1
|
Gupta S, Silveira DA, Mombach JC, Hashimoto RF. Targeting NSCLC drug resistance: Systems biology insights into the MALAT1/miR-145-5p axis and Wip1 in regulating ferroptosis and apoptosis. J R Soc Interface 2025; 22:20240852. [PMID: 40425041 PMCID: PMC12115852 DOI: 10.1098/rsif.2024.0852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/26/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
The long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1) and microRNA-145-5p (miR-145) axis play a pivotal role in regulating drug resistance, apoptosis and senescence in non-small cell lung cancer (NSCLC). MALAT1 drives drug resistance by suppressing miR-145 and activating MUC1, thereby inhibiting ferroptosis; however, its precise role in regulating ferroptosis in NSCLC remains unclear. Therefore, we propose a computational modelling approach to unravel the impact of the MALAT1/miR-145 axis on ferroptosis and drug resistance, to identify potential therapeutic strategies that promote ferroptosis. Using Boolean logic and a stochastic updating scheme, we developed and validated a robust regulatory model that encompasses ferroptosis, apoptosis, senescence and drug resistance pathways. The model, based on extensive literature and validated through gain- and loss-of-function perturbations, demonstrated strong alignment with observed clinical data that were not included in its construction. Our analysis identified three previously unreported feedback loops, miR-145/Wip1/p53, miR-145/Myc/MALAT1 and miR-145/MUC1/BMI1, establishing miR-145 as a central regulator in NSCLC. Perturbations targeting MALAT1 and wild-type p53-induced phosphatase 1 (Wip1) revealed potential therapeutic opportunities, with miR-145 activation emerging as a promising strategy to induce ferroptosis and overcome drug resistance. These findings highlight the MALAT1/miR-145 axis as a transformative therapeutic target, presenting a computational foundation to advance NSCLC treatment strategies.
Collapse
MESH Headings
- MicroRNAs/metabolism
- MicroRNAs/genetics
- RNA, Long Noncoding/metabolism
- RNA, Long Noncoding/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Humans
- Drug Resistance, Neoplasm
- Ferroptosis
- Lung Neoplasms/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Apoptosis
- Protein Phosphatase 2C/metabolism
- Protein Phosphatase 2C/genetics
- Models, Biological
- Gene Expression Regulation, Neoplastic
- RNA, Neoplasm/metabolism
- RNA, Neoplasm/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/genetics
Collapse
Affiliation(s)
- Shantanu Gupta
- Department of Computer Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | - José Carlos Mombach
- Department of Physics, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | |
Collapse
|
2
|
Zhan T, Liu Y, Duan S, Lu C, Jia H, Jin M, Li J, Du X, Sun S, Li Y, Zhang J. Targeting HCG18 counteracts ferroptosis resistance via blocking the miR-30a-5p/RRM2/GSS pathway in hepatocellular carcinoma. Int J Biol Sci 2025; 21:2550-2567. [PMID: 40303288 PMCID: PMC12035896 DOI: 10.7150/ijbs.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/07/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Finding effective strategies and novel targets for reversing drug resistance is one of the major frontiers in hepatocellular carcinoma (HCC) research. Ferroptosis is participate in the malignant progression and drug resistance of HCC. However, the underlying molecular mechanisms remail largely uninvestigated. Methods: HCC cell lines and xenografted nude mice were used as experimental models. Biological functions were investigated by various molecular biology experiments. An HCC population was used to reveal clinical significance. Results: In our study, HCG18 and RRM2 was found to be associated with unfavorable prognosis. HCG18 regulates RRM2 expression through competitively binding to miR-30a-5p, consequently impacting ferroptosis. RRM2 directly regulated GSS to increase GSH synthesis. The colony formation assay demonstrated that overexpression of HCG18 inhibited erastin-induced cell death. In addition, in vivo experiments have also confirmed that HCG18 can inhibit ferroptosis by regulating the expression of RRM2, thereby promoting HCC proliferation. Conclusion: Our study discovered a novel lncRNA HCG18, as a "switch-like" molecule of the axis of miR-30a-5p/RRM2/GSS, confers resistance to ferroptosis and holds promise as a potential target for ferroptosis-dependent therapy.
Collapse
Affiliation(s)
- Tian Zhan
- Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yawei Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Shuoke Duan
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215031, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Lu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Heng Jia
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Ming Jin
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215031, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Xinru Du
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215031, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Sizheng Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Yuan Li
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215031, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jianping Zhang
- Xiamen Humanity Hospital, Fujian Medical University, Fujian, 350122, China
| |
Collapse
|
3
|
Nulianti R, Bayuaji H, Ritonga MA, Djuwantono T, Tjahyadi D, Rachmawati A, Dwiningsih SR, Nisa AS, Adriansyah PNA. Correlation of ferritin and glutathione peroxidase 4 (GPX4) level as a marker of ferroptosis process in endometrioma. Sci Rep 2025; 15:4357. [PMID: 39910174 PMCID: PMC11799147 DOI: 10.1038/s41598-024-85017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Endometriosis is a chronic inflammatory disease characterized by the presence of endometrial-like tissues (glands and stroma) located outside the uterine cavity. The pathophysiology of this condition remains incompletely understood. Local bleeding and inflammation within endometriosis lesions, which occur in an environment rich in iron, reactive oxygen species (ROS), and free radicals, can disturb the balance of iron within the peritoneal cavity. This disruption can trigger oxidative injury and an inflammatory response, leading to ferroptosis, particularly in the endometrioma phenotype. This research utilized an observational analytical method with a cross-sectional design to examine the relationship between ferritin and GPx4 levels by assessing them simultaneously. The data collection occurred at Dr. Hasan Sadikin Hospital, Cibabat Hospital, Bandung Kiwari Hospital, and Limijati Women and Children Hospital Bandung. Observational analytic data were gathered between February and July 2023 from female patients diagnosed with endometrioma who underwent either laparoscopic or laparotomy surgery, either for therapeutic or diagnostic reasons. There were 58 patients who met the inclusion and exclusion criteria in this study. A significant correlation was observed between ferritin and glutathione peroxidase 4 (GPx4) levels with a correlation coefficient of -0.600 (p < 0.001). However, there was no significant correlation between both ferritin levels and the severity of endometriosis (based on Association of Gynecologic Laparoscopists staging). There was significant correlation between ferritin and glutathione peroxidase 4 (GPx4) levels.
Collapse
Affiliation(s)
- Rina Nulianti
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Jalan Pasteur no 38 Bandung, Bandung, 40161, Indonesia.
| | - Hartanto Bayuaji
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Jalan Pasteur no 38 Bandung, Bandung, 40161, Indonesia
| | - Mulyanusa Amarullah Ritonga
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Jalan Pasteur no 38 Bandung, Bandung, 40161, Indonesia
| | - Tono Djuwantono
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Jalan Pasteur no 38 Bandung, Bandung, 40161, Indonesia
| | - Dian Tjahyadi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Jalan Pasteur no 38 Bandung, Bandung, 40161, Indonesia
| | - Anita Rachmawati
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Jalan Pasteur no 38 Bandung, Bandung, 40161, Indonesia
| | - Sri Ratna Dwiningsih
- Department of Obstetrics and Gynecology, Faculty of Medicine, Dr. Sutomo General Hospital, Universitas Airlangga, Bandung, Indonesia
| | - Aisyah Shofiatun Nisa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Jalan Pasteur no 38 Bandung, Bandung, 40161, Indonesia
| | - Putri Nadhira Adinda Adriansyah
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin General Hospital, Jalan Pasteur no 38 Bandung, Bandung, 40161, Indonesia
| |
Collapse
|
4
|
Luo X, Chen K, Zhang J, Yao Z, Guo C, Qu Y, Lu L, Mao Y. Ghrelin alleviates liver fibrosis by triggering HSCs ferroptosis via regulating injured hepatocyte-derived exosomal LncMALAT1/GPX4 pathway. FASEB J 2025; 39:e70297. [PMID: 39835702 DOI: 10.1096/fj.202401985rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
Ghrelin reduced the profibrotic effect of IHC-Exo in liver fibrosis by regulating lncMALAT1/GPX4 pathway mediated HSCs ferroptosis. Triggering HSCs ferroptosis via GHR-IHC-Exo may become a novel strategy to alleviate the progression of liver fibrosis. Liver fibrosis is the end stage of the continuous progression of a variety of chronic liver diseases. With the continuous action of various pathogenic factors, hepatic stellate cells in the liver are activated and produce a large amount of collagen fibers that are deposited in the liver, resulting in obvious damage to liver tissue and leading to cirrhosis and even liver cancer, which seriously affects human health. However, there are still clear and effective drugs approved for the treatment of liver fibrosis, so it is important to explore the possible mechanisms of liver fibrosis treatment. In previous studies, researchers found that exosomes secreted by injured hepatocytes promote the progression of liver fibrosis. In our study, we found that the role of exosomes in promoting liver fibrosis progression was attenuated after pretreatment with Ghrelin. This provides an important theoretical basis for the use of Ghrelin in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xin Luo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhilu Yao
- Department of Gastroenterology, Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Qu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Mao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Gupta S, Silveira DA, Mombach JCM, Hashimoto RF. DNA Damage-Induced Ferroptosis: A Boolean Model Regulating p53 and Non-Coding RNAs in Drug Resistance. Proteomes 2025; 13:6. [PMID: 39846637 PMCID: PMC11755436 DOI: 10.3390/proteomes13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
The tumor suppressor p53, in its wild-type form, plays a central role in cellular homeostasis by regulating senescence, apoptosis, and autophagy within the DNA damage response (DDR). Recent findings suggest that wild-type p53 also governs ferroptosis, an iron-dependent cell death process driven by lipid peroxidation. Post-translational modifications of p53 generate proteoforms that significantly enhance its functional diversity in regulating these mechanisms. A key target in this process is the cystine/glutamate transporter (xCT), which is essential for redox balance and ferroptosis resistance. Additionally, p53-induced miR-34c-5p suppresses cancer cell proliferation and drug resistance by modulating Myc, an oncogene further influenced by non-coding RNAs like circular RNA NOTCH1 (CricNOTCH1) and long non-coding RNA MALAT1. However, the exact role of these molecules in ferroptosis remains unclear. To address this, we introduce the first dynamic Boolean model that delineates the influence of these ncRNAs and p53 on ferroptosis, apoptosis, and senescence within the DDR context. Validated through gain- and loss-of-function perturbations, our model closely aligns with experimental observations in cancers such as oral squamous cell carcinoma, nasopharyngeal carcinoma, and osteosarcoma. The model identifies crucial positive feedback loops (CricNOTCH1/miR-34c/Myc, MALAT1/miR-34c/Myc, and Myc/xCT) and highlights the therapeutic potential of using p53 proteoforms and ncRNAs to combat drug resistance and induce cancer cell death.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | | | - José Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Ronaldo F. Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| |
Collapse
|
6
|
Shi CJ, Pang FX, Lei YH, Deng LQ, Pan FZ, Liang ZQ, Xie T, Wu XL, Wang YY, Xian YF, Zeng WQ, Lin HL, Zhang JF. 5-methylcytosine methylation of MALAT1 promotes resistance to sorafenib in hepatocellular carcinoma through ELAVL1/SLC7A11-mediated ferroptosis. Drug Resist Updat 2025; 78:101181. [PMID: 39657434 DOI: 10.1016/j.drup.2024.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) play a crucial role in sorafenib resistance in hepatocellular carcinoma (HCC), and lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a dysregulated lncRNA in sorafenib-resistant HCC cells. However, the underlying regulatory mechanisms of MALAT1 in sorafenib-resistant HCC cells remain unclear. In the present study, we demonstrated that 5-methylcytosine (m5C) methylation catalyzed by NSUN2 and ALYREF contributed to the RNA stability and upregulation of MALAT1. The NSUN2/ALYREF/MALAT1 signaling axis was activated in sorafenib-resistant cells, and the upregulation of MALAT1 inhibited sorafenib-induced ferroptosis to drive sorafenib resistance. Mechanistically, MALAT1 maintained the mRNA stability of SLC7A11 by directly binding to ELAVL1 and stimulating its cytoplasmic translocation. Furthermore, we explored a new synergetic strategy for the treatment of HCC by combining MALAT1 inhibitor MALAT1-IN1 with sorafenib. The results demonstrated that MALAT1-IN1 significantly enhanced sorafenib efficacy for the treatment of HCC both in vitro and in vivo. Collectively, our work brings new insights into the epigenetic mechanisms of sorafenib resistance and offers an alternative therapeutic strategy targeting ferroptosis for sorafenib-resistant HCC patients.
