1
|
Song H, Wang G, Gao G, Xia H, Jiao L, Wu K. A Systematic Analysis of Expression and Function of RAS GTPase-Activating Proteins (RASGAPs) in Urological Cancers: A Mini-Review. Cancers (Basel) 2025; 17:1485. [PMID: 40361412 PMCID: PMC12071082 DOI: 10.3390/cancers17091485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
The RAS signaling pathway is one of the most commonly dysregulated pathways in urological cancers. This pathway can be regulated by RASGAPs, which catalyze the hydrolysis of RAS-GTP to RAS-GDP. As such, the loss of RASGAPs can promote the activation of the RAS signaling pathway. Dysregulation of RASGAPs significantly contributes to the progression of urological cancers, including prostate cancer, bladder cancer, and renal cell carcinoma. Furthermore, alterations in RASGAP expression may influence sensitivity to chemotherapy, radiotherapy, and targeted therapies, suggesting their potential as therapeutic targets. Despite the challenges involved, a deeper understanding of the complexity of the RAS signaling network, along with the evolution of personalized medicine, holds promise for delivering more precise and effective treatment options targeting RASGAPs in urological cancers.
Collapse
Affiliation(s)
- Hao Song
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| | - Guojing Wang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| | - Guoqiang Gao
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| | - Huayu Xia
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| | - Lianying Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| |
Collapse
|
2
|
Hashemi M, Mohandesi Khosroshahi E, Asadi S, Tanha M, Ghatei Mohseni F, Abdolmohammad Sagha R, Taheri E, Vazayefi P, Shekarriz H, Habibi F, Mortazi S, Khorrami R, Nabavi N, Rashidi M, Taheriazam A, Rahimzadeh P, Entezari M. Emerging roles of non-coding RNAs in modulating the PI3K/Akt pathway in cancer. Noncoding RNA Res 2025; 10:1-15. [PMID: 39296640 PMCID: PMC11406677 DOI: 10.1016/j.ncrna.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Forough Ghatei Mohseni
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramina Abdolmohammad Sagha
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paria Vazayefi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helya Shekarriz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Habibi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Mortazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Independent Researchers, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Zhao G, Zhou Y, Tang Y, Abbas M, Dong S, Zhao X, Liu X, Wang X, Li C, Liu C. Potential antitumor effect of polysaccharides extracted from Polygonatum sibiricum on human prostate cancer PC‑3 cells. Oncol Lett 2025; 29:28. [PMID: 39512496 PMCID: PMC11542168 DOI: 10.3892/ol.2024.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Polygonatum sibiricum polysaccharides (PSP) are a traditional herbal medicine component with potential therapeutic effects on several diseases. The present study aimed to assess the role of PSP in the treatment of human prostate cancer using a PC-3 cell line by Cell CK-8, transwell and wound healing assays, then elucidate the potential underlying mechanisms by western blot and quantitative Real-time RT-PCR. Different concentrations of PSP were applied to PC-3 cells, and the proliferation, invasion and migration of PC-3 cells were demonstrated to be significantly inhibited with increasing concentrations of PSP. Additionally, cell apoptosis rate and expression of caspase-3 increased with higher PSP concentrations, and the cell cycle was arrested in the S phase. Furthermore, it was demonstrated that the expression of the multidrug resistance-1 gene and its encoded protein P-glycoprotein in PC-3 cells decreased following PSP treatment, suggesting that PSP may have the potential to reverse multidrug resistance in PC-3 cells. The present study also evaluated the possible mechanism of PSP action on PC-3 cells. The results revealed that phosphorylated P65, PI3K and AKT decreased in a concentration-dependent manner. As key molecules in the NF-κB and PI3K/Akt signaling pathways, this finding suggests that the potential mechanism of the effect of PSP on prostate cancer cells may involve simultaneous mediation of the PI3K/Akt and NF-κB signaling pathways. The present study demonstrated that PSP inhibit the proliferation, invasion and migration of PC-3 cells in vitro, as well as reverse MDR in these cells. The underlying mechanism may involve the simultaneous regulation of the PI3K/Akt and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Guobin Zhao
