-1α expression, inhibited mitochondrial biogenesis thereby impairing mitochondrial function and leading to decreased cardiomyocyte activity and increased cell death. In contrast, transfection of the inhibitor ameliorated the above biological processes. In addition, mRNA stability assay and bioinformatics analysis showed that 5'tiRNA-33-CysACA-1 led to a decrease in the stability of PGC-1α mRNA, which in turn downregulated the expression of PGC-1α and promoted the development of SCM. CONCLUSIONS 5'tiRNA-33-CysACA-1 expression is upregulated in SCM and inhibits mitochondrial biogenesis by targeting PGC-1α and decreasing the stability of PGC-1α mRNA, leading to mitochondrial dysfunction and promoting the development of SCM.
Collapse
Affiliation(s)
- Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Dan Ni
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Chuanhuan Deng
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
6
|
Zhao P, Zhu K, Xie C, Liu S, Chen X. Role and clinical value of serum hsa_tsr011468 in lung adenocarcinoma. Mol Med Rep 2024; 30:226. [PMID: 39364758 PMCID: PMC11485271 DOI: 10.3892/mmr.2024.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Transfer RNA‑derived small RNAs (tsRNAs) are novel non‑coding RNAs that are associated with the pathogenesis of various diseases. However, their association with lung adenocarcinoma (LUAD) has not been studied comprehensively. Therefore, the present study aimed to explore the diagnostic value of a tsRNA, hsa_tsr011468, in LUAD. The OncotRF database was used to screen tsRNAs and reverse transcription‑quantitative PCR (RT‑qPCR) was performed to detect the expression levels of hsa_tsr011468 in various samples. Subsequently, the diagnostic and prognostic values of hsa_tsr011468 for LUAD were determined via receiver operating characteristic (ROC) curve and survival curve analyses, and by assessing clinicopathological parameters. In addition, both nuclear and cytoplasmic RNA were extracted to assess the location of hsa_tsr011468. The OncotRF database identified high expression of hsa_tsr011468 in LUAD. In addition, the results of RT‑qPCR showed that the relative expression levels of hsa_tsr011468 in the serum and tissues of patients with LUAD were higher than those in normal controls. Furthermore, its expression was lower in postoperative serum samples than in preoperative serum samples from patients with LUAD. ROC and survival curves indicated that hsa_tsr011468 had good diagnostic and prognostic value. Furthermore, the clinicopathological analysis revealed that hsa_tsr011468 was associated with tumor size. In addition, hsa_tsr011468 was mainly localized in the cytoplasm of LUAD cells. The present study indicated that hsa_tsr011468 has good diagnostic value and, therefore, could be employed as a serum marker for LUAD.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Kui Zhu
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Cuihua Xie
- Department of Laboratory Medicine, Rugao Hospital of Traditional Chinese Medicine, Nantong, Jiangsu 226001, P.R. China
| | - Sinan Liu
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiang Chen
- Department of Laboratory Medicine, Nantong First People's Hospital and The Second Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
7
|
A L, Qu L, He J, Ge L, Gao H, Huang X, You T, Gong H, Liang Q, Chen S, Xie J, Xu H. Exosomes derived from IFNγ-stimulated mesenchymal stem cells protect photoreceptors in RCS rats by restoring immune homeostasis through tsRNAs. Cell Commun Signal 2024; 22:543. [PMID: 39538308 PMCID: PMC11562488 DOI: 10.1186/s12964-024-01920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa is a neurodegenerative disease with major pathologies of photoreceptor apoptosis and immune imbalance. Mesenchymal stem cells (MSCs) have been approved for clinical application for treating various immune-related or neurodegenerative diseases. The objective of this research was to investigate the mechanisms underlying the safeguarding effects of MSC-derived exosomes in a retinal degenerative disease model. METHODS Interferon gamma-stimulated exosomes (IFNγ-Exos) secreted from MSCs were isolated, purified, and injected into the vitreous body of RCS rats on postnatal day (P) 21. Morphological and functional changes in the retina were examined at P28, P35, P42, and P49 in Royal College of Surgeons (RCS) rats. The mechanism was explored using high-throughput sequencing technology and confirmed in vitro. RESULTS Treatment with IFNγ-Exo produced better protective effects on photoreceptors and improved visual function in RCS rats. IFNγ-Exo significantly suppressed the activated microglia and inhibited the inflammatory responses in the retina of RCS rats, which was also confirmed in the lipopolysaccharide-activated microglia cell line BV2. Furthermore, through tRNA-derived small RNA (tsRNA) sequencing, we found that IFNγ-Exos from MSCs contained higher levels of Other-1_17-tRNA-Phe-GAA-1-M3, Other-6_23-tRNA-Lys-TTT-3, and TRF-57:75-GLN-CGG-2-m2 than native exosomes, which mainly regulated inflammatory and immune-related pathways, including the mTOR signaling pathway and EGFR tyrosine kinase inhibitor resistance. CONCLUSIONS IFNγ stimulation enhanced the neuroprotective effects of MSC-derived exosomes on photoreceptors of the degenerative retina, which may be mediated by immune regulatory tsRNAs acting on microglia. In conclusion, IFNγ-Exo is a promising nanotherapeutic agent for the treatment of retinitis pigmentosa.
Collapse
Affiliation(s)
- Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Linghui Qu
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Department of Ophthalmology, The 74th Army Group Hospital, Guangzhou, 510318, China
| | - Juncai He
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Shigatse Branch of Xinqiao Hospital, 953th Hospital, Army Medical University (Third Military Medical University), Shigatse, 857000, China
| | - Xiaona Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Tianjing You
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Hong Gong
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, 400038, China
| | - Qingle Liang
- Department of Clinical Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jing Xie
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
8
|
Yuan D, Xu Y, Xue L, Zhang W, Gu L, Liu Q. tRNA-derived fragment tRF-30 propels diabetes-induced retinal microvascular complications by regulating STAT3 signaling. Cell Biol Int 2024; 48:1548-1558. [PMID: 39001618 DOI: 10.1002/cbin.12210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 10/19/2024]
Abstract
Transfer RNA-derived fragments (tRFs) represent a novel class of non-coding RNA transcripts that possess specific biological functions. However, the involvement of tRFs in retinal microvascular diseases remains poorly understood. In this study, we aimed to reveal whether modulation of tRF-30 expression could attenuate pathological retinal neovascular diseases. Our findings demonstrate a significant upregulation of tRF-30 expression levels in both in vivo models of diabetic retinopathy (DR) and in vitro endothelial sprouting models. Conversely, inhibition of tRF-30 expression suppressed the formation of abnormal neovascularization in the retina in vivo, while reducing the proliferation and migration activity of retinal vascular endothelial cells in vitro. We also found that tRF-30 modulates retinal neovascularization through the tRF-30/TRIB3/signal transducer and activated transcription 3 signaling pathway. Furthermore, we validated a significant upregulation of tRF-30 expression levels in the vitreous humor of DR patients, with high levels of both validity and specificity in diagnostic testing. Collectively, our findings highlight a pro-angiogenic role for tRF-30 in DR. Intervening in the tRF-30 signaling pathway may represent a promising prevention and treatment strategy for retinal angiogenesis.