Collapse
MESH Headings
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Ferroptosis/drug effects
- Ferroptosis/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- 5-Methylcytosine/metabolism
- 5-Methylcytosine/analogs & derivatives
- ELAV-Like Protein 1/metabolism
- ELAV-Like Protein 1/genetics
- Amino Acid Transport System y+/genetics
- Amino Acid Transport System y+/metabolism
- Animals
- Mice
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
- Methylation/drug effects
- Cell Line, Tumor
Collapse
Affiliation(s)
- Chuan-Jian Shi
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, PR China; Shenzhen Traditional Chinese Medicine Oncology Medical Center, Shenzhen, Guangdong 518000, PR China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Feng-Xiang Pang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, PR China
| | - Yu-He Lei
- Research Institute, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, PR China
| | - Li-Qiang Deng
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, PR China; Shenzhen Traditional Chinese Medicine Oncology Medical Center, Shenzhen, Guangdong 518000, PR China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Fu-Zhen Pan
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, PR China; Shenzhen Traditional Chinese Medicine Oncology Medical Center, Shenzhen, Guangdong 518000, PR China
| | - Zhi-Qing Liang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 510086, PR China
| | - Tian Xie
- Research Institute, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, PR China
| | - Xian-Lin Wu
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, PR China; Shenzhen Traditional Chinese Medicine Oncology Medical Center, Shenzhen, Guangdong 518000, PR China
| | - Yu-Yan Wang
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, PR China; Shenzhen Traditional Chinese Medicine Oncology Medical Center, Shenzhen, Guangdong 518000, PR China
| | - Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Wei-Qiang Zeng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Han-Li Lin
- Research Institute, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, PR China
| | - Jin-Fang Zhang
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, PR China; Shenzhen Traditional Chinese Medicine Oncology Medical Center, Shenzhen, Guangdong 518000, PR China.
| |
Collapse
|
7
|
Xie G, Li D, Lin Z, Gu G, Li W, Chen R, Liu Z. HPTRMF: Collaborative Matrix Factorization-Based Prediction Method for LncRNA-Disease Associations Using High-Order Perturbation and Flexible Trifactor Regularization. J Chem Inf Model 2024; 64:9594-9608. [PMID: 39058598 DOI: 10.1021/acs.jcim.4c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Existing matrix factorization methods face challenges, including the cold start problem and global nonlinear data loss during similarity learning, particularly in predicting associations between long noncoding RNAs (LncRNAs) and diseases. To overcome these issues, we introduce HPTRMF, a matrix factorization approach incorporating high-order perturbation and flexible trifactor regularization. HPTRMF constructs a high-order correlation matrix utilizing the known association matrix, leveraging high-order perturbation to effectively address the cold start problem caused by data sparsity. Additionally, HPTRMF incorporates a flexible trifactor regularization term to capture similarity information on LncRNAs and diseases, enabling the effective handling of global nonlinear data loss by capturing such data in the similarity matrix. Experimental results demonstrate the superiority of HPTRMF over nine state-of-the-art algorithms in Leave-One-Out Cross-Validation (LOOCV) and Five-Fold Cross-Validation (5-Fold CV) on three data sets.HPTRMF and data sets are available in https://github.com/Llvvvv/HPTRMF.
Collapse
Affiliation(s)
- Guobo Xie
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Dayin Li
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyi Lin
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Guosheng Gu
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Weijun Li
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruibin Chen
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenguo Liu
- 2MD Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
8
|
Kwas K, Szubert M, Wilczyński J. Apparent lncRNAs involvement in pathogenesis of endometriosis. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2024. [DOI: 10.1177/22840265241298743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Endometriosis is an estrogen-dependent, debilitating gynecologic disease impacting millions of women globally. One of the main characteristics of this benign condition is the presence of endometrial-like tissue outside the uterus, causing dysmenorrhea, chronic pelvic pain, and infertility. However, despite many reports on the origin and molecular pathogenesis of endometriosis, the etiology of this disease has not been fully explored yet. Recently, significant attention has been paid to long noncoding RNAs (lncRNAs). Numerous studies focused on exploring the association between lncRNAs and the progression of various human diseases. LncRNAs function as competing endogenous RNAs (ceRNAs) interacting with microRNAs as a “sponge” to regulate cell functions. According to multiple studies, lncRNAs seem to have the potential as markers for diagnosing, and monitoring progression and staging in endometriosis. In this review, we summarized the lncRNAs that were found to influence the pathogenesis of endometriosis. Furthermore, we tried to assess its potential in the process of endometriosis transition from benign through atypical forms, up to EAOC (Endometriosis Associated Ovarian Cancer).
Collapse
Affiliation(s)
- Katarzyna Kwas
- Department of Surgical and Oncological Gynecology, I Department of Gynecology and Obstetrics, Medical University of Lodz, Lodz, Poland
| | - Maria Szubert
- Department of Surgical and Oncological Gynecology, I Department of Gynecology and Obstetrics, Medical University of Lodz, Lodz, Poland
| | - Jacek Wilczyński
- Department of Surgical and Oncological Gynecology, I Department of Gynecology and Obstetrics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Yang X, Li Q, Wang L, Chen J, Quan Z. MUC1 and CREB3 are Hub Ferroptosis Suppressors for Nucleus Pulposus and Annulus Fibrosus Degeneration by Integrated Bioinformatics and Experimental Verification. J Inflamm Res 2024; 17:8965-8984. [PMID: 39583856 PMCID: PMC11584408 DOI: 10.2147/jir.s489052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Ferroptosis is an underlying mechanism for various degenerative diseases, but its role in intervertebral disc degeneration remains elusive. This study aims to explore the key ferroptosis-related genes and its role in nucleus pulposus (NP) and annulus fibrosus (AF) degeneration. Methods We analyzed the gene expression profiles of NP and AF from the Gene Expression Omnibus database. The ferroptosis-related differentially expressed genes (FRDEGs) in degenerated NP and AF were filtered, followed by GO and KEGG analysis. Feature FRDEGs were identified by the LASSO and SVM-RFE algorithms, and then Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were conducted. Immune infiltration analysis was conducted by CIBERSORT algorithm. We established drug networks via the Drug-Gene Interaction Database and competitive endogenous RNA (ceRNA) networks via miRanda, miRDB, and TargetScan database. The expression levels of the feature FRDEGs were assessed by the validation sets, single-cell RNA-seq, and experimental verification. Results A total of 15 and 18 FRDEGs were obtained for NP and AF, respectively. GO and KEGG analysis revealed their implication in oxidative stress. Four (AKR1C1, AKR1C3, MUC1, ENPP2) and five (SCP2, ABCC1, KLF2, IDO1, CREB3) feature genes were identified for NP and AF, respectively. The GSEA and GSVA analysis showed that these feature genes were enriched in lots of biological functions, including immune response. CREB3 in degenerated AF was negatively correlated with Eosinophils via CIBERSORT algorithm. The drugs and ceRNAs targeting CREB3 and MUC1 were identified. Experimental verification and single-cell RNA-seq analysis revealed that MUC1 and CREB3 were downregulated in degenerated NP and AF, respectively. Conclusion MUC1 and CREB3 were considered novel biomarkers for NP and AF ferroptosis, respectively. Drug and ceRNA networks were constructed for future drug development and investigation of new mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Qiaochu Li
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Jiaxing Chen
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhengxue Quan
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
10
|
Bai X, Li J, Guo X, Huang Y, Xu X, Tan A, Jia Y, Sun Q, Guo X, Chen J, Kang J. LncRNA MALAT1 promotes Erastin-induced ferroptosis in the HBV-infected diffuse large B-cell lymphoma. Cell Death Dis 2024; 15:819. [PMID: 39532842 PMCID: PMC11557927 DOI: 10.1038/s41419-024-07209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
In a retrospective analysis of clinical data from 587 DLBCL (diffuse large B-cell lymphoma) patients in China, 13.8% of cases were associated with HBV (hepatitis B virus) infection, leading to distinct clinical features and poorer prognosis. Moreover, HBV infection has a more pronounced impact on the survival of the GCB (germinal center B-cell-like) type DLBCL patients compared to the ABC (activated B-cell-like) type. In this study, we found that the expression of LncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) was downregulated in the HBV-infected GCB-type DLBCL patients, and the HBV core protein (HBX) directly inhibited the MALAT1 expression in DLBCL cells. Notably, the overexpression of HBX could attenuate the Erastin-induced ferroptosis in the GCB-type DLBCLs, while MALAT1 re-expression restored sensitivity in the HBX-overexpressing DLBCLs in vitro and in vivo. Mechanistically, MALAT1 competitively hindered SFPQ (splicing factor proline and glutamine-rich) from effectively splicing the pre-mRNA of SLC7A11 (solute carrier family 7 member 11), due to a shared TTGGTCT motif, which impeded the SLC7A11 pre-mRNA maturation and hence diminished its negative regulation on ferroptosis. Together, our study identified HBX's role in inhibiting MALAT1 expression, promoting SFPQ-mediated splicing of SLC7A11 pre-mRNA, and reducing the GCB-type DLBCL sensitivity to Erastin-induced ferroptosis. Combined with the recent studies that ferroptosis may be involved in the occurrence and development of DLBCL, these findings explain our clinical data analysis that DLBCL patients with low expression of MALAT1 have poorer prognosis and shorter overall survival, and provide a valuable therapeutic target for the HBV-infected GCB-type DLBCL patients.