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Yan Zhou
- Department of Immunology, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Yuhong Tang
- Department of Immunology, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Muhammad Abbas
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Shaowen Dong
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Xinyang Zhao
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Xin Liu
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Xinmei Wang
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Chen Li
- Department of Urology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Chenxi Liu
- Graduate School, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| |
Collapse
|
4
|
Ou YC, Yu TM, Li JR, Wu CC, Wang JD, Liao SL, Chen WY, Kuan YH, Chen CJ. Runx2 silencing sensitized human renal cell carcinoma cells to ABT-737 apoptosis. Arch Biochem Biophys 2024; 761:110173. [PMID: 39369835 DOI: 10.1016/j.abb.2024.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
The prognostic value of Runt-related transcription factor 2 (Runx2) and its involvement in cell growth and motility have been reported in patients diagnosed with renal cell carcinoma (RCC). Since Runx2 may have the potential to be a target for the purpose of antitumor intervention, there is an urgent need to gain insight into its oncogenic properties. Using human 786-O, Caki-1 and ACHN RCC cells as models, the silencing of cellular Runx2 expression brought about a reduction in cyclin D1 and β-catenin expression, cell growth and migration without any significant cell death. Runx2-silenced cells turned into apoptosis vulnerable in the presence of ABT-737, a BH3 mimetic Bcl-2 inhibitor. Data from biochemical and molecular studies have revealed a positive correlation between Runx2 expression and Akt phosphorylation, Mcl-1 expression, and fibronectin expression. Results of genetic silencing studies have indicated the potential involvement of Mcl-1 and fibronectin in the decision of RCC cell ABT-737 resistance and sensitivity. The regulatory roles of the PI3K/Akt axis in the expression of Mcl-1 and fibronectin were suggested by means of the results taken from experiments involving pharmacological study of the PI3K/Akt. Since overexpression and prognostic roles of Runx2, activated Akt, Mcl-1, fibronectin, cyclin D1, and β-catenin have been revealed in RCC, it is important to explore the precise mechanisms underlying Runx2 oncogenic effects. Although the linking details between Runx2 and PI3K/Akt have yet to be identified, our findings suggest that Mcl-1 and fibronectin are downstream effectors of Runx2 via a regulatory axis of the PI3K/Akt and their promotion of cell growth, migration, and ABT-737 resistance in RCC cells.
Collapse
Affiliation(s)
- Yen-Chuan Ou
- Department of Urology, Tungs' Taichung MetroHarbor Hospital, Taichung City, 433, Taiwan.
| | - Tung-Min Yu
- Division of Nephrology, Taichung Veterans General Hospital, Taichung City, 407, Taiwan.
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City, 407, Taiwan.
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City, 407, Taiwan; Department of Financial Engineering, Providence University, Taichung City, 433, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung City, 433, Taiwan.
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, 407, Taiwan.
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, 407, Taiwan.
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City, 402, Taiwan.