Collapse
Affiliation(s)
- Dongqing Yuan
- Department of Ophthalmology, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Women and Children Health Hospital, Nanjing, Jiangsu, China
| | - Yingnan Xu
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lian Xue
- Department of Neurology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weiwei Zhang
- Department of Ophthalmology, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Women and Children Health Hospital, Nanjing, Jiangsu, China
| | - Liuwei Gu
- Department of Ophthalmology, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Women and Children Health Hospital, Nanjing, Jiangsu, China
| | - Qinghuai Liu
- Department of Ophthalmology, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Women and Children Health Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Pan Y, Gan M, Wu S, He Y, Feng J, Jing Y, Li J, Chen Q, Tong J, Kang L, Chen L, Zhao Y, Niu L, Zhang S, Wang Y, Zhu L, Shen L. tRF-Gly-GCC in Atretic Follicles Promotes Ferroptosis in Granulosa Cells by Down-Regulating MAPK1. Int J Mol Sci 2024; 25:9061. [PMID: 39201747 PMCID: PMC11354299 DOI: 10.3390/ijms25169061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Follicle development refers to the process in which the follicles in the ovary gradually develop from the primary stage to a mature state, and most primary follicles fail to develop normally, without forming a dense granular cell layer and cell wall, which is identified as atretic follicles. Granulosa cells assist follicle development by producing hormones and providing support, and interference in the interaction between granulosa cells and oocytes may lead to the formation of atretic follicles. Ferroptosis, as a non-apoptotic form of death, is caused by cells accumulating lethal levels of iron-dependent phospholipid peroxides. Healthy follicles ranging from 4 to 5 mm were randomly divided into two groups: a control group (DMSO) and treatment group (10 uM of ferroptosis inducer erastin). Each group was sequenced after three repeated cultures for 24 h. We found that ferroptosis was associated with atretic follicles and that the in vitro treatment of healthy follicles with the ferroptosis inducer erastin produced a phenotype similar to that of atretic follicles. Overall, our study elucidates that tRF-1:30-Gly-GCC-2 is involved in the apoptosis and ferroptosis of GCs. Mechanistically, tRF-1:30-Gly-GCC-2 inhibits granulosa cell proliferation and promotes ferroptosis by inhibiting Mitogen-activated protein kinase 1 (MAPK1). tRF-1:30-Gly-GCC-2 may be a novel molecular target for improving the development of atretic follicles in ovarian dysfunction. In conclusion, our study provides a new perspective on the pathogenesis of granulosa cell dysfunction and follicular atresia.
Collapse
Affiliation(s)
- Yuheng Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinkang Feng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunhong Jing
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxin Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiang Tong
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingfan Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.P.); (M.G.); (S.W.); (Y.H.); (J.F.); (Y.J.); (J.L.); (Q.C.); (J.T.); (L.K.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Hu Y, Liu Y, Shen J, Yin L, Hu X, Huang X, Chen Y, Zhang Y. Longitudinal observation of tRNA-derived fragments profiles in gestational diabetes mellitus and its diagnostic value. J Obstet Gynaecol Res 2024; 50:1317-1333. [PMID: 38923718 DOI: 10.1111/jog.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Gestational Diabetes Mellitus (GDM) poses significant risks to maternal and fetal health. Current diagnostic methods based on glucose tolerance tests have limitations for early detection. tRNA-derived small RNAs (tsRNAs) have emerged as potential molecular regulators in various diseases, including metabolic disorders. However, the diagnostic value of tsRNAs in plasma for early GDM or postpartum remains unclear. METHODS This longitudinal study profiled the expression of tsRNAs across different gestational stages and postpartum in women with GDM (n = 40) and healthy control gestational women (HCs, n = 40). High-throughput small RNA sequencing identified candidate tsRNAs, which were then validated and correlated with clinical biochemical markers such as fasting blood glucose (FBG), HOMA-IR, and GHbA1c. RESULTS tRF-1:32-Val-AAC-1-M6, tRF-1:31-Glu-CTC-1-M2, and tRF-1:30-Gly-CCC-1-M4 were consistently upregulated in the GDM group compared to HCs during the second trimester (p < 0.05). Only tRF-1:31-Glu-CTC-1-M2 was highly expressed during the first trimester, and tRF-1:30-Gly-CCC-1-M4 increased during postpartum. tRF-1:31-Glu-CTC-1-M2 showed a significant correlation with FBG levels in the first trimester (R = 0.317, p = 0.047). The expression of tRF-1:30-Gly-CCC-1-M4 was significantly correlated with HOMA-IR (r = 0.65, p < 0.001) and GHBA1c (r = 0.33, p = 0.037) during postpartum. A joint diagnostic model incorporating tsRNAs expression and clinical markers demonstrated enhanced predictive power for GDM (ROC AUC = 0.768). CONCLUSION Our results revealed distinct expression patterns of specific tsRNAs in GDM, showcasing their correlation with key metabolic parameters. This underscores their promising role as biomarkers for early prediction and diagnosis of GDM. The integration of tRFs into a composite biomarker panel holds the potential to improve clinical outcomes by enabling personalized risk assessment and targeted interventions.
Collapse
Affiliation(s)
- Yifang Hu
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yan Liu
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jun Shen
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Lihua Yin
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Xiaoxia Hu
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Xiaolei Huang
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yingyuan Chen
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yisheng Zhang
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Wang K, Liu CY, Fang B, Li B, Li YH, Xia QQ, Zhao Y, Cheng XL, Yang SM, Zhang MH, Wang K. The function and therapeutic potential of transfer RNA-derived small RNAs in cardiovascular diseases: A review. Pharmacol Res 2024; 206:107279. [PMID: 38942340 DOI: 10.1016/j.phrs.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a class of small non-coding RNA (sncRNA) molecules derived from tRNA, including tRNA derived fragments (tRFs) and tRNA halfs (tiRNAs). tsRNAs can affect cell functions by participating in gene expression regulation, translation regulation, intercellular signal transduction, and immune response. They have been shown to play an important role in various human diseases, including cardiovascular diseases (CVDs). Targeted regulation of tsRNAs expression can affect the progression of CVDs. The tsRNAs induced by pathological conditions can be detected when released into the extracellular, giving them enormous potential as disease biomarkers. Here, we review the biogenesis, degradation process and related functional mechanisms of tsRNAs, and discuss the research progress and application prospects of tsRNAs in different CVDs, to provide a new perspective on the treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Ying-Hui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qian-Qian Xia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xue-Li Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Mei-Hua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China.