Collapse
MESH Headings
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/virology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Ferroptosis/genetics
- Ferroptosis/drug effects
- Animals
- Hepatitis B virus/genetics
- Cell Line, Tumor
- Male
- Mice
- Hepatitis B/complications
- Hepatitis B/genetics
- Female
- Viral Regulatory and Accessory Proteins
- Gene Expression Regulation, Neoplastic/drug effects
- Middle Aged
- Trans-Activators/metabolism
- Trans-Activators/genetics
- Mice, Nude
Collapse
Affiliation(s)
- Xiaofei Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xuecong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yinghui Huang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xu Xu
- Department of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ailing Tan
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yisha Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jie Chen
- Department of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
11
|
Chi ZC. Progress in research of ferroptosis in gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:699-715. [DOI: 10.11569/wcjd.v32.i10.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis is a non-apoptotic and oxidation-damaged regulated cell death caused by iron accumulation, lipid peroxidation, and subsequent plasma membrane rupture. Ferroptosis is the main cause of tissue damage caused by iron overload and lipid peroxidation. With the deepening of the research in recent years, the understanding of the occurrence and treatment of tumors has made a major breakthrough, which brings new strategies for anti-cancer treatment. This paper reviews the relationship between ferroptosis and gastrointestinal tumors, the research of ferroptosis in cancer prevention and treatment, and the role of ferroptosis in the prevention and treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
12
|
Liu M, Hu M, Liu R, Wang L, Wang J, Wang Y, Zhang R, Wang H, Liu M, Zhang Y, Wang L, Pei W, Zhang Y. Unveiling the role of APOM gene in liver cancer: Investigating the impact of hsa-miR-4489/MUC1-mediated ferroptosis on the advancement of hepatocellular carcinoma cells. Gene 2024; 925:148591. [PMID: 38788818 DOI: 10.1016/j.gene.2024.148591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
Primary liver cancer has consistently exhibited a high prevalence and fatality rate, necessitating the investigation of associated diagnostic markers and inhibition mechanisms to effectively mitigate its impact. The significance of apolipoprotein M (ApoM) in impeding the progression of neoplastic ailments is progressively gaining recognition. However, a comprehensive understanding of its underlying mechanism in liver cancer advancement remains to be elucidated. Recent evidence indicates a potential association between ApoM and polyunsaturated fatty acids (PUFAs), with the peroxidation of phospholipids (PLs) containing PUFAs being recognized as a crucial element in the occurrence of ferroptosis. This prompts us to investigate the impact of the APOM gene on the progression of liver cancer through the ferroptosis pathway and elucidate its underlying mechanisms. The findings of this study indicate that the liver cancer cell model, which was genetically modified to overexpress the APOM gene, demonstrated a heightened ferroptosis effect. Moreover, the observed inhibition of the GSH (Glutathione) - GPX4 (Glutathione Peroxidase 4) regulatory axis suggests that the role of this axis in inhibiting ferroptosis is weakened. Through intersection screening and validation, we found that Mucin 1,cell surface associated (MUC1) can inhibit ferroptosis and is regulated by the APOM gene. Bioinformatics analysis and screening identified miR-4489 as a mediator between the two. Experimental results using the dual luciferase reporter gene confirmed that has-miR-4489 targets MUC1's 3'-UTR and inhibits its expression. In conclusion, this study provides evidence that the APOM gene induces a down-regulation in the expression of the ferroptosis-inhibiting gene MUC1, mediated by miR-4489, thereby impeding the advancement of liver cancer cells through the facilitation of ferroptosis.
Collapse
Affiliation(s)
- Miaomiao Liu
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China; Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, PR China
| | - Mengyu Hu
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Rong Liu
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Ling Wang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Jingtong Wang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Yun Wang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Ruixi Zhang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China; Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, PR China
| | - Hui Wang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Mengru Liu
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Yi Zhang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China; Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, PR China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China; Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, PR China.
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China; Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, PR China.
| |
Collapse
|
13
|
杨 勤, 王 卉, 徐 淑, 杨 程, 丁 焕, 吴 迪, 朱 洁, 童 佳, 李 泽. [ Shenqi Tiaoshen Formula alleviates airway inflammation in rats with chronic obstructive pulmonary disease and kidney qi deficiency syndrome by inhibiting ferroptosis via regulating the Nrf2/SLC7A11/GPX4 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1937-1946. [PMID: 39523094 PMCID: PMC11526460 DOI: 10.12122/j.issn.1673-4254.2024.10.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate the effects of Shenqi Tiaoshen Formula (SQTSF) for alleviating airway inflammation in rats with both chronic obstructive pulmonary disease (COPD) and lung-kidney qi deficiency syndrome and explore its therapeutic mechanism. METHODS Forty-eight SD rats were randomly divided into control group, model group, low-, medium-, and high-dose SQTSF groups, and aminophylline (APL) group. In all but the control group, rat models of COPD with lung-kidney qi deficiency syndrome were established and treated with saline, SQTSF or APL via daily gavage as indicated (starting from day 30). The rats were observed for changes in body weight, grip strength, lung function, lung pathology, inflammatory cytokines in bronchoalveolar lavage fluid (BALF), oxidative stress levels, iron ion metabolism, cellular and mitochondrial ultrastructural changes in the lung tissue, and expressions of Nrf2/SLC7A11/GPX4 signaling pathway and ferroptosis-related proteins. RESULTS The rats in the model group exhibited obvious symptoms of lung-kidney qi deficiency syndrome with significantly decreased body weight, grip strength, and lung function parameters. Examination of the lung tissue revealed showed significant inflammatory cell infiltration and emphysema with obvious bronchial, perivascular, and alveolar inflammation and alveolar destruction, significantly increased IL-1β, TNF-α, IL-6, and IL-13 levels in BALF, and elevated pulmonary oxidative stress levels and Fe2+ and total iron ion concentrations. The rat models also showed characteristic ultrastructural changes of ferroptosis in the lung tissue cells under transmission electron microscope and significantly decreased Nrf2, GPX4, and SLC7A11 and increased ACSL4 expressions in the lung tissue. Treatment with SQTSF significantly improved these pathological changes in the rat models with a better effect than APL. CONCLUSION SQTSF can effectively improve airway inflammation and oxidative stress in COPD rats with lung-kidney qi deficiency possibly by inhibiting ferroptosis via regulating the Nrf2/SLC7A11/GPX4 signaling pathway.
Collapse
|
14
|
Zhou Y, Luo Y, Zeng W, Mao L, Le F, Lou H, Wang L, Mao Y, Jiang Z, Jin F. FANCD2 as a ferroptosis-related target for recurrent implantation failure by integrated bioinformatics and Mendelian randomization analysis. J Cell Mol Med 2024; 28:e70119. [PMID: 39400935 PMCID: PMC11472029 DOI: 10.1111/jcmm.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Despite advancements in assisted reproductive technology, recurrent implantation failure (RIF) remains a challenge. Endometrial factors, including ferroptosis and immunity, may contribute to this issue. This study integrated bioinformatics analysis and Mendelian randomization (MR) to investigate the expression and significance of DEFRGs in RIF. We intersected 484 ferroptosis-associated genes with 515 differentially expressed genes (DEGs) to identify key DEFRGs. Subsequent analyses included enrichment analysis, molecular subtype identification, machine learning model development for biomarker discovery, immune cell infiltration assessment, single-cell RNA sequencing, and MR to explore the causal relationships of selected genes with RIF. In this study, we identified 11 differentially expressed ferroptosis-related genes (DEFRGs) between RIF and healthy individuals. Cluster analysis revealed two distinct molecular subtypes with different immune profiles and DEFRG expressions. Machine learning models highlighted MUC1, GJA1 and FANCD2 as potential diagnostic biomarkers, with high accuracy in RIF prediction. Single-cell analysis further revealed the cellular localization and interactions of DEFRGs. MR suggested a protective effect of FANCD2 against RIF. Validation in RIF patients confirmed the differential expression of key DEFRGs, consistent with bioinformatics findings. This comprehensive study emphasize the significant role of DEFRGs in the pathogenesis of RIF, suggesting that modulating these genes could offer new avenues for treatment. The FANCD2 is a potential gene contributing to RIF pathogenesis through a non-classical ferroptosis-dependent pathway, providing a foundation for personalized therapeutic strategies in RIF management.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Department of Reproductive Endocrinology, Women's Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yujia Luo
- Department of NICU, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Wenshan Zeng
- Department of Reproductive Endocrinology, Women's Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Luna Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fang Le
- Department of Reproductive Endocrinology, Women's Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Hangying Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Zhou Jiang
- Department of NICU, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
15
|
Xie J, Xu P, Lin Y, Zheng M, Jia J, Tan X, Sun J, Zhao Q. LncRNA-miRNA interactions prediction based on meta-path similarity and Gaussian kernel similarity. J Cell Mol Med 2024; 28:e18590. [PMID: 39347925 PMCID: PMC11441278 DOI: 10.1111/jcmm.18590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are two typical types of non-coding RNAs that interact and play important regulatory roles in many animal organisms. Exploring the unknown interactions between lncRNAs and miRNAs contributes to a better understanding of their functional involvement. Currently, studying the interactions between lncRNAs and miRNAs heavily relies on laborious biological experiments. Therefore, it is necessary to design a computational method for predicting lncRNA-miRNA interactions. In this work, we propose a method called MPGK-LMI, which utilizes a graph attention network (GAT) to predict lncRNA-miRNA interactions in animals. First, we construct a meta-path similarity matrix based on known lncRNA-miRNA interaction information. Then, we use GAT to aggregate the constructed meta-path similarity matrix and the computed Gaussian kernel similarity matrix to update the feature matrix with neighbourhood information. Finally, a scoring module is used for prediction. By comparing with three state-of-the-art algorithms, MPGK-LMI achieves the best results in terms of performance, with AUC value of 0.9077, AUPR of 0.9327, ACC of 0.9080, F1-score of 0.9143 and precision of 0.8739. These results validate the effectiveness and reliability of MPGK-LMI. Additionally, we conduct detailed case studies to demonstrate the effectiveness and feasibility of our approach in practical applications. Through these empirical results, we gain deeper insights into the functional roles and mechanisms of lncRNA-miRNA interactions, providing significant breakthroughs and advancements in this field of research. In summary, our method not only outperforms others in terms of performance but also establishes its practicality and reliability in biological research through real-case analysis, offering strong support and guidance for future studies and applications.
Collapse
Affiliation(s)
- Jingxuan Xie
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Peng Xu
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Ye Lin
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Manyu Zheng
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Jixuan Jia
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Xinru Tan
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jianqiang Sun
- School of Information Science and Engineering, Linyi University, Linyi, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| |
Collapse
|
16
|
Zhang Y, Zhang J, Chen S, Li M, Yang J, Tan J, He B, Zhu L. Unveiling the Network regulatory mechanism of ncRNAs on the Ferroptosis Pathway: Implications for Preeclampsia. Int J Womens Health 2024; 16:1633-1651. [PMID: 39372667 PMCID: PMC11451465 DOI: 10.2147/ijwh.s485653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are transcripts originating from the genome that do not serve as templates for protein synthesis. They function as epigenetic and translational regulators in various pathophysiological mechanisms, including cell proliferation and apoptosis. The ferroptosis signaling pathway, a novel mode of cell death, participates in numerous pathophysiological processes. Its signaling transmission is both complex and precise, featuring interconnected and interdependent pathways. Recent studies suggest that ncRNAs can finely regulate key genes in the ferroptosis pathway, thus modulating cellular functions, reducing oxidative stress, and maintaining maternal-fetal interface homeostasis. Future strategies targeting the ncRNA/ferroptosis axis may provide new perspectives and potential intervention points for treating preeclampsia. This article clarifies how the ncRNA/ferroptosis axis impacts preeclampsia, revealing how ncRNAs interact with ferroptosis, and pinpointing new molecular targets for the treatment of preeclampsia, thereby providing theoretical support for clinical strategies.