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
5
|
Zhan X, Li H, Jin J, Ju X, Gao J, Chen X, Yuan F, Gu J, Xu D, Ju G. Network pharmacology and experimental validation to explore the role and potential mechanism of Liuwei Dihuang Decoction in prostate cancer. BMC Complement Med Ther 2024; 24:284. [PMID: 39061044 PMCID: PMC11282786 DOI: 10.1186/s12906-024-04572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE To evaluate the anti-tumor effector of Liuwei Dihuang Decoction (LWDHD) in prostate cancer (PCa) and explore the potential mechanism using experimental validation, network pharmacology, bioinformatics analysis, and molecular docking. METHODS CCK test, Clone formation assay and wound-healing assays were used to determine the effect of LWDHD on prostate cancer growth and metastasis. The active ingredients and targets of LWDHD were obtained from the TCMSP database, and the relevant targets were selected by GeneCards, OMIM and DisGeNET databases for PCa. The cross-targets of drugs and disease were imported into the STRING database to construct protein interactions. The network was also visualized using Cytoscape software and core targets are screened using the Network Analyzer plug-in. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were analyzed using R software. TCGA database was used to analyze the correlation of bioinformatics genes. AutoDock vina was used to predict the molecular docking and binding ability of active ingredients to key targets. Through WB and q-PCR experiments, the above gene targets were detected to verify the effect of LWDHD on PCa. RESULTS CCK and scratch tests confirmed that LWDHD could inhibit the proliferation, invasion and migration of prostate cancer cells. Clone formation experiments showed that LWDHD inhibited the long-term proliferative capacity of PC3 cells. LWDHD and PCa had a total of 99 common targets, establishing a "drug-ingredient-common target" network. Through GO and KEGG enrichment analysis, PI3K/AKT, MAPK, TP53 pathway, MYC, TNF pathway and other signaling pathways were found. Bioinformatics analysis showed that MYC gene was highly expressed and CCND1 and MAPK1 were low expressed in prostate cancer tissues. In addition, TP53, AKT1, MYC, TNF and CCND1 were positively correlated with MAPK1, among which AKT1 and CCND1 were most closely correlated with MAPK1. Molecular docking results showed that quercetin, kaempferol, β-sitosterol and other main active ingredients of LWDHD treatment for PCa were combined with core proteins MAPK1 and AKT1 well. WB and q-PCR results showed that LWDHD inhibited the expression of PI3K and AKT in PC3 cells. CONCLUSION The mechanism of LWDHD therapy for PCa is a multi-target and multi-pathway complex process, which may be related to the biological processes mediated by MAPK1 and AKT1 pathways, such as cell proliferation and inhibition of metastasis, and the regulation of signaling pathways. The PI3K/AKT signaling pathway may be a central pathway of LWDHD to inhibit prostate cancer proliferation.
Collapse
Affiliation(s)
- Xiangyang Zhan
- Urology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Surgical Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haoze Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingyun Jin
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiran Ju
- Urology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Surgical Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiawei Gao
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinglin Chen
- Urology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Surgical Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fuwen Yuan
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianyi Gu
- Urology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Surgical Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Surgical Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - DongLiang Xu
- Urology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Surgical Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Surgical Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guanqun Ju
- Urology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Surgical Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Surgical Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Wang L, Cheng J, Huang J, Xiao T, Tang Z. The mechanism of IL-13 targeting IL-13Rα2 in regulating oral mucosal FBs through PI3K/AKT/mTOR. Oral Dis 2024; 30:3142-3154. [PMID: 37897109 DOI: 10.1111/odi.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE The objective of this investigation was to examine the presence of interleukin (IL)-13 and its receptor IL-13Rα2 in the tissues of oral submucous fibrosis (OSF), investigate their biological functions, and explore the underlying mechanisms involved in the development of OSF. MATERIALS AND METHODS The expression of IL-13 and IL-13Rα2 in the oral mucosa of patients with OSF and normal individuals was determined through immunohistochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Primary fibroblasts (FBs) were extracted through enzymatic digestion and then cultured. Immunofluorescence was employed to identify the FB cultures and the location of IL-13Rα2. The effects of IL-13/IL-13Rα2/PI3K/AKT/mTOR on the migration, proliferation, and secretion of fiber-related proteins of FBs were explored via the wound healing assay, CCK-8 assay, EDU assay, and RT-qPCR. The impact of IL-13Rα2 silencing and PI3K/AKT inhibition on the effect of IL-13 on FBs was analyzed by RT-qPCR and Western blotting. RESULTS IL-13 and IL-13Rα2 were highly expressed in OSF. Primary FBs were successfully extracted and cultured. IL-13Rα2 was found to be localized in myofibroblasts. IL-13 promoted the proliferation, migration, and secretion of fibril-associated proteins in FBs. The proliferation, migration, and secretion of fibril-associated proteins of FBs were decreased following IL-13Rα2 silencing and inhibition of the PI3K/AKT/mTOR pathway. CONCLUSION IL-13 may promote the proliferation, migration, and secretion of fiber-related proteins of FBs through the PI3K/AKT/mTOR pathway by targeting IL-13Rα2.