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
12
|
Wang S, Wang R, Hu D, Zhang C, Cao P, Huang J, Wang B. Epigallocatechin gallate modulates ferroptosis through downregulation of tsRNA-13502 in non-small cell lung cancer. Cancer Cell Int 2024; 24:200. [PMID: 38840243 PMCID: PMC11155022 DOI: 10.1186/s12935-024-03391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
Ferroptosis, an iron-dependent regulated cell death mechanism, holds significant promise as a therapeutic strategy in oncology. In the current study, we explored the regulatory effects of epigallocatechin gallate (EGCG), a prominent polyphenol in green tea, on ferroptosis and its potential therapeutic implications for non-small cell lung cancer (NSCLC). Treatment of NSCLC cell lines with varying concentrations of EGCG resulted in a notable suppression of cell proliferation, as evidenced by a reduction in Ki67 immunofluorescence staining. Western blot analyses demonstrated that EGCG treatment led to a decrease in the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) while increasing the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4). These molecular changes were accompanied by an increase in intracellular iron, malondialdehyde (MDA), and reactive oxygen species (ROS), alongside ultrastructural alterations characteristic of ferroptosis. Through small RNA sequencing and RT-qPCR, transfer RNA-derived small RNA 13502 (tsRNA-13502) was identified as a significant target of EGCG action, with its expression being upregulated in NSCLC tissues compared to adjacent non-tumorous tissues. EGCG was found to modulate the ferroptosis pathway by downregulating tsRNA-13502 and altering the expression of key ferroptosis regulators (GPX4/SLC7A11 and ACSL4), thereby promoting the accumulation of iron, MDA, and ROS, and ultimately inducing ferroptosis in NSCLC cells. This study elucidates EGCG's multifaceted mechanisms of action, underscoring the modulation of ferroptosis as a viable therapeutic approach for enhancing NSCLC treatment outcomes.
Collapse
Affiliation(s)
- Shun Wang
- Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China
| | - Ruohuang Wang
- Department of Otolaryngology, The Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Dingtao Hu
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, 200433, China
| | - Caoxu Zhang
- State Key Laboratory of Medical Genomics, Department of Molecular Diagnostics, Department of Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Peng Cao
- Department of Interventional Pulmonology,Anhui Chest Hospital, Hefei, 230022, China
| | - Jie Huang
- Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
| | - Baoqing Wang
- Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
13
|
Zhang Y, Gu X, Li Y, Li X, Huang Y, Ju S. Transfer RNA-derived fragment tRF-23-Q99P9P9NDD promotes progression of gastric cancer by targeting ACADSB. J Zhejiang Univ Sci B 2024; 25:438-450. [PMID: 38725342 PMCID: PMC11087185 DOI: 10.1631/jzus.b2300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/07/2023] [Indexed: 05/13/2024]
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal tumors. As a newly discovered type of non-coding RNAs, transfer RNA (tRNA)-derived small RNAs (tsRNAs) play a dual biological role in cancer. Our previous studies have demonstrated the potential of tRF-23-Q99P9P9NDD as a diagnostic and prognostic biomarker for GC. In this work, we confirmed for the first time that tRF-23-Q99P9P9NDD can promote the proliferation, migration, and invasion of GC cells in vitro. The dual luciferase reporter gene assay confirmed that tRF-23-Q99P9P9NDD could bind to the 3' untranslated region (UTR) site of acyl-coenzyme A dehydrogenase short/branched chain (ACADSB). In addition, ACADSB could rescue the effect of tRF-23-Q99P9P9NDD on GC cells. Next, we used Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to find that downregulated ACADSB in GC may promote lipid accumulation by inhibiting fatty acid catabolism and ferroptosis. Finally, we verified the correlation between ACADSB and 12 ferroptosis genes at the transcriptional level, as well as the changes in reactive oxygen species (ROS) levels by flow cytometry. In summary, this study proposes that tRF-23-Q99P9P9NDD may affect GC lipid metabolism and ferroptosis by targeting ACADSB, thereby promoting GC progression. It provides a theoretical basis for the diagnostic and prognostic monitoring value of GC and opens up new possibilities for treatment.
Collapse
Affiliation(s)
- Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yang Li
- Medical School of Nantong University, Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xun Li
- Medical School of Nantong University, Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong 226001, China.
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China. ,
| |
Collapse
|
14
|
Zhou M, He X, Zhang J, Mei C, Zhong B, Ou C. tRNA-derived small RNAs in human cancers: roles, mechanisms, and clinical application. Mol Cancer 2024; 23:76. [PMID: 38622694 PMCID: PMC11020452 DOI: 10.1186/s12943-024-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are a new type of non-coding RNAs (ncRNAs) produced by the specific cleavage of precursor or mature tRNAs. tsRNAs are involved in various basic biological processes such as epigenetic, transcriptional, post-transcriptional, and translation regulation, thereby affecting the occurrence and development of various human diseases, including cancers. Recent studies have shown that tsRNAs play an important role in tumorigenesis by regulating biological behaviors such as malignant proliferation, invasion and metastasis, angiogenesis, immune response, tumor resistance, and tumor metabolism reprogramming. These may be new potential targets for tumor treatment. Furthermore, tsRNAs can exist abundantly and stably in various bodily fluids (e.g., blood, serum, and urine) in the form of free or encapsulated extracellular vesicles, thereby affecting intercellular communication in the tumor microenvironment (TME). Meanwhile, their abnormal expression is closely related to the clinicopathological features of tumor patients, such as tumor staging, lymph node metastasis, and poor prognosis of tumor patients; thus, tsRNAs can be served as a novel type of liquid biopsy biomarker. This review summarizes the discovery, production, and expression of tsRNAs and analyzes their molecular mechanisms in tumor development and potential applications in tumor therapy, which may provide new strategies for early diagnosis and targeted therapy of tumors.
Collapse
Affiliation(s)
- Manli Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jing Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, 410008, China.