Collapse
Affiliation(s)
- Yuan Zhang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Stomatology, Changsha Medical University, Changsha410219, People’s Republic of China
| | - Jingjing Zhang
- Department of Gynaecology and Obstetrics, Hunan Provincial Maternal and Child Health Hospital, Changsha410219, People’s Republic of China
| | - Sirui Chen
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
| | - Mianxin Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Public Health, Changsha Medical University, Changsha410219, People’s Republic of China
| | - Jin Yang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Stomatology, Changsha Medical University, Changsha410219, People’s Republic of China
| | - Jingsi Tan
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
| | - Binsheng He
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
| | - Lemei Zhu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha410219, People’s Republic of China
- School of Public Health, Changsha Medical University, Changsha410219, People’s Republic of China
| |
Collapse
|
17
|
Xu W, Hu J, Ma Z, Feng W, Gong W, Fu S, Chen X. Decreased BIRC5-206 promotes epithelial-mesenchymal transition in nasopharyngeal carcinoma through sponging miR-145-5p. Open Med (Wars) 2024; 19:20241007. [PMID: 39308922 PMCID: PMC11416051 DOI: 10.1515/med-2024-1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 09/25/2024] Open
Abstract
Metastasis significantly contributes to the poor prognosis of advanced nasopharyngeal carcinoma (NPC). Our prior studies have demonstrated a decrease in BIRC5-206 expression in NPC, which promotes disease progression. However, the role of BIRC5-206 in the invasion and metastasis of NPC has not been fully elucidated. In this study, our objective was to explore the biological function and underlying mechanisms of BIRC5-206 in NPC. Additionally, we established an NPC mouse model of lung invasiveness using C666 cells to assess the impact of BIRC5-206 on NPC metastasis. Our results revealed that silencing BIRC5-206 inhibited apoptosis and enhanced the invasion of NPC cells, whereas its overexpression reversed these effects. Moreover, decreased BIRC5-206 expression significantly increased N-cadherin and Vimentin expression while reducing E-cadherin and occludin levels, both in vivo and in vitro. Additionally, silencing BIRC5-206 markedly augmented the formation of invasive foci in lung tissues. Rescue experiments further confirmed that decreased BIRC5-206 expression facilitates NPC metastasis via modulation of the miR-145-5p/CD40 signaling pathway. In summary, our study suggests that BIRC5-206 may serve as a potential prognostic biomarker and therapeutic target in the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Weihua Xu
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Hainan Tropical Cancer Research Institute, Haikou, Hainan, 570312, China
| | - Junjie Hu
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Hainan Tropical Cancer Research Institute, Haikou, Hainan, 570312, China
| | - Zhichao Ma
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Hainan Tropical Cancer Research Institute, Haikou, Hainan, 570312, China
| | - Wanyi Feng
- Hainan Lvtou Medical Laboratory Center, Haikou, Hainan, 570206, China
- School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Wei Gong
- Hainan Lvtou Medical Laboratory Center, Haikou, Hainan, 570206, China
- School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Shengmiao Fu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
- Hainan Lvtou Medical Laboratory Center, No. 16 Jinyu East Road, Longhua District, Haikou, Hainan, 570206, China
| | - Xinping Chen
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Hainan Tropical Cancer Research Institute, No. 6, Changbin West 4th Street, Xiuying District, Haikou, Hainan, 570312, China
| |
Collapse
|
18
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
19
|
Wang R, Yu X, Ye H, Ao M, Xi M, Hou M. LncRNA FAM83H-AS1 inhibits ferroptosis of endometrial cancer by promoting DNMT1-mediated CDO1 promoter hypermethylation. J Biol Chem 2024; 300:107680. [PMID: 39159808 PMCID: PMC11419805 DOI: 10.1016/j.jbc.2024.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
Endometrial cancer (EC) is the most prevalent gynecological epithelial malignancy. DNA methylation is a promising cancer biomarker but limited use for detecting EC. We previously found that the level of cysteine dioxygenase 1 (CDO1) promoter methylation was elevated in EC patients through methylomics, but the role and mechanism of CDO1 in EC remained unclear. Here, the methylation level of CDO1 promoter was detected by bisulfite-sequencing PCR and methylation-specific PCR (bisulfite conversion-based PCR methods, which remain the most commonly used techniques for methylation detection). Cells were incubated with erastin (the ferroptosis activator). Cell vitality was measured using the cell counting kit-8 assay. FAM83H-AS1 cellular distribution was analyzed by the fluorescence in situ hybridization assay. Lipid reactive oxygen species level was examined by BODIPY-C11 staining. The interactions between FAM83H-AS1, CDO1, and DNA methyltransferase1 (DNMT1) were analyzed by RNA-binding protein immunoprecipitation or chromatin immunoprecipitation assay. The xenograft mouse model was utilized to test CDO1 and FAM83H-AS1's influence on tumor development in vivo. Results showed that CDO1 was hypermethylated and downregulated in EC. CDO1 knockdown reduced erastin-induced ferroptosis in EC cells. Mechanistically, DNMT1 is a DNA methyltransferase, which can transfer methyl groups to cytosine nucleotides in genomic DNA. Long noncoding RNA FAM83H-AS1 increased CDO1 promoter methylation level and inhibited its expression in EC cells by recruiting DNMT1. CDO1 knockdown or FAM83H-AS1 overexpression promoted EC tumor growth in vivo. Long noncoding RNA FAM83H-AS1 inhibited ferroptosis in EC by recruiting DNMT1 to increase CDO1 promoter methylation level and inhibit its expression.
Collapse
Affiliation(s)
- Ruiyu Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Xiuzhang Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Hui Ye
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Mengyin Ao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Mingrong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Minmin Hou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Liu M, Wang X, Zhu J. PDLIM3 knockdown promotes ferroptosis in endometriosis progression via inducing Gli1 degradation and blocking Hedgehog signaling pathway. J Assist Reprod Genet 2024; 41:2117-2128. [PMID: 38771390 PMCID: PMC11339231 DOI: 10.1007/s10815-024-03131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
AIMS Current evidence suggests that there is no completely effective method for endometriosis (EMS) without trauma due to diverse adverse effects. Reliable evidence illustrates that inhibiting ferroptosis is a potential strategy for EMS. We sufficiently verified that the expression of endogenous protein PDZ and LIM domain 3 (PDLIM3) was significantly increased in EMS. METHODS PDLIM3 knockdown reduced primary ectopic endometrial stromal cells' (EESCs) viability and migration, and elevated ferroptosis signaling indicators including Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS) in EESCs. RESULTS Mechanistic studies revealed that inhibition of PDLIM3 accelerated glioma-associated oncogene-1 (Gli1) degradation and further deactivated Hedgehog signaling. Gli1 inhibitor, GANT61, abrogated the impact of PDLIM3 deletion on EESC growth, migration, and ferroptosis. In vivo experiments suggested that PDLIM3 reduction repressed the growth of endometrial lesions. Likewise, repression of PDLIM3 promoted ferroptosis and attenuated Hedgehog signaling in endometrial lesions. CONCLUSIONS Collectively, silencing of PDLIM3 facilitates ferroptosis in EMS by inducing Gli1 degradation and blocking Hedgehog signaling. It may provide an alternative strategy for developing therapeutic agents of EMS in the future.
Collapse
Affiliation(s)
- Mingwei Liu
- Gynecology Treatment Area II, Songyuan City Central Hospital, No.1188, Wenhua Road, Ningjiang District, Songyuan, 138000, Jilin, China.
| | - Xianxian Wang
- Gynecology Treatment Area I, Songyuan City Central Hospital, Songyuan, Jilin, China
| | - Jiannan Zhu
- Gynecology Treatment Area II, Songyuan City Central Hospital, No.1188, Wenhua Road, Ningjiang District, Songyuan, 138000, Jilin, China
| |
Collapse
|
21
|
Ma J, Li X, Wan X, Deng J, Cheng Y, Liu B, Liu L, Xu L, Xiao H, Li Y. Single-Cell RNA-seq Analysis Reveals a Positive Correlation between Ferroptosis and Beta-Cell Dedifferentiation in Type 2 Diabetes. Biomedicines 2024; 12:1687. [PMID: 39200152 PMCID: PMC11351120 DOI: 10.3390/biomedicines12081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Insulin deficiency in patients with type 2 diabetes mellitus (T2D) is associated with beta-cell dysfunction, a condition increasingly recognized to involve processes such as dedifferentiation and apoptosis. Moreover, emerging research points to a potential role for ferroptosis in the pathogenesis of T2D. In this study, we aimed to investigate the potential involvement of ferroptosis in the dedifferentiation of beta cells in T2D. We performed single-cell RNA sequencing analysis of six public datasets. Differential expression and gene set enrichment analyses were carried out to investigate the role of ferroptosis. Gene set variation and pseudo-time trajectory analyses were subsequently used to verify ferroptosis-related beta clusters. After cells were categorized according to their ferroptosis and dedifferentiation scores, we constructed transcriptional and competitive endogenous RNA networks, and validated the hub genes via machine learning and immunohistochemistry. We found that ferroptosis was enriched in T2D beta cells and that there was a positive correlation between ferroptosis and the process of dedifferentiation. Upon further analysis, we identified two beta clusters that presented pronounced features associated with ferroptosis and dedifferentiation. Several key transcription factors and 2 long noncoding RNAs (MALAT1 and MEG3) were identified. Finally, we confirmed that ferroptosis occurred in the pancreas of high-fat diet-fed mice and identified 4 proteins (NFE2L2, CHMP5, PTEN, and STAT3) that may participate in the effect of ferroptosis on dedifferentiation. This study helps to elucidate the interplay between ferroptosis and beta-cell health and opens new avenues for developing therapeutic strategies to treat diabetes.
Collapse
Affiliation(s)
- Jiajing Ma
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Xuhui Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Xuesi Wan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Jinmei Deng
- Internal Medicine Department, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China;
| | - Yanglei Cheng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Boyuan Liu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Liehua Liu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Lijuan Xu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China; (J.M.); (X.L.); (X.W.); (Y.C.); (B.L.); (L.L.); (L.X.); (H.X.)
| |
Collapse
|
22
|
Zhou G, Ren J, Huang Q, Nie X, Tong X, Cui YW, Hu R, Yao Q. Gene associations of lipid traits, lipid-lowering drug-target genes and endometriosis. Reprod Biomed Online 2024; 49:103856. [PMID: 38657291 DOI: 10.1016/j.rbmo.2024.103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/26/2024]
Abstract
RESEARCH QUESTION Does the observed correlation between dyslipidaemia and endometriosis indicate a bidirectional causal association? DESIGN Bidirectional Mendelian randomization was used to investigate the causal association between lipid traits and endometriosis. Drug-target Mendelian randomization was used to explore potential drug-target genes for managing endometriosis. In cases where lipid-mediated effects via specific drug targets were significant, aggregate analyses, such as summary-data-based Mendelian randomization and colocalization methods, were introduced to validate the outcomes. Mediation analyses supplemented these evaluations. RESULTS The bidirectional Mendelian randomization results suggested that genetically predicted triglyceride (OR 1.15, 95% CI 1.08-1.23), high-density lipoprotein cholesterol (OR 0.87, 95% CI 0.81-0.94), low-density lipoprotein cholesterol (OR 1.20, 95% CI 1.06-1.34) and apolipoprotein A (OR 0.90, 95% CI 0.83-0.96) concentrations were causally associated with endometriosis. Reverse Mendelian randomization results revealed that genetically proxied endometriosis was causally associated with triglyceride concentration (OR 1.02, 95% CI 1.01-1.02). In drug-target Mendelian randomization, genetic mimicry in proprotein convertase subtilisin/kexin type 9 (PCSK9) (OR 1.40, 95% CI 1.13-1.72), apolipoprotein B (APOB) (OR 1.49, 95% CI 1.21-1.86) and angiopoietin-related protein 3 (ANGPTL3) (OR 1.57, 95% CI 1.14-2.16) was significantly associated with the risk of endometriosis stages 1-2. CONCLUSION There is a potential bidirectional causal association between endometriosis and dyslipidaemia. Genetic mimicry of PCSK9, APOB and ANGPTL3 is associated with the risk of early-stage endometriosis. The development of lipid-lowering drugs to treat endometriosis is of potential clinical interest.
Collapse
Affiliation(s)
- Ge Zhou
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jin Ren
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; The First College of Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuyan Huang
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; The First College of Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaowei Nie
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xingli Tong
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Ya Wen Cui
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; The First College of Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongkui Hu
- Gynaecology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| | - Qi Yao
- Department of Pathology and Pathophysiology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
| |
Collapse
|
23
|
Tang H, Zhou X, Liu L, Wang Z, Wang C, Luo N, Jin G. Superparamagnetic Iron Oxide-Erastin-Polyethylene Glycol Nanotherapeutic Platform: A Ferroptosis-Based Approach for the Integrated Diagnosis and Treatment of Nasopharyngeal Cancer. Mol Pharm 2024; 21:2767-2780. [PMID: 38736196 PMCID: PMC11152051 DOI: 10.1021/acs.molpharmaceut.3c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Erastin can induce ferroptosis in tumor cells as an effective small molecule inhibitor. However, its application is hampered by a lack of water solubility. This study investigated the effects of superparamagnetic iron oxide (SPIO)-erastin-polyethylene glycol (PEG) nanoparticles prepared by loading SPIO-PEG nanoparticles with erastin on ferroptosis. SPIO-erastin-PEG nanoparticles exhibited square and spherical shapes with good dispersibility. The zeta potential and hydrodynamic size of SPIO-erastin-PEG were measured as (-37.68 ± 2.706) mV and (45.75 ± 18.88) nm, respectively. On T2-weighted imaging, the nanosystem showed significant contrast enhancement compared to no-enhancement magnetic resonance imaging (MRI). SPIO-erastin-PEG induced ferroptosis by increasing reactive oxygen species and iron content and promoting the accumulation of lipid peroxides and the degradation of glutathione peroxidase 4. Pharmacokinetic experiments revealed a half-life of 1.25 ± 0.05 h for the SPIO-erastin-PEG solution in circulation. Moreover, significant antitumorigenic effects of SPIO-erastin-PEG have been demonstrated in 5-8F cells and mouse-bearing tumors. These results indicated that the synthesized SPIO-erastin-PEG nanoplatform could induce ferroptosis effects in vitro and in vivo while exhibiting favorable physical characteristics. This approach may provide a new strategy for theranostic nanoplatform for nasopharyngeal cancer.
Collapse
Affiliation(s)
- Haonan Tang
- Guangxi
Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Xiao Zhou
- Xiangtan
Central Hospital, Xiangtan, Hunan 411000, China
| | - Lijuan Liu
- Guangxi
Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Ziyu Wang
- Guangxi
Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Chen Wang
- Guangxi
Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Ningbin Luo
- Guangxi
Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Guanqiao Jin
- Guangxi
Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| |
Collapse
|
24
|
Wang Y, Liu J, Xiao H, Sun H, Hu H, Ma X, Zhang A, Zhou H. Dietary intakes of vitamin D promote growth performance and disease resistance in juvenile grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1189-1203. [PMID: 38427282 DOI: 10.1007/s10695-024-01330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Vitamin D3 (VD3) is an essential nutrient for fish and participates in a variety of physiological activities. Notably, both insufficient and excessive supplementation of VD3 severely impede fish growth, and the requirements of VD3 for fish vary considerably in different species and growth periods. The present study aimed to evaluate the appropriate requirements of VD3 for juvenile grass carp (Ctenopharyngodon idella) according to growth performance and disease prevention capacity. In this study, diets containing six supplemental levels of VD3 (0, 300, 600, 1200, 2400, and 4800 IU/kg diet) were formulated to investigate the effect(s) of VD3 on the growth performance, antioxidant enzyme activities, and antimicrobial ability in juvenile grass carp. Compared with the VD3 deficiency group (0 IU/kg), the supplementation of 300-2400 IU/kg VD3 significantly enhanced growth performance and increased antioxidant enzyme activities in the fish liver. Moreover, dietary supplementation of VD3 significantly improved the intestinal health by manipulating the composition of intestinal microbiota in juvenile grass carp. In agreement with this notion, the mortality of juvenile grass carp fed with dietary VD3 was much lower than that in VD3 deficient group upon infection with Aeromonas hydrophila. Meanwhile, dietary supplementation of 300-2400 IU/kg VD3 reduced bacterial load in the spleen and head kidney of the infected fish, and 1200 IU/kg VD3 supplementation could decrease enteritis morbidity and increase lysozyme activities in the intestine. These findings strengthened the essential role of dietary VD3 in managing fish growth and antimicrobial capacity. Additionally, based on weight gain ratio and lysozyme activities, the appropriate VD3 requirements for juvenile grass carp were estimated to be 1994.80 and 2321.80 IU/kg diet, respectively.
Collapse
Affiliation(s)
- Yueyue Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jiaxi Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Haoran Xiao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hao Sun
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hengyi Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xiaoyu Ma
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
25
|
Chen H, Han Z, Su J, Song X, Ma Q, Lin Y, Ran Z, Li X, Mou R, Wang Y, Li D. Ferroptosis and hepatocellular carcinoma: the emerging role of lncRNAs. Front Immunol 2024; 15:1424954. [PMID: 38846953 PMCID: PMC11153672 DOI: 10.3389/fimmu.2024.1424954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Hepatocellular carcinoma is the most common form of primary liver cancer and poses a significant challenge to the medical community because of its high mortality rate. In recent years, ferroptosis, a unique form of cell death, has garnered widespread attention. Ferroptosis, which is characterized by iron-dependent lipid peroxidation and mitochondrial alterations, is closely associated with the pathological processes of various diseases, including hepatocellular carcinoma. Long non-coding RNAs (lncRNAs), are a type of functional RNA, and play crucial regulatory roles in a variety of biological processes. In this manuscript, we review the regulatory roles of lncRNAs in the key aspects of ferroptosis, and summarize the research progress on ferroptosis-related lncRNAs in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Xuanliang Song
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Qingquan Ma
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Yumeng Lin
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zijin Ran
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xueping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongkun Mou
- Department of General Surgery, The Third Hospital of Mianyang, Mianyang, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
26
|
Wang H, Cao Y, Gou Y, Wang H, Liang Z, Wu Q, Tan J, Liu J, Li Z, Cui J, Zhang H, Zhang Z. IGF2BP3 promotes glutamine metabolism of endometriosis by interacting with UCA1 to enhances the mRNA stability of GLS1. Mol Med 2024; 30:64. [PMID: 38760723 PMCID: PMC11102260 DOI: 10.1186/s10020-024-00834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.
Collapse
Affiliation(s)
- Honglin Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Yingying Cao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Yanling Gou
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Zongwen Liang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Qiong Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Jiahuan Tan
- Department of Obstetrics and Gynecology, Zhongda Hospital Southeast University (Jiangbei), NanJing, China
| | - Jinming Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Zhi Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Jing Cui
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Huiyan Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China
| | - Zongfeng Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, China.
| |
Collapse
|
27
|
Ciftci YC, Vatansever İE, Akgül B. Unraveling the intriguing interplay: Exploring the role of lncRNAs in caspase-independent cell death. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1862. [PMID: 38837618 DOI: 10.1002/wrna.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cell death plays a crucial role in various physiological and pathological processes. Until recently, programmed cell death was mainly attributed to caspase-dependent apoptosis. However, emerging evidence suggests that caspase-independent cell death (CICD) mechanisms also contribute significantly to cellular demise. We and others have reported and functionally characterized numerous long noncoding RNAs (lncRNAs) that modulate caspase-dependent apoptotic pathways potentially in a pathway-dependent manner. However, the interplay between lncRNAs and CICD pathways has not been comprehensively documented. One major reason for this is that most CICD pathways have been recently discovered with some being partially characterized at the molecular level. In this review, we discuss the emerging evidence that implicates specific lncRNAs in the regulation and execution of CICD. We summarize the diverse mechanisms through which lncRNAs modulate different forms of CICD, including ferroptosis, necroptosis, cuproptosis, and others. Furthermore, we highlight the intricate regulatory networks involving lncRNAs, protein-coding genes, and signaling pathways that orchestrate CICD in health and disease. Understanding the molecular mechanisms and functional implications of lncRNAs in CICD may unravel novel therapeutic targets and diagnostic tools for various diseases, paving the way for innovative strategies in disease management and personalized medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Yusuf Cem Ciftci
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Gülbahçeköyü, Urla, Turkey
| | - İpek Erdoğan Vatansever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Gülbahçeköyü, Urla, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Gülbahçeköyü, Urla, Turkey
| |
Collapse
|
28
|
Ageeli Hakami M. Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1. Saudi J Biol Sci 2024; 31:103976. [PMID: 38510528 PMCID: PMC10951089 DOI: 10.1016/j.sjbs.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The epigenetic regulation of lncRNA TUG1 has garnered significant attention in the context of diabetes and its associated disorders. TUG1's multifaceted roles in gene expression modulation, and cellular differentiation, and it plays a major role in the growth of diabetes and the issues that are related to it due to pathological processes. In diabetes, aberrant epigenetic modifications can lead to dysregulation of TUG1 expression, contributing to disrupted insulin signaling, impaired glucose metabolism, and beta-cell dysfunction. Moreover, it has been reported that TUG1 contributes to the development of problems linked to diabetes, such as nephropathy, retinopathy, and cardiovascular complications, through epigenetically mediated mechanisms. Understanding the epigenetic regulations of TUG1 offers novel insights into the primary molecular mechanisms of diabetes and provides a possible path for healing interventions. Targeting epigenetic modifications associated with TUG1 holds promise for restoring proper gene expression patterns, ameliorating insulin sensitivity, and mitigating the inception and development of diabetic associative diseases. This review highlights the intricate epigenetic landscape that governs TUG1 expression in diabetes, encompassing DNA methylation and alterations in histone structure, as well as microRNA interactions.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Liu W, Li HM, Bai G. Integrated bioinformatics analysis of ferroptosis-related gene signature in inflammation and immunity in intervertebral disc degeneration. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:238-258. [PMID: 38531048 DOI: 10.1080/15257770.2024.2332403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Ferroptosis has recently been shown to play a significant role in the progression of intervertebral disk degeneration (IDD), although the underlying mechanism is still unknown. The objective of this work was to use stringent bioinformatic techniques to clarify the crucial roles played by genes associated with ferroptosis in the emergence of IDD. For additional study, the microarray data pertinent to the IDD were acquired from the Gene Expression Omnibus database. The ferroptosis-related and IDD-related genes (FIDDRGs) were identified using a variety of bioinformatic techniques, which were also used to carry out function enrichment analysis, protein-protein correlation analysis, build the correlation regulatory network, and examine the potential connections between ferroptosis and immune abnormalities and inflammatory responses in IDD. A total of 16 FIDDRGs were eliminated for the further function enrichment analysis, and 10 hub FIDDRGs were chosen to build the correlation regulatory network. Hub FIDDRGs were shown to be highly associated with M2 macrophages and hub inflammatory response-related genes in IDD. When seen as a whole, our findings can give fresh perspectives on the mechanistic studies of ferroptosis in the emergence of IDD and new prospective targets for the therapeutic approaches.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, PR China
| | - Hui-Min Li
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, PR China
| | - Guangchao Bai
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, PR China
| |
Collapse
|
30
|
Ni C, Li D. Ferroptosis and oxidative stress in endometriosis: A systematic review of the literature. Medicine (Baltimore) 2024; 103:e37421. [PMID: 38489713 PMCID: PMC10939684 DOI: 10.1097/md.0000000000037421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Endometriosis (EMT) a common gynecological condition in women, an inflammatory disease characterized by the presence of endometrial tissue on organs and tissues in the pelvis, and is mainly associated with chronic pelvic pain and infertility. As the etiology has not been fully elucidated, current treatment is limited to surgery, hormones and painkillers, with more side effects and difficulty in achieving long-term relief. Oxidative stress manifests itself as an overproduction of reactive oxygen species, which has an integral impact in the pathology of female reproductive disorders. In this review, we evaluate the mechanisms of iron overload-induced oxidative stress and ferroptosis in EMT and their pathophysiological implications. METHODS Because the etiology has not been fully elucidated, current treatments are limited to surgery, hormones, and painkillers, which have many side effects and are difficult to achieve long-term relief. RESULTS We interpreted that antioxidants as well as ferroptosis inducers show promising results in the treatment of EMT, but their application in this population needs to be further investigated. CONCLUSION In combination with the interpretation of previous studies, it was shown that iron overload is present in the peritoneal fluid, endometriotic lesions, peritoneum and macrophages in the abdominal cavity. However, the programmed cellular ferroptosis associated with iron overload is resisted by endometriotic foci, which is critical to the pathophysiology of EMT with local iron overload and inflammation.