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
15
|
Xiong Q, Zhang Y, Xu Y, Yang Y, Zhang Z, Zhou Y, Zhang S, Zhou L, Wan X, Yang X, Zeng Z, Liu J, Zheng Y, Han J, Zhu Q. tiRNA-Val-CAC-2 interacts with FUBP1 to promote pancreatic cancer metastasis by activating c‑MYC transcription. Oncogene 2024; 43:1274-1287. [PMID: 38443680 PMCID: PMC11035144 DOI: 10.1038/s41388-024-02991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Cumulative studies have established the significance of transfer RNA-derived small RNA (tsRNA) in tumorigenesis and progression. Nevertheless, its function and mechanism in pancreatic cancer metastasis remain largely unclear. Here, we screened and identified tiRNA-Val-CAC-2 as highly expressed in pancreatic cancer metastasis samples by tsRNA sequencing. We also observed elevated levels of tiRNA-Val-CAC-2 in the serum of pancreatic cancer patients who developed metastasis, and patients with high levels of tiRNA-Val-CAC-2 exhibited a worse prognosis. Additionally, knockdown of tiRNA-Val-CAC-2 inhibited the metastasis of pancreatic cancer in vivo and in vitro, while overexpression of tiRNA-Val-CAC-2 promoted the metastasis of pancreatic cancer. Mechanically, we discovered that tiRNA-Val-CAC-2 interacts with FUBP1, leading to enhanced stability of FUBP1 protein and increased FUBP1 enrichment in the c-MYC promoter region, thereby boosting the transcription of c-MYC. Of note, rescue experiments confirmed that tiRNA-Val-CAC-2 could influence pancreatic cancer metastasis via FUBP1-mediated c-MYC transcription. These findings highlight a potential novel mechanism underlying pancreatic cancer metastasis, and suggest that both tiRNA-Val-CAC-2 and FUBP1 could serve as promising prognostic biomarkers and potential therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Qunli Xiong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaguang Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongfeng Xu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiwei Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zhou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lian Zhou
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojuan Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhu Zeng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinlu Liu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Jawad SF, Altalbawy FMA, Hussein RM, Fadhil AA, Jawad MA, Zabibah RS, Taraki TY, Mohan CD, Rangappa KS. The strict regulation of HIF-1α by non-coding RNAs: new insight towards proliferation, metastasis, and therapeutic resistance strategies. Cancer Metastasis Rev 2024; 43:5-27. [PMID: 37552389 DOI: 10.1007/s10555-023-10129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
The hypoxic environment is prominently witnessed in most solid tumors and is associated with the promotion of cell proliferation, epithelial-mesenchymal transition (EMT), angiogenesis, metabolic reprogramming, therapeutic resistance, and metastasis of tumor cells. All the effects are mediated by the expression of a transcription factor hypoxia-inducible factor-1α (HIF-1α). HIF-1α transcriptionally modulates the expression of genes responsible for all the aforementioned functions. The stability of HIF-1α is regulated by many proteins and non-coding RNAs (ncRNAs). In this article, we have critically discussed the crucial role of ncRNAs [such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), Piwi-interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs)] in the regulation of stability and expression of HIF-1α. We have comprehensively discussed the molecular mechanisms and relationship of HIF-1α with each type of ncRNA in either promotion or repression of human cancers and therapeutic resistance. We have also elaborated on ncRNAs that are in clinical examination for the treatment of cancers. Overall, the majority of aspects concerning the relationship between HIF-1α and ncRNAs have been discussed in this article.
Collapse
Affiliation(s)
- Sabrean Farhan Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences, University of Cairo, Giza, 12613, Egypt
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, 570006, India.
- FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.
| | | |
Collapse
|
17
|
Zhang Y, Gu X, Li Y, Huang Y, Ju S. Multiple regulatory roles of the transfer RNA-derived small RNAs in cancers. Genes Dis 2024; 11:597-613. [PMID: 37692525 PMCID: PMC10491922 DOI: 10.1016/j.gendis.2023.02.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 09/12/2023] Open
Abstract
With the development of sequencing technology, transfer RNA (tRNA)-derived small RNAs (tsRNAs) have received extensive attention as a new type of small noncoding RNAs. Based on the differences in the cleavage sites of nucleases on tRNAs, tsRNAs can be divided into two categories, tRNA halves (tiRNAs) and tRNA-derived fragments (tRFs), each with specific subcellular localizations. Additionally, the biogenesis of tsRNAs is tissue-specific and can be regulated by tRNA modifications. In this review, we first elaborated on the classification and biogenesis of tsRNAs. After summarizing the latest mechanisms of tsRNAs, including transcriptional gene silencing, post-transcriptional gene silencing, nascent RNA silencing, translation regulation, rRNA regulation, and reverse transcription regulation, we explored the representative biological functions of tsRNAs in tumors. Furthermore, this review summarized the clinical value of tsRNAs in cancers, thus providing theoretical support for their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yang Li
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
18
|
Xu S, Wang L, Zhao Y, Mo T, Wang B, Lin J, Yang H. Metabolism-regulating non-coding RNAs in breast cancer: roles, mechanisms and clinical applications. J Biomed Sci 2024; 31:25. [PMID: 38408962 PMCID: PMC10895768 DOI: 10.1186/s12929-024-01013-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Breast cancer is one of the most common malignancies that pose a serious threat to women's health. Reprogramming of energy metabolism is a major feature of the malignant transformation of breast cancer. Compared to normal cells, tumor cells reprogram metabolic processes more efficiently, converting nutrient supplies into glucose, amino acid and lipid required for malignant proliferation and progression. Non-coding RNAs(ncRNAs) are a class of functional RNA molecules that are not translated into proteins but regulate the expression of target genes. NcRNAs have been demonstrated to be involved in various aspects of energy metabolism, including glycolysis, glutaminolysis, and fatty acid synthesis. This review focuses on the metabolic regulatory mechanisms and clinical applications of metabolism-regulating ncRNAs involved in breast cancer. We summarize the vital roles played by metabolism-regulating ncRNAs for endocrine therapy, targeted therapy, chemotherapy, immunotherapy, and radiotherapy resistance in breast cancer, as well as their potential as therapeutic targets and biomarkers. Difficulties and perspectives of current targeted metabolism and non-coding RNA therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Shiliang Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Lingxia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Yuexin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Tong Mo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Jun Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China.
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China.
| |
Collapse
|
19
|
Li D, Xie X, Yin N, Wu X, Yi B, Zhang H, Zhang W. tRNA-Derived Small RNAs: A Novel Regulatory Small Noncoding RNA in Renal Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:1-11. [PMID: 38322624 PMCID: PMC10843216 DOI: 10.1159/000533811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/23/2023] [Indexed: 02/08/2024]
Abstract
Background tRNA-derived small RNAs (tsRNAs) are an emerging class of small noncoding RNAs derived from tRNA cleavage. Summary With the development of high-throughput sequencing, various biological roles of tsRNAs have been gradually revealed, including regulation of mRNA stability, transcription, translation, direct interaction with proteins and as epigenetic factors, etc. Recent studies have shown that tsRNAs are also closely related to renal disease. In clinical acute kidney injury (AKI) patients and preclinical AKI models, the production and differential expression of tsRNAs in renal tissue and plasma were observed. Decreased expression of tsRNAs was also found in urine exosomes from chronic kidney disease patients. Dysregulation of tsRNAs also appears in models of nephrotic syndrome and patients with lupus nephritis. And specific tsRNAs were found in high glucose model in vitro and in serum of diabetic nephropathy patients. In addition, tsRNAs were also differentially expressed in patients with kidney cancer and transplantation. Key Messages In the present review, we have summarized up-to-date works and reviewed the relationship and possible mechanisms between tsRNAs and kidney diseases.
Collapse
Affiliation(s)
- Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xian Xie
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Ni Yin
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xueqin Wu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| |
Collapse
|
20
|
Wu F, Yang Q, Pan W, Meng W, Ma Z, Wang W. tRNA-derived fragments: mechanism of gene regulation and clinical application in lung cancer. Cell Oncol (Dordr) 2024; 47:37-54. [PMID: 37642916 DOI: 10.1007/s13402-023-00864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer, being the most widespread and lethal form of cancer globally, has a high incidence and mortality rate primarily attributed to challenges associated with early detection, extensive metastasis, and frequent recurrence. In the context of lung cancer development, noncoding RNA molecules have a crucial role in governing gene expression and protein synthesis. Specifically, tRNA-derived fragments (tRFs), a subset of noncoding RNAs, exert significant biological influences on cancer progression, encompassing transcription and translation processes as well as epigenetic regulation. This article primarily examines the mechanisms by which tRFs modulate gene expression and contribute to tumorigenesis in lung cancer. Furthermore, we provide a comprehensive overview of the current bioinformatics analysis of tRFs in lung cancer, with the objective of offering a systematic and efficient approach for studying the expression profiling, functional enrichment, and molecular mechanisms of tRFs in this disease. Finally, we discuss the clinical significance and potential avenues for future research on tRFs in lung cancer. This paper presents a comprehensive systematic review of the existing research findings on tRFs in lung cancer, aiming to offer improved biomarkers and drug targets for clinical management of lung cancer.
Collapse
Affiliation(s)
- Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Qianqian Yang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Wei Meng
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China.
| | - Weiwei Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China.
| |
Collapse
|
21
|
Zhang L, Liu J, Hou Y. Classification, function, and advances in tsRNA in non-neoplastic diseases. Cell Death Dis 2023; 14:748. [PMID: 37973899 PMCID: PMC10654580 DOI: 10.1038/s41419-023-06250-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
tRNA-derived small RNAs (tsRNAs) are non-coding small RNAs produced by specific endonucleases following the processing and splicing of precursor or mature tRNAs upon starvation, oxidative stress, hypoxia, and other adverse conditions. tRNAs are classified into two major categories, tRNA fragments (tRFs) and tRNA-derived stress-induced small RNAs (tiRNAs), based on differences in splice sites. With the development of high-throughput sequencing technologies in recent years, tsRNAs have been found to have important biological functions, including inhibition of apoptosis, epigenetic regulation, cell-cell communication, translation, and regulation of gene expression. Additionally, these molecules have been found to be aberrantly expressed in various diseases and to be involved in several pathological processes. In this article, the classification and nomenclature, biological functions, and potential use of tsRNAs as diagnostic biomarkers and therapeutic targets in non-neoplastic diseases are reviewed. Although tsRNA research is at its infancy, their potential in the treatment of non-tumor diseases warrants further investigation.
Collapse
Affiliation(s)
- Liou Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Liu
- Translational Research Experiment Department, Science Experiment Center, China Medical University, Shenyang, China.
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
22
|
Du J, Huang T, Zheng Z, Fang S, Deng H, Liu K. Biological function and clinical application prospect of tsRNAs in digestive system biology and pathology. Cell Commun Signal 2023; 21:302. [PMID: 37904174 PMCID: PMC10614346 DOI: 10.1186/s12964-023-01341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
tsRNAs are small non-coding RNAs originating from tRNA that play important roles in a variety of physiological activities such as RNA silencing, ribosome biogenesis, retrotransposition, and epigenetic inheritance, as well as involvement in cellular differentiation, proliferation, and apoptosis. tsRNA-related abnormalities have a significant influence on the onset, development, and progression of numerous human diseases, including malignant tumors through affecting the cell cycle and specific signaling molecules. This review introduced origins together with tsRNAs classification, providing a summary for regulatory mechanism and physiological function while dysfunctional effect of tsRNAs in digestive system diseases, focusing on the clinical prospects of tsRNAs for diagnostic and prognostic biomarkers. Video Abstract.
Collapse
Affiliation(s)
- Juan Du
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tianyi Huang
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhen Zheng
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuai Fang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Hongxia Deng
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
23
|
Anastassiadis T, Köhrer C. Ushering in the era of tRNA medicines. J Biol Chem 2023; 299:105246. [PMID: 37703991 PMCID: PMC10583094 DOI: 10.1016/j.jbc.2023.105246] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Long viewed as an intermediary in protein translation, there is a growing awareness that tRNAs are capable of myriad other biological functions linked to human health and disease. These emerging roles could be tapped to leverage tRNAs as diagnostic biomarkers, therapeutic targets, or even as novel medicines. Furthermore, the growing array of tRNA-derived fragments, which modulate an increasingly broad spectrum of cellular pathways, is expanding this opportunity. Together, these molecules offer drug developers the chance to modulate the impact of mutations and to alter cell homeostasis. Moreover, because a single therapeutic tRNA can facilitate readthrough of a genetic mutation shared across multiple genes, such medicines afford the opportunity to define patient populations not based on their clinical presentation or mutated gene but rather on the mutation itself. This approach could potentially transform the treatment of patients with rare and ultrarare diseases. In this review, we explore the diverse biology of tRNA and its fragments, examining the past and present challenges to provide a comprehensive understanding of the molecules and their therapeutic potential.
Collapse
|
24
|
Mao M, Chen W, Huang X, Ye D. Role of tRNA-derived small RNAs(tsRNAs) in the diagnosis and treatment of malignant tumours. Cell Commun Signal 2023; 21:178. [PMID: 37480078 PMCID: PMC10362710 DOI: 10.1186/s12964-023-01199-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023] Open
Abstract
Malignant tumours area leading cause of death globally, accounting for approximately 13% of all deaths. A detailed understanding of the mechanism(s) of the occurrence and development of malignant tumours and identification of relevant therapeutic targets are therefore key to tumour treatment. tsRNAs(tRNA-derived small RNAs)-also known as TRFs (tRNA-derived fragments), tiRNAs (tRNA-derived stress-induced RNAs), tRNA halves, etc.-are a recently identified class of small noncoding RNAs that are generated from mature tRNA or tRNA precursors through cleavage by enzymes such as angiogenin, Dicer, RNase Z, and RNase P. Several studies have confirmed that dysregulation of tsRNAs is closely related to the tumorigenesis of breast cancer, nasopharyngeal cancer, lung cancer, and so on. Furthermore, research indicates that tsRNAs can be used as clinical diagnostic markers and therapeutic targets for cancer. In our review, we summarized the recent research progress on the role and clinical application of tsRNAs in tumorigenesis and progression. Video Abstract.