Collapse
Affiliation(s)
- Chenghong Ni
- Department of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Dingheng Li
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
31
|
Liao Z, Tang S, Jiang P, Geng T, Cope DI, Dunn TN, Guner J, Radilla LA, Guan X, Monsivais D. Impaired bone morphogenetic protein (BMP) signaling pathways disrupt decidualization in endometriosis. Commun Biol 2024; 7:227. [PMID: 38402336 PMCID: PMC10894266 DOI: 10.1038/s42003-024-05898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
Endometriosis is linked to increased infertility and pregnancy complications due to defective endometrial decidualization. We hypothesized that identification of altered signaling pathways during decidualization could identify the underlying cause of infertility and pregnancy complications. Our study reveals that transforming growth factor β (TGFβ) pathways are impaired in the endometrium of individuals with endometriosis, leading to defective decidualization. Through detailed transcriptomic analyses, we discovered abnormalities in TGFβ signaling pathways and key regulators, such as SMAD4, in the endometrium of affected individuals. We also observed compromised activity of bone morphogenetic proteins (BMP), a subset of the TGFβ family, that control endometrial receptivity. Using 3-dimensional models of endometrial stromal and epithelial assembloids, we showed that exogenous BMP2 improved decidual marker expression in individuals with endometriosis. Our findings reveal dysfunction of BMP/SMAD signaling in the endometrium of individuals with endometriosis, explaining decidualization defects and subsequent pregnancy complications in these individuals.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peixin Jiang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dominique I Cope
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy N Dunn
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Reproductive Endocrinology & Infertility, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joie Guner
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA, 90033, USA
| | - Linda Alpuing Radilla
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoming Guan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Zhang Y, Sun X, Li Z, Han X, Wang W, Xu P, Liu Y, Xue Y, Wang Z, Xu S, Wang X, Li G, Tian Y, Zhao Q. Interactions between miRNAs and the Wnt/β-catenin signaling pathway in endometriosis. Biomed Pharmacother 2024; 171:116182. [PMID: 38262146 DOI: 10.1016/j.biopha.2024.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Endometriosis is a disease characterized by the ectopic growth of endometrial tissue (glands and stroma) outside the confines of the uterus and often involves vital organs such as the intestines and urinary system. Endometriosis is considered a refractory disease owing to its enigmatic etiology, propensity for recurrence following conservative or surgical interventions, and the absence of radical treatment and long-term management. In recent years, the incidence of endometriosis has gradually increased, rendering it a pressing concern among women of childbearing age. A more profound understanding of its pathogenesis can significantly improve prognosis. Recent research endeavors have spotlighted the molecular mechanisms by which microRNAs (miRNAs) regulate the occurrence and progression of endometriosis. Many miRNAs have been reported to be aberrantly expressed in the affected tissues of both patients and animal models. These miRNAs actively participate in the regulation of inflammatory reactions, cellular proliferation, angiogenesis, and tissue remodeling. Their capacity to modulate crucial signaling pathways, such as the Wnt/β-catenin signaling pathway, reinforces their potential utility as diagnostic markers or therapeutic agents for endometriosis. In this review, we provide the latest insights into the role of miRNAs that interact with the Wnt/β-catenin pathway to regulate the biological behaviors of endometriosis cells and disease-related symptoms, such as pain and infertility. We hope that this review will provide novel insights and promising targets for innovative therapies addressing endometriosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xueyu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Xianhong Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Wenjun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Penglin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yangyang Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yuna Xue
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Zhe Wang
- Department of Basic Medicine, Chengde Medical College, Chengde, Hebei 067000, PR China
| | - Shuling Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xueying Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Gailing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| | - Qian Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
33
|
Huang E, Wang X, Chen L. Regulated Cell Death in Endometriosis. Biomolecules 2024; 14:142. [PMID: 38397379 PMCID: PMC10886833 DOI: 10.3390/biom14020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Regulated cell death (RCD) represents a distinct mode of cell demise, differing from accidental cell death (ACD), characterized by specific signaling cascades orchestrated by diverse biomolecules. The regular process of cell death plays a crucial role in upholding internal homeostasis, acting as a safeguard against biological or chemical damage. Nonetheless, specific programmed cell deaths have the potential to activate an immune-inflammatory response, potentially contributing to diseases by enlisting immune cells and releasing pro-inflammatory factors. Endometriosis, a prevalent gynecological ailment, remains incompletely understood despite substantial progress in unraveling associated signaling pathways. Its complexity is intricately tied to the dysregulation of inflammatory immune responses, with various RCD processes such as apoptosis, autophagic cell death, pyroptosis, and ferroptosis implicated in its development. Notably, limited research explores the association between endometriosis and specific RCD pathways like pyroptosis and cuproptosis. The exploration of regulated cell death in the context of endometriosis holds tremendous potential for further advancements. This article thoroughly reviews the molecular mechanisms governed by regulated cell death and their implications for endometriosis. A comprehensive understanding of the regulated cell death mechanism in endometriosis has the potential to catalyze the development of promising therapeutic strategies and chart the course for future research directions in the field.
Collapse
Affiliation(s)
| | | | - Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (E.H.)
| |
Collapse
|
34
|
Dong X, Xu L, Wang S, Jiao X, Yan S, Huang Y, Yuan M, Wang G. Endometrial stromal cell autophagy-dependent ferroptosis caused by iron overload in ovarian endometriosis is inhibited by the ATF4-xCT pathway. Mol Hum Reprod 2023; 30:gaad046. [PMID: 38113413 DOI: 10.1093/molehr/gaad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death process characterized by the accumulation of lethal oxidative damage. Localized iron overload is a unique clinical phenomenon in ovarian endometriosis (EM). However, the role and mechanism of ferroptosis in the course of ovarian EM remain unclear. Traditionally, autophagy promotes cell survival. However, a growing body of research suggests that autophagy promotes ferroptosis under certain conditions. This study aimed to clarify the status of ferroptosis in ovarian EM and explore the mechanism(s) by which iron overload causes ferroptosis and ectopic endometrial resistance to ferroptosis in human. The results showed increased levels of iron and reactive oxygen species in ectopic endometrial stromal cells (ESCs). Some ferroptosis and autophagy proteins in the ectopic tissues differed from those in the eutopic endometrium. In vitro, iron overload caused decreased cellular activity, increased lipid peroxidation levels, and mitochondrial morphological changes, whereas ferroptosis inhibitors alleviated these phenomena, illustrating activated ferroptosis. Iron overload increased autophagy, and ferroptosis caused by iron overload was inhibited by autophagy inhibitors, indicating that ferroptosis caused by iron overload was autophagy-dependent. We also confirmed the effect of iron overload and autophagy on lesion growth in vivo by constructing a mouse EM model; the results were consistent with those of the in vitro experiments of human tissue and endometrial stomal cells. However, ectopic lesions in patients can resist ferroptosis caused by iron overload, which can promote cystine/glutamate transporter hyperexpression by highly expressing activating transcription factor 4 (ATF4). In summary, local iron overload in ovarian EM can activate autophagy-related ferroptosis in ESCs, and ectopic lesions grow in a high-iron environment via ATF4-xCT while resisting ferroptosis. The effects of iron overload on other cells in the EM environment require further study. This study deepens our understanding of the role of ferroptosis in ovarian EM.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- JiNan Key Laboratory of Diagnosis and Treatment of Major Gynaecological Disease, Jinan, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, China
- Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Le Xu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- JiNan Key Laboratory of Diagnosis and Treatment of Major Gynaecological Disease, Jinan, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, China
- Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuang Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- JiNan Key Laboratory of Diagnosis and Treatment of Major Gynaecological Disease, Jinan, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, China
- Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Jiao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- JiNan Key Laboratory of Diagnosis and Treatment of Major Gynaecological Disease, Jinan, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, China
- Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shumin Yan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- JiNan Key Laboratory of Diagnosis and Treatment of Major Gynaecological Disease, Jinan, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, China
- Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yufei Huang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- JiNan Key Laboratory of Diagnosis and Treatment of Major Gynaecological Disease, Jinan, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, China
- Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
- JiNan Key Laboratory of Diagnosis and Treatment of Major Gynaecological Disease, Jinan, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, China
- Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
- JiNan Key Laboratory of Diagnosis and Treatment of Major Gynaecological Disease, Jinan, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, China
- Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
35
|
Li H, Yang H, Lu S, Wang X, Shi X, Mao P. Autophagy-dependent ferroptosis is involved in the development of endometriosis. Gynecol Endocrinol 2023; 39:2242962. [PMID: 37553011 DOI: 10.1080/09513590.2023.2242962] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE Endometriosis (EMS) is an estrogen-dependent condition with unclear pathogenesis. Recent findings suggest implicate autophagy and ferroptosis in EMS development. METHODS We assessed autophagy and ferroptosis proteins in EMS patients using immunohistochemistry and western blot and established an EMS rat model through allograft endometrial transplantation, confirmed via hematoxylin and eosin staining and epithelial-mesenchymal transition -related proteins. Primary EMS cells were isolated from the model rats and cultured under five conditions: control, EMS, EMS with Rapamycin (autophagy inducer), EMS with si-Atg5 (autophagy inhibitor), and EMS with si-Atg5 plus Erastin (ferroptosis inducer). We evaluated cell viability, iron content, oxidative stress, and mitochondrial morphologyin EMS cells, and detected autophagy and ferroptosis proteins through immunofluorescence, western blot, and monodansylcadaverine staining. RESULTS Autophagy proteins Beclin1 and LC3 were highly expressed, whereas p62, glutathione peroxidase 4, and p53 were lowly expressed in EMS patients. Rapamycin decreased cell viability but increased iron content, reactive oxygen species, lipid peroxide production, the number of ferroptotic mitochondria, and the expression of autophagy proteins in EMS cells, while si-Atg5 showed opposite effects. Additionally, Erastin reversed the impact of si-Atg5 on EMS cells. CONCLUSION Our findings suggest that autophagy-dependent ferroptosis plays a role in EMS progression.