Collapse
Affiliation(s)
- Mingwen Mao
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo No.6 Hospital Affiliated Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Weina Chen
- Department of Clinical Pharmacology, Yinzhou Integrated TCM & Western Medicine Hospital, Ningbo, 315040, Zhejiang, China
| | - Xingbiao Huang
- Department of General Surgery, Ningbo No.6, Hospital Affiliated Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
25
|
Zhou Y, Wang Z, Zhou H, Tan W, Liu J, Cai Y, Huang Q, Li B, He Y, Yoshida S, Li Y. Identification and clinical significance of tsRNAs and miRNAs in PBMCs of treatment-requiring retinopathy of prematurity. Exp Eye Res 2023; 232:109518. [PMID: 37257714 DOI: 10.1016/j.exer.2023.109518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/23/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
The aim of the study is to reveal the expression profiling and clinical significance of peripheral blood mononuclear cell (PBMC) tRNA-derived small RNAs (tsRNAs) and microRNAs (miRNAs) of premature infants with treatment-requiring retinopathy of prematurity (ROP). Significantly altered tsRNAs and miRNAs were screened using small RNA sequencing. RT-qPCR was used to verify the altered RNAs identified by small RNA transcriptomics. The target genes, their enriched functions, and possibly involved signaling pathways were identified by bioinformatics analyses. According to the small RNA sequencing, 125 tsRNAs and 205 miRNAs were significantly altered in PBMCs obtained from infants with treatment-requiring ROP compared with the premature controls without retinopathy. We preliminarily validated the significant alterations of 6 tsRNAs and 9 miRNAs. The target genes for those tsRNAs were enriched for cellular macromolecule metabolic process, intracellular anatomical structure, transcription regulatory region nucleic acid binding, and Th17 cell differentiation; those of the altered miRNAs were enriched for the developmental process, cell junction, DNA-binding transcription activator activity, and FoxO signaling pathway. By verification with the extended sample size, we identified tsRNAs and miRNAs that could be potential biomarkers with clinical values. The study recognized the alterations and clinical significance of changed tsRNA/miRNA profiles in PBMCs from premature infants with ROP. These significantly altered tsRNAs and miRNAs might be useful as potential diagnostic biomarkers and molecular targets for treatment-requiring ROP.
Collapse
Affiliation(s)
- Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Jie Liu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Qian Huang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
26
|
Xie Y, Zhang S, Yu X, Ye G, Guo J. Transfer RNA-derived fragments as novel biomarkers of the onset and progression of gastric cancer. Exp Biol Med (Maywood) 2023; 248:1095-1102. [PMID: 37387464 PMCID: PMC10583753 DOI: 10.1177/15353702231179415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 07/01/2023] Open
Abstract
Gastric cancer (GC) is a particularly malignant disease; thus, early diagnosis and treatment are especially important. Transfer RNA-derived small RNAs (tsRNAs) have been implicated in the onset and progression of various cancers. Therefore, the aim of this study was to explore the role of tRF-18-79MP9P04 (previously named tRF-5026a) in the onset and progression of GC. Expression levels of tRF-18-79MP9P04 were quantified in gastric mucosa specimens of healthy controls and plasma samples of patients with different stages of GC. The results showed that plasma levels of tRF-18-79MP9P04 were significantly decreased in the early and advanced stages of GC. The results of the nucleocytoplasmic separation assay found that tRF-18-79MP9P04 was localized in the nuclei of GC cells. High-throughput transcriptome sequencing identified genes regulated by tRF-18-79MP9P04 in GC cells, and the function of tRF-18-79MP9P04 was predicted by bioinformatics. Collectively, the findings of this study suggest that tRF-18-79MP9P04 would be useful as non-invasive biomarker for early diagnosis of GC and is related to cornification, the type I interferon signaling pathway, RNA polymerase II activities, and DNA binding.
Collapse
Affiliation(s)
- Yaoyao Xie
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Shuangshuang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Xiuchong Yu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Guoliang Ye
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
- Institute of Digestive Diseases, Ningbo University, Ningbo 315020, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
- Institute of Digestive Diseases, Ningbo University, Ningbo 315020, China
| |
Collapse
|
27
|
Hernandez R, Shi J, Liu J, Li X, Wu J, Zhao L, Zhou T, Chen Q, Zhou C. PANDORA-Seq unveils the hidden small noncoding RNA landscape in atherosclerosis of LDL receptor-deficient mice. J Lipid Res 2023; 64:100352. [PMID: 36871792 PMCID: PMC10119612 DOI: 10.1016/j.jlr.2023.100352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Small noncoding RNAs (sncRNAs) play diverse roles in numerous biological processes. While the widely used RNA sequencing (RNA-Seq) method has advanced sncRNA discovery, RNA modifications can interfere with the complementary DNA library construction process, preventing the discovery of highly modified sncRNAs including transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) that may have important functions in disease development. To address this technical obstacle, we recently developed a novel PANDORA-Seq (Panoramic RNA Display by Overcoming RNA Modification Aborted Sequencing) method to overcome RNA modification-elicited sequence interferences. To identify novel sncRNAs associated with atherosclerosis development, LDL receptor-deficient (LDLR-/-) mice were fed a low-cholesterol diet or high-cholesterol diet (HCD) for 9 weeks. Total RNAs isolated from the intima were subjected to PANDORA-Seq and traditional RNA-Seq. By overcoming RNA modification-elicited limitations, PANDORA-Seq unveiled an rsRNA/tsRNA-enriched sncRNA landscape in the atherosclerotic intima of LDLR-/- mice, which was strikingly different from that detected by traditional RNA-Seq. While microRNAs were the dominant sncRNAs detected by traditional RNA-Seq, PANDORA-Seq substantially increased the reads of rsRNAs and tsRNAs. PANDORA-Seq also detected 1,383 differentially expressed sncRNAs induced by HCD feeding, including 1,160 rsRNAs and 195 tsRNAs. One of HCD-induced intimal tsRNAs, tsRNA-Arg-CCG, may contribute to atherosclerosis development by regulating the proatherogenic gene expression in endothelial cells. Overall, PANDORA-Seq revealed a hidden rsRNA and tsRNA population associated with atherosclerosis development. These understudied tsRNAs and rsRNAs, which are much more abundant than microRNAs in the atherosclerotic intima of LDLR-/- mice, warrant further investigations.