Collapse
Affiliation(s)
- Hui Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, China
| | - Huadi Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, China
| | - Shenyi Lu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, China
| | - Xinyan Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, China
| | - Xinhe Shi
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, China
| | - Peiyu Mao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, China
| |
Collapse
|
36
|
Monsivais D, Liao Z, Tang S, Jiang P, Geng T, Cope D, Dunn T, Guner J, Radilla LA, Guan X. Impaired bone morphogenetic protein (BMP) signaling pathways disrupt decidualization in endometriosis. RESEARCH SQUARE 2023:rs.3.rs-3471243. [PMID: 37986901 PMCID: PMC10659538 DOI: 10.21203/rs.3.rs-3471243/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Endometriosis is linked to increased infertility and pregnancy complications due to defective endometrial decidualization. We hypothesized that identification of altered signaling pathways during decidualization could identify the underlying cause of infertility and pregnancy complications. Our study reveals that transforming growth factor β (TGFβ) pathways are impaired in the endometrium of individuals with endometriosis, leading to defective decidualization. Through detailed transcriptomic analyses, we discovered abnormalities in TGFβ signaling pathways and key regulators, such as SMAD4, in the endometrium of affected individuals. We also observed compromised activity of bone morphogenetic proteins (BMP), a subset of the TGFβ family, that control endometrial receptivity. Using 3-dimensional models of endometrial stromal and epithelial assembloids, we showed that exogenous BMP2 improved decidual marker expression in individuals with endometriosis. Our findings unveil a previously unidentified dysfunction in BMP/SMAD signaling in the endometrium of individuals with endometriosis, explaining decidualization defects and subsequent pregnancy complications in these individuals.
Collapse
|
37
|
Li H, Deng N, Puopolo T, Jiang X, Seeram NP, Liu C, Ma H. Cannflavins A and B with Anti-Ferroptosis, Anti-Glycation, and Antioxidant Activities Protect Human Keratinocytes in a Cell Death Model with Erastin and Reactive Carbonyl Species. Nutrients 2023; 15:4565. [PMID: 37960218 PMCID: PMC10650133 DOI: 10.3390/nu15214565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Precursors of advanced glycation endproducts, namely, reactive carbonyl species (RCSs), are aging biomarkers that contribute to cell death. However, the impact of RCSs on ferroptosis-an iron-dependent form of cell death-in skin cells remains unknown. Herein, we constructed a cellular model (with human keratinocyte; HaCaT cells) to evaluate the cytotoxicity of the combinations of RCSs (including glyoxal; GO and methyglyoxal; MGO) and erastin (a ferroptosis inducer) using bioassays (measuring cellular lipid peroxidation and iron content) and proteomics with sequential window acquisition of all theoretical mass spectra. Additionally, a data-independent acquisition approach was used to characterize RCSs' and erastin's molecular network including genes, canonical pathways, and upstream regulators. Using this model, we evaluated the cytoprotective effects of two dietary flavonoids including cannflavins A and B against RCSs and erastin-induced cytotoxicity in HaCaT cells. Cannflavins A and B (at 0.625 to 20 µM) inhibited ferroptosis by restoring the cell viability (by 56.6-78.6% and 63.8-81.1%) and suppressing cellular lipid peroxidation (by 42.3-70.2% and 28.8-63.6%), respectively. They also alleviated GO + erastin- or MGO + erastin-induced cytotoxicity by 62.2-67.6% and 56.1-69.3%, and 35.6-54.5% and 33.8-62.0%, respectively. Mechanistic studies supported that the cytoprotective effects of cannflavins A and B are associated with their antioxidant activities including free radical scavenging capacity and an inhibitory effect on glycation. This is the first study showing that cannflavins A and B protect human keratinocytes from RCSs + erastin-induced cytotoxicity, which supports their potential applications as dietary interventions for aging-related skin conditions.
Collapse
Affiliation(s)
- Huifang Li
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ni Deng
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Tess Puopolo
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Xian Jiang
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Proteomics Facility, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Dong B, Wang Y, Wei H, Kong X, Li S, Yue T. A D-π-A-π-D type structure-based fluorescent probe for revealing the fluctuations of the ER polarity during ferroptosis. Anal Chim Acta 2023; 1275:341571. [PMID: 37524463 DOI: 10.1016/j.aca.2023.341571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 08/02/2023]
Abstract
Ferroptosis is a novel Fe(II)-mediated oxidative cell death form, and is closely related with endoplasmic reticulum (ER). Exploring the fluctuation of ER polarity during ferroptosis is highly important for the in-depth study of the biological roles of ER in ferroptosis. Herein, we present a ratiometric probe (BNS) for revealing the changes of the ER polarity in the living cells experiencing ferroptosis. BNS employed a D-π-A-π-D type structure as the polarity-sensitive fluorophore, and selected p-toluenesulfonamide as the ER-targeting unit. Theoretical calculations suggested that the response mechanism of BNS to polarity was based on ICT, and two ICT processes appeared when BNS was at excited state. Cell imaging results demonstrated that BNS possessed desirable ER-targeting capability, and erastin-induced ferroptosis could increase the ER polarity of the living cells. Moreover, similarly to vitamin E (VE) and deferoxamine (DFO), dihydrolipoic acid (DHLA) could inhibit the changes of the ER polarity during erastin-induced ferroptosis. We expect that the probe could provide a convenient method to rapidly monitor ferroptosis and design novel drugs for the treatment of ferroptosis-relevant diseases.
Collapse
Affiliation(s)
- Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, China.
| | - Yan Wang
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong, 250014, China
| | - Hua Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Shijing Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Tao Yue
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong, 250014, China.
| |
Collapse
|
39
|
Liao Z, Tang S, Jiang P, Geng T, Cope DI, Dunn TN, Guner J, Radilla LA, Guan X, Monsivais D. Impaired bone morphogenetic protein signaling pathways disrupt decidualization in endometriosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558268. [PMID: 37790548 PMCID: PMC10542516 DOI: 10.1101/2023.09.21.558268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
It is hypothesized that impaired endometrial decidualization contributes to decreased fertility in individuals with endometriosis. To identify the molecular defects that underpin defective decidualization in endometriosis, we subjected endometrial stromal cells from individuals with or without endometriosis to time course in vitro decidualization with estradiol, progesterone, and 8-bromo-cyclic-AMP (EPC) for 2, 4, 6, or 8 days. Transcriptomic profiling identified differences in key pathways between the two groups, including defective bone morphogenetic protein (BMP)/SMAD4 signaling (ID2, ID3, FST), oxidate stress response (NFE2L2, ALOX15, SLC40A1), and retinoic acid signaling pathways (RARRES, RARB, ALDH1B1). Genome-wide binding analyses identified an altered genomic distribution of SMAD4 and H3K27Ac in the decidualized stromal cells from individuals without endometriosis relative to those with endometriosis, with target genes enriched in pathways related to signaling by transforming growth factor β (TGFβ), neurotrophic tyrosine kinase receptors (NTRK), and nerve growth factor (NGF)-stimulated transcription. We found that direct SMAD1/5/4 target genes control FOXO, PI3K/AKT, and progesterone-mediated signaling in decidualizing cells and that BMP2 supplementation in endometriosis patient-derived assembloids elevated the expression of decidualization markers. In summary, transcriptomic and genome-wide binding analyses of patient-derived endometrial cells and assembloids identified that a functional BMP/SMAD1/5/4 signaling program is crucial for engaging decidualization.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peixin Jiang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dominique I. Cope
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy N. Dunn
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Reproductive Endocrinology & Infertility, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joie Guner
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA, 90033, USA
| | - Linda Alpuing Radilla
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoming Guan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
40
|
Liu Y, Ding W, Wang J, Ao X, Xue J. Non-coding RNA-mediated modulation of ferroptosis in cardiovascular diseases. Biomed Pharmacother 2023; 164:114993. [PMID: 37302320 DOI: 10.1016/j.biopha.2023.114993] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Cardiovascular disease (CVD) is a major contributor to increasing morbidity and mortality worldwide and seriously threatens human health and life. Cardiomyocyte death is considered the pathological basis of various CVDs, including myocardial infarction, heart failure, and aortic dissection. Multiple mechanisms, such as ferroptosis, necrosis, and apoptosis, contribute to cardiomyocyte death. Among them, ferroptosis is an iron-dependent form of programmed cell death that plays a vital role in various physiological and pathological processes, from development and aging to immunity and CVD. The dysregulation of ferroptosis has been shown to be closely associated with CVD progression, yet its underlying mechanisms are still not fully understood. In recent years, a growing amount of evidence suggests that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are involved in the regulation of ferroptosis, thus affecting CVD progression. Some ncRNAs also exhibit potential value as biomarker and/or therapeutic target for patients with CVD. In this review, we systematically summarize recent findings on the underlying mechanisms of ncRNAs involved in ferroptosis regulation and their role in CVD progression. We also focus on their clinical applications as diagnostic and prognostic biomarkers as well as therapeutic targets in CVD treatment. DATA AVAILABILITY: No new data were created or analyzed in this study. Data sharing is not applicable to this article.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xiang Ao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| | - Junqiang Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
41
|
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H, Imanaka S. Current Understanding of and Future Directions for Endometriosis-Related Infertility Research with a Focus on Ferroptosis. Diagnostics (Basel) 2023; 13:diagnostics13111926. [PMID: 37296777 DOI: 10.3390/diagnostics13111926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND To date, the development of therapy for endometriosis and disease-related infertility remains a major challenge. Iron overload caused by periodic bleeding is a hallmark of endometriosis. Ferroptosis is an iron- and lipid-reactive oxygen species-dependent type of programmed cell death that is distinct from apoptosis, necrosis, and autophagy. This review summarizes the current understanding of and future directions for the research and treatment of endometriosis and disease-related infertility, with the main focus on the molecular basis of ferroptosis in endometriotic and granulosa cells. METHODS Papers published between 2000 and 2022 in the PubMed and Google Scholar databases were included in this review. RESULTS Emerging evidence suggests that ferroptosis is closely linked to the pathophysiology of endometriosis. Endometriotic cells are characterized by ferroptosis resistance, whereas granulosa cells remain highly susceptible to ferroptosis, suggesting that the regulation of ferroptosis is utilized as an interventional target for research into the treatment of endometriosis and disease-related infertility. New therapeutic strategies are urgently needed to efficiently kill endometriotic cells while protecting granulosa cells. CONCLUSIONS An analysis of the ferroptosis pathway in in vitro, in vivo, and animal research enhances our understanding of the pathogenesis of this disease. Here, we discuss the role of ferroptosis modulators as a research approach and potential novel treatment for endometriosis and disease-related infertility.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichijyonishi-machi, Nara 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, 5-2-6 Naruo-cho, Nishinomiya 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-cho, Nara 634-0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| |
Collapse
|
42
|
Ye H, Li Y, Li L, Huang Y, Wang J, Gao Q. Construction of a ceRNA network of regulated ferroptosis in doxorubicin-induced myocardial injury. PeerJ 2023; 11:e14767. [PMID: 36718444 PMCID: PMC9884038 DOI: 10.7717/peerj.14767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
Background Ferroptosis and long-noncoding RNAs (lncRNAs) play crucial roles in doxorubicin (DOX)-induced myocardial injury (DIMI). Nevertheless, there is no research to construct competing endogenous RNAs (ceRNAs) network between lncRNAs and ferroptosis-related key gene. So our research was designed to screen ferroptosis-related genes from differentially expressed mRNAs in DIMI and construct lncRNAs regulated ferroptosis-related key gene ceRNAs network. Methods The male mice were injected with DOX intraperitoneally to induce myocardial injury, myocardial injury was evaluated by hematoxylin and eosin (HE) staining, and ferroptosis-related protein-glutathione peroxidase 4 (GPx4) protein expression was detected. The differentially expressed lncRNAs and mRNAs were detected by microarray, and the ferroptosis-related genes were screened to construct a protein-protein associations (PPA) network, the highest maximal clique centrality (MCC) score gene were identified by Cytoscape software, miRNAs bound to key genes and lncRNAs bound to miRNAs were predicted; then, the obtained lncRNAs were intersected with differentially expressed lncRNAs detected by microarray. Finally, the lncRNA/miRNA/mRNA ceRNA network of the highest MCC score gene regulating ferroptosis in DIMI was constructed. The expressions of the key components in ceRNA network were detected by qRT-PCR. Results Compared with the control group, in the DOX group, myocardial enzymes and HE staining showed that myocardium structure was changed, and GPx4 protein expression was decreased. The differentially expressed 10,265 lncRNAs and 6,610 mRNAs in the DOX group were detected via microarray. Among them, 114 ferroptosis-related genes were obtained to construct PPA networks, and Becn1 was identified as the key gene. Finally, the ceRNA network including Becn1, three miRNAs and four lncRNAs was constructed by predicting data of the Starbase database. The relative expressions of these components in ceRNA net were up-regulated and consistent with microarray results. Conclusions Based on the microarray detection results and bioinformatics analysis, we screened ferroptosis-related gene Becn1 and constructed the lncRNA/miRNA/mRNA ceRNA network of regulated ferroptosis in DIMI.
Collapse
Affiliation(s)
- Hongwei Ye
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China,Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuping Li
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China,Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu, Anhui, China
| | - Lu Li
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China,Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuhui Huang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China,Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu, Anhui, China
| | - Jiahui Wang
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu, Anhui, China,Department of Anatomy, Bengbu Medical College, Bengbu, Anhui, China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China,Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
43
|
Zhao F, Tian H, Wang Y, Zhang J, Liu F, Fu L. LINC01004-SPI1 axis-activated SIGLEC9 in tumor-associated macrophages induces radioresistance and the formation of immunosuppressive tumor microenvironment in esophageal squamous cell carcinoma. Cancer Immunol Immunother 2023; 72:1835-1851. [PMID: 36688997 DOI: 10.1007/s00262-022-03364-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/27/2022] [Indexed: 01/24/2023]
Abstract
Radioresistance and immunosuppression remain the major obstacles in the anti-cancer treatments. This work studies the functions of sialic acid binding Ig like lectin 9 (SIGLEC9) and its related molecules in radioresistance and immunosuppression in esophageal squamous cell carcinoma (ESCC). The single-cell analysis showed that SIGLEC9 was mainly expressed on tumor-associated macrophages (TAMs). Monocytes-derived macrophages were co-cultured with ESCC cells and subjected to radiotherapy. High or low doses of radiotherapy induced SIGLEC9 upregulation and M2 polarization of TAMs. Artificial inhibition of SIGLEC9 in TAMs suppressed the radioresistance and immunosuppressive tumor microenvironment (TME) in the co-cultured ESCC cells. Upstream molecules of SIGLEC9 were predicted via bioinformatics. LINC01004 recruited Spi-1 proto-oncogene (SPI1) in nucleus of TAMs to induce transcriptional activation of SIGLEC9. SIGLEC9 interacted with mucin 1 (MUC1). MUC1 overexpression in ESCCs induced M2 skewing of TAMs, enhanced radioresistance and immunosuppression, and promoted nuclear translocation of β-catenin to suppress radiotherapy-induced ferroptosis of ESCC cells. These effects were blocked upon SIGLEC9 suppression. In vitro results were reproduced in the animal models with xenograft tumors. Taken together, this study demonstrates that the LINC01004-SPI1 axis-activated SIGLEC9 in TAMs induces radioresistance and the formation of immunosuppressive TME in ESCC.
Collapse
Affiliation(s)
- Fen Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, 250117, Shandong, People's Republic of China
| | - Hui Tian
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yungang Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Jianbo Zhang
- Departments of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Fang Liu
- Department of Imaging, Shandong Medical College, Jinan, 250002, Shandong, People's Republic of China
| | - Lei Fu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China.
| |
Collapse
|
44
|
Liao X, Chen J, Luo D, Luo B, Huang W, Xie W. Prognostic value of long non-coding RNA MALAT1 in hepatocellular carcinoma: A study based on multi-omics analysis and RT-PCR validation. Pathol Oncol Res 2023; 28:1610808. [PMID: 36685103 PMCID: PMC9845286 DOI: 10.3389/pore.2022.1610808] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Background: This study aimed to explore the relationship between MALAT1 and the prognosis of patients with hepatocellular carcinoma (HCC). Methods: We constructed a MALAT1 protein-protein interaction network using the STRING database and a network of competing endogenous RNAs (ceRNAs) using the StarBase database. Using data from the GEPIA2 database, we studied the association between genes in these networks and survival of patients with HCC. The potential mechanisms underlying the relationship between MALAT1 and HCC prognosis were studied using combined data from RNA sequencing, DNA methylation, and somatic mutation data from The Cancer Genome Atlas (TCGA) liver cancer cohort. Tumor tissues and 19 paired adjacent non-tumor tissues (PANTs) from HCC patients who underwent radical resection were analyzed for MALAT1 mRNA levels using real-time PCR, and associations of MALAT1 expression with clinicopathological features or prognosis of patients were analyzed using log-rank test and Gehan-Breslow-Wilcoxon test. Results: Five interacting proteins and five target genes of MALAT1 in the ceRNA network significantly correlated with poor survival of patients with HCC (p < 0.05). High MALAT1 expression was associated with mutations in two genes leading to poor prognosis and may upregulate some prognostic risk genes through methylation. MALAT1 was significantly co-expressed with various signatures of genes involved in HCC progression, including the cell cycle, DNA damage repair, mismatch repair, homologous recombination, molecular cancer m6A, exosome, ferroptosis, infiltration of lymphocyte (p < 0.05). The expression of MALAT1 was markedly upregulated in HCC tissues compared with PANTs. In Kaplan-Meier analysis, patients with high MALAT1 expression had significantly shorter progression-free survival (PFS) (p = 0.033) and overall survival (OS) (p = 0.023) than those with low MALAT1 expression. Median PFS was 19.2 months for patients with high MALAT1 expression and 52.8 months for patients with low expression, while the corresponding median OS was 40.5 and 78.3 months. In subgroup analysis of patients with vascular invasion, cirrhosis, and HBsAg positive or AFP positive, MALAT1 overexpression was significantly associated with shorter PFS and OS. Models for predicting PFS and OS constructed based on MALAT1 expression and clinicopathological features had moderate predictive power, with areas under the receiver operating characteristic curves of 0.661-0.731. Additionally, MALAT1 expression level was significantly associated with liver cirrhosis, vascular invasion, and tumor capsular infiltration (p < 0.05 for all). Conclusion: MALAT1 is overexpressed in HCC, and higher expression is associated with worse prognosis. MALAT1 mRNA level may serve as a prognostic marker for patients with HCC after hepatectomy.
Collapse
Affiliation(s)
- Xiaoli Liao
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junming Chen
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - DongCheng Luo
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Baohua Luo
- Department of Gastroenterology, Jiangbin Hospital, Nanning, China
| | - Wenfeng Huang
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China,*Correspondence: Wenfeng Huang, ; Weimin Xie,
| | - Weimin Xie
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China,*Correspondence: Wenfeng Huang, ; Weimin Xie,
| |
Collapse
|
45
|
Chen J, Guan Y, Li C, Du H, Liang C. Identification and validation of a novel cuproptosis-related lncRNA gene signature to predict prognosis and immune response in bladder cancer. Discov Oncol 2022; 13:133. [PMID: 36454396 PMCID: PMC9715909 DOI: 10.1007/s12672-022-00596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
PURPOSE Bladder cancer (BCa) is one of the most common malignant tumors in the urogenital system, characterized by the high recurrence rate, mortality rate and poor prognosis. Based on cuproptosis-related long noncoding RNAs (CRLs), this study set out to create a prediction signature to evaluate the prognosis of patients with BCa. METHODS RNA-seq data including CRLs and related clinicopathological data were gathered from The Cancer Genome Atlas (TCGA) database (n = 428). The predictive signature was constructed after correlation analysis. Subsequently, relying on the analyzed data from the TCGA database and our sample collection, we examined and verified the connections between CRLs model and important indexes included prognosis, route and functional enrichment, tumor immune evasion, tumor mutation, and treatment sensitivity. RESULTS Patients in the high-risk group had lower overall survival (OS) than that of low-risk group. Compared with clinicopathological variables, CRLs features have better predictive value according to receiver operating characteristic (ROC) curve. The expression level of CRLs was highly associated with the tumor progress, tumor microenvironment and tumor immune escape. Additionally, we identified that the mutation of TP53, TTN, KMT2D and MUC16 gene were founded in patients with BCa. Lapatinib, pazopanib, saracatinib, gemcitabine, paclitaxel and palenolactone had good antitumor effects for BCa patients in the high-risk group (all P < 0.001). CONCLUSION This study revealed the effects of CRLs on BCa and further established CRLs model, which can be used in clinic for predicting prognosis, immunological response and treatment sensitivity inpatient with BCa.
Collapse
Affiliation(s)
- Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China
| | - Yu Guan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China
| | - Chun Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218th Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Hexi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Genitourinary Diseases, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Genitourinary Diseases, 218th Jixi Road, Shushan District, Hefei, 230022, Anhui, People's Republic of China.
| |
Collapse
|
46
|
Lu C, Qiao P, Fu R, Wang Y, Lu J, Ling X, Liu L, Sun Y, Ren C, Yu Z. Phosphorylation of PFKFB4 by PIM2 promotes anaerobic glycolysis and cell proliferation in endometriosis. Cell Death Dis 2022; 13:790. [PMID: 36109523 PMCID: PMC9477845 DOI: 10.1038/s41419-022-05241-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
Endometriosis (EM) is one of the vanquished wonted causes of chronic pelvic sting in women and is closely associated with infertility. The long-term, complex, systemic, and post-treatment recurrence of EM wreaks havoc on women's quality of life. Extensive metabolic reprogramming (aerobic glycolysis, glucose overweening intake, and high lactate production) and cancer-like changes have been found in EM, which bears striking similarities to tumorigenesis. The key glycolysis regulator PFKFB4 is overexpressed in EM. However, the mechanism of PFKFB4 in EM remains unknown. We found that PFKFB4 was upregulated and was closely related to the progression of EM. We identified focus PIM2 as a new pioneering adjoin protein of PFKFB4. Vigorous biochemical methods were used to confirm that PIM2 phosphorylated site Thr140 of PFKFB4. PIM2 also could enhance PFKFB4 protein expression through the ubiquitin-proteasome pathway. Moreover, PIM2 expression was really corresponding prevalent with PFKFB4 in endometriosis in vivo. Importantly, phosphorylation of PFKFB4 on Thr140 by PIM2 promoted EM glycolysis and cell growth. Our study demonstrates that PIM2 mediates PFKFB4 Thr140 phosphorylation thus regulating glycolysis and EM progression. We illustrated a new mechanism that PIM2 simulated a central upstream partnership in the regulation of PFKFB4, and reveal a novel means of PIM2-PFKFB4 setting EM growth. Our research provided new theoretical support for further clarifying the reprogramming of EM glucose metabolism, and provided new clues for exploring non-contraceptive treatments for EM.
Collapse
Affiliation(s)
- Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China.
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Ruihai Fu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Yadi Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Jiayi Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Xi Ling
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Lu Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Yujun Sun
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China.
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China.
| |
Collapse
|