Collapse
Affiliation(s)
- Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jake Wu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Molecular Medicine Program, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
28
|
Zhang XT, Mao ZY, Jin XY, Wang YG, Dong YQ, Zhang C. Identification of a tsRNA Contributor to Impaired Diabetic Wound Healing via High Glucose-Induced Endothelial Dysfunction. Diabetes Metab Syndr Obes 2023; 16:285-298. [PMID: 36760596 PMCID: PMC9899021 DOI: 10.2147/dmso.s379473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Delayed skin healing in diabetic wounds is a major clinical problem. The tRNA-derived small RNAs (tsRNAs) were reported to be associated with diabetes. However, the role of tsRNAs in diabetic wound healing is unclear. Our study was designed to explore the tsRNA expression profile and mine key potential tsRNAs and their mechanism in diabetic wounds. METHODS Skin tissues of patients with diabetic foot ulcers and healthy controls were subjected to small RNA sequencing. The role of candidate tsRNA was explored by loss- and gain-of-function experiments in HUVECs. RESULTS A total of 55 differentially expressed tsRNAs were identified, including 12 upregulated and 43 downregulated in the diabetes group compared with the control group. These tsRNAs were mainly concentrated in intercellular interactions and neural function regulation in GO terms and enriched in MAPK, insulin, FoxO, calcium, Ras, ErbB, Wnt, T cell receptor, and cGMP-PKG signaling pathways. tRF-Gly-CCC-039 expression was upregulated in vivo and in vitro in the diabetic model. High glucose disturbed endothelial function in HUVECs, and tRF-Gly-CCC-039 mimics further harmed HUVECs function, characterized by the suppression of proliferation, migration, tube formation, and the expression of Coll1a1, Coll4a2, and MMP9. Conversely, the tRF-Gly-CCC-039 inhibitor could attenuate high-glucose-induced endothelial injury to HUVECs. CONCLUSION We investigated the tsRNAs expression profile in diabetic foot ulcers and defined the impairment role of tRF-Gly-CCC-039 in endothelial function in HUVECs. This study may provide novel insights into accelerating diabetic skin wound healing.
Collapse
Affiliation(s)
- Xiao-Tian Zhang
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhen-Yang Mao
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiang-Yun Jin
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yu-Gang Wang
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yu-Qi Dong
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Chao Zhang
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Chao Zhang; Yu-Qi Dong, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong New Area, Shanghai, People’s Republic of China, Tel +86-13817307997; +86-13331873590, Email ;
| |
Collapse
|
29
|
Xia H, Gao M, Chen J, Huang G, Xiang X, Wang Y, Huang Z, Li Y, Su S, Zhao Z, Zeng Q, Ruan Y. M1 macrophage-derived extracellular vesicle containing tsRNA-5006c promotes osteogenic differentiation of aortic valve interstitial cells through regulating mitophagy. PeerJ 2022; 10:e14307. [PMID: 36518291 PMCID: PMC9744173 DOI: 10.7717/peerj.14307] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Osteogenic differentiation of aortic valve interstitial cells (AVICs) plays a key role in the calcific aortic valve disease progression. Extracellular vesicles (EVs)-derived from M1-polarized macrophages (M1-EVs) orchestrated intercellular communication by delivering non-coding RNAs such as tRNA-derived small RNAs (tsRNAs) is crucial for cardiovascular disease. However, the role and mechanism of M1-EVs tsRNAs in osteogenic differentiation of AVICs remains largely unclear. Methods M1-EVs and PBS treated-RAW 264.7 cell-derived EVs (NC-EVs) were incubated with AVICs and subjected to small RNA sequencing. Candidate tsRNA in M1-EVs was silenced to explore their effects on AVIC osteogenic differentiation and mitophagy. Results DiI-labeled M1-EVs were internalized by AVICs, resulting in significantly increased calcium nodule formation and expression of osteogenesis-related genes in AVICs, including RUNX2, BMP2, osteopontin, and SPP1, compared with NC-EVs. Small RNA sequencing revealed that 17 tsRNAs were significantly up-regulated such as tsRNA-5006c, while 28 tsRNAs were significantly down-regulated in M1-EVs compared with NC-EVs. Intriguingly, tsRNA-5006c-deleted M1-EVs treatment significantly reduced calcium nodule formation and expression of osteogenesis-related genes in AVICs relative to control group. Moreover, target genes of tsRNA-5006c were mainly involved in autophagy-related signaling pathways, such as MAPK, Ras, Wnt, and Hippo signaling pathway. Hallmarks of mitophagy activation in AVICs including mitophagosome formation, TMRM fluorescence, expression of LC3-II, BINP3, and PGC1α, were significantly elevated in the M1-EVs group compared with NC-EVs group, whereas M1-EVs tsRNA-5006c inhibitor led to a significant reduction in these indicators. Conclusion M1-EVs carried tsRNA-5006c regulates AVIC osteogenic differentiation from the perspective of mitophagy, and we provide a new target for the prevention and treatment of aortic valve calcification.
Collapse
Affiliation(s)
- Hao Xia
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingjian Gao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Chen
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Guanshen Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuting Xiang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyan Wang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohui Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongchun Li
- Department of traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Su
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zewei Zhao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qingchun Zeng
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Qian T, Yu X, Xu A, Li H, Chen W, Zhong S. tRF-20-S998LO9D inhibits endometrial carcinoma by upregulating SESN2. Epigenomics 2022; 14:1563-1577. [PMID: 36803014 DOI: 10.2217/epi-2022-0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Aim: To explore the roles of transfer RNA-derived small RNAs (tsRNAs) in endometrial carcinoma (EC). Materials & methods: tsRNA profiles for EC from TCGA were analyzed. The functions and mechanisms of tsRNA were explored using in vitro experiments. Results: 173 dysregulated tsRNAs were identified. After validating in EC tissues and serumal exosome samples from EC patients, a downregulated tsRNA in both EC tissues and serumal exosomes (i.e., tRF-20-S998LO9D) was observed. Exosomal tRF-20-S998LO9D had an area under the curve of 0.768. tRF-20-S998LO9D overexpression inhibited proliferation, migration and invasion and promoted apoptosis of EC cells and tRF-20-S998LO9D knockdown further confirmed its effects. Further analyses showed that tRF-20-S998LO9D upregulated SESN2 in protein levels. Conclusion: tRF-20-S998LO9D inhibits EC cells by upregulating SESN2.
Collapse
Affiliation(s)
- Tianye Qian
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Xinnian Yu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Andi Xu
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huixin Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity & Child Health Care Hospital, Nanjing, 210004, China
| | - Wei Chen
- Department of Head & Neck Surgery, The Affiliated Cancer Hospital of Nanjing, Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| |
Collapse
|
31
|
Yuan L, Tang Y, Yin L, Lin X, Luo Z, Wang S, Li J, Liang P, Jiang B. Microarray Analysis Reveals Changes in tRNA-Derived Small RNAs (tsRNAs) Expression in Mice with Septic Cardiomyopathy. Genes (Basel) 2022; 13:genes13122258. [PMID: 36553526 PMCID: PMC9778384 DOI: 10.3390/genes13122258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background: tRNA-derived small RNAs (tsRNAs) as a novel non-coding RNA have been studied in many cardiovascular diseases, but the relationship between tsRNAs and septic cardiomyopathy has not been investigated. We sought to analyze changes of the expression profile of tsRNAs in septic cardiomyopathy and reveal an important role for tsRNAs. Methods: We constructed a sepsis model by cecal ligation and puncture (CLP) in mice, and microarray analysis was used to find differentially expressed tsRNAs. Quantitative real-time PCR was used to verify the expression of tsRNAs and the interference effect of angiogenin (ANG), a key nuclease producing tsRNAs. Bioinformatics analysis was used to predict target genes and functions. CCK-8 and LDH release assays were used to detect cell viability and cell death. Results: A total of 158 tsRNAs were screened, of which 101 were up-regulated and 57 were down-regulated. A total of 8 tsRNAs were verified by qPCR, which was consistent with microarray results. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses suggest that these tsRNAs may be associated with the Wnt signaling pathway and participate in cellular process. The expression of tsRNAs decreased after the interference of the key nuclease ANG, while CCK-8 suggested a corresponding decrease in cell viability and an increase in the release of LDH (cell death), indicating that tsRNAs can protect cardiomyocytes during the development of septic cardiomyopathy, reduced cardiomyocyte death. Conclusions: A total of 158 tsRNAs changed significantly in septic cardiomyopathy, and these tsRNAs may play a protective role in the development of septic cardiomyopathy.
Collapse
Affiliation(s)
- Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Zhengyang Luo
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Shuxin Wang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
- Correspondence: ; Tel./Fax: +86-0731-82355019
| |
Collapse
|
32
|
Zou L, Yang Y, Zhou B, Li W, Liu K, Li G, Miao H, Song X, Yang J, Geng Y, Li M, Bao R, Liu Y. tRF-3013b inhibits gallbladder cancer proliferation by targeting TPRG1L. Cell Mol Biol Lett 2022; 27:99. [PMID: 36401185 PMCID: PMC9673407 DOI: 10.1186/s11658-022-00398-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND tRNA-derived fragments (tRFs) are newly discovered noncoding RNAs and regulate tumor progression via diverse molecular mechanisms. However, the expression and biofunction of tRFs in gallbladder cancer (GBC) have not been reported yet. METHODS The expression of tRFs in GBC was detected by tRF and tiRNA sequencing in GBC tissues and adjacent tissues. The biological function of tRFs was investigated by cell proliferation assay, clonal formation assay, cell cycle assay, and xenotransplantation model in GBC cell lines. The molecular mechanism was discovered and verified by transcriptome sequencing, fluorescence in situ hybridization (FISH), target gene site prediction, and RNA binding protein immunoprecipitation (RIP). RESULTS tRF-3013b was significantly downregulated in GBC compared with para-cancer tissues. Decreased expression of tRF-3013b in GBC patients was correlated with poor overall survival. Dicer regulated the production of tRF-3013b, and its expression was positively correlated with tRF-3013b in GBC tissues. Functional experiments demonstrated that tRF-3013b inhibited GBC cell proliferation and induced cell-cycle arrest. Mechanically, tRF-3013b exerted RNA silencing effect on TPRG1L by binding to AGO3, and then inhibited NF-κB. TPRG1L overexpression could rescue the effects of tRF-3013b on GBC cell proliferation. CONCLUSIONS This study indicated that Dicer-induced tRF-3013b inhibited GBC proliferation by targeting TPRG1L and repressed NF-κB, pointing to tRF-3013b as a novel potential therapeutic target of GBC.
Collapse
Affiliation(s)
- Lu Zou
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Yang Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Biyu Zhou
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Guoqiang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Huijie Miao
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Xiaoling Song
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665, Kongjiang Road, Shanghai, 200092, China
| | - Jiahua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
| | - Runfa Bao
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665, Kongjiang Road, Shanghai, 200092, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
33
|
Wang S, Luo Z, Yuan L, Lin X, Tang Y, Yin L, Liang P, Jiang B. tRNA-Derived Small RNAs: Novel Insights into the Pathogenesis and Treatment of Cardiovascular Diseases. J Cardiovasc Transl Res 2022; 16:300-309. [PMID: 36190649 DOI: 10.1007/s12265-022-10322-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022]
Abstract
tRNA-derived small RNAs (tsRNAs) are non-coding RNAs with diverse functions in various diseases. Although research on tsRNAs has focused on their roles in cancer, such as gene expression regulation to influence cancer progression and realize clinical effects, a growing number of studies are investigating the association of tsRNAs with cardiovascular diseases (CVDs), including atherosclerosis, myocardial infarction, and pulmonary hypertension. tsRNA expression varies across these diseases and could be regulated by epigenetics, tsRNA structure, and tRNA-binding proteins. tsRNAs play key roles in CVD progression, including the regulation of protein synthesis, and the different mechanisms underlying these functional roles of tsRNAs have been elucidated. Furthermore, tsRNAs are potential diagnostic biomarkers and therapeutic targets in CVDs. In this review, we summarize the biogenesis, classification, and regulation of tsRNAs and their potential application for CVD diagnosis and therapy. We also highlight the current challenges and provide perspectives for further investigation.
Collapse
Affiliation(s)
- Shuxin Wang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Zhengyang Luo
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
34
|
Role of the Ribonuclease ONCONASE in miRNA Biogenesis and tRNA Processing: Focus on Cancer and Viral Infections. Int J Mol Sci 2022; 23:ijms23126556. [PMID: 35742999 PMCID: PMC9223570 DOI: 10.3390/ijms23126556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/23/2022] Open
Abstract
The majority of transcribed RNAs do not codify for proteins, nevertheless they display crucial regulatory functions by affecting the cellular protein expression profile. MicroRNAs (miRNAs) and transfer RNA-derived small RNAs (tsRNAs) are effectors of interfering mechanisms, so that their biogenesis is a tightly regulated process. Onconase (ONC) is an amphibian ribonuclease known for cytotoxicity against tumors and antiviral activity. Additionally, ONC administration in patients resulted in clinical effectiveness and in a well-tolerated feature, at least for lung carcinoma and malignant mesothelioma. Moreover, the ONC therapeutic effects are actually potentiated by cotreatment with many conventional antitumor drugs. This review not only aims to describe the ONC activity occurring either in different tumors or in viral infections but also to analyze the molecular mechanisms underlying ONC pleiotropic and cellular-specific effects. In cancer, data suggest that ONC affects malignant phenotypes by generating tRNA fragments and miRNAs able to downregulate oncogenes expression and upregulate tumor-suppressor proteins. In cells infected by viruses, ONC hampers viral spread by digesting the primer tRNAs necessary for viral DNA replication. In this scenario, new therapeutic tools might be developed by exploiting the action of ONC-elicited RNA derivatives.
Collapse
|