Collapse
Affiliation(s)
- Liping Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jingyi Cheng
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Junhui Huang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Ting Xiao
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
7
|
Sivaganesh V, Peethambaran B. Receptor tyrosine kinase-like orphan receptor 1 inhibitor strictinin exhibits anti-cancer properties against highly aggressive androgen-independent prostate cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1188-1209. [PMID: 38213538 PMCID: PMC10784114 DOI: 10.37349/etat.2023.00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 01/13/2024] Open
Abstract
Aim It is important to identify anti-cancer compounds that can inhibit specific molecular targets to eradicate androgen-receptor negative (ARneg), androgen-independent (AI) prostate cancer, which is an aggressive form of prostate cancer with limited treatment options. The goal of this study was to selectively target prostate cancer cells that have high levels of oncogenic protein Receptor tyrosine kinase-like orphan receptor 1 (ROR1) by using strictinin, a small molecule ROR1 inhibitor. Methods The methods performed in this study include western blots, methyl thiazolyl tetrazolium (MTT) proliferation assays, phosphatidylserine apoptosis assays, apoptosis flow cytometry (Annexin V, caspase 3/7), migration scratch assays, Boyden chamber invasion assays, and cell cycle flow cytometry. Results Strictinin was most lethal against PC3 [half-maximal drug inhibitory concentration (IC50) of 277.2 µmol/L], an ARneg-AI cell type that expresses the highest levels of ROR1. Strictinin inhibited ROR1 expression, downstream phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-glycogen synthase kinase 3beta (GSK3β) pro-survival signaling, and epithelial-to-mesenchymal transition markers in PC3 cells. Additionally, strictinin decreased PC3 cell migration and invasion, while increasing S-phase cell cycle arrest. In ARneg-AI DU145 cells, strictinin inhibited ROR1 expression and modulated downstream AKT-GSK3β signaling. Furthermore, strictinin exhibited anti-migratory, anti-invasive, but minimal pro-apoptotic effects in DU145 cells likely due to DU145 having less ROR1 expression in comparison to PC3 cells. Throughout the study, strictinin minimally impacted the phenotype of normal prostatic epithelial cells RWPE-1 (IC50 of 658.5 µmol/L). Strictinin was further identified as synergistic with docetaxel [combination index (CI) = 0.311] and the combination therapy was found to reduce the IC50 of strictinin to 38.71 µmol/L in PC3 cells. Conclusions ROR1 is an emerging molecular target that can be utilized for treating prostate cancer. The data from this study establishes strictinin as a potential therapeutic agent that targets ARneg-AI prostate cancer with elevated ROR1 expression to reduce the migration, invasion, cell cycle progression, and survival of prostate cancer.
Collapse
Affiliation(s)
- Vignesh Sivaganesh
- Department of Biology, Saint Joseph’s University, Philadelphia, PA 19104, USA
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Bela Peethambaran
- Department of Biology, Saint Joseph’s University, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Chen D, Lei C, Liu W, Shao M, Sun M, Guo J, Cao J, Nie JJ, Luo P, Luo Y, Yu B, Wang R, Duan S, Xu FJ. Reduction-responsive nucleic acid nanocarrier-mediated miR-22 inhibition of PI3K/AKT pathway for the treatment of patient-derived tumor xenograft osteosarcoma. Bioact Mater 2023; 28:376-385. [PMID: 37519923 PMCID: PMC10382964 DOI: 10.1016/j.bioactmat.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
miRNAs are important regulators of gene expression and play key roles in the development of cancer, including osteosarcoma. During the development of osteosarcoma, the expression of miR-22 is significantly downregulated, making miR-22 as a promising therapeutic target against osteosarcoma. To design and fabricate efficient delivery carriers of miR-22 into osteosarcoma cells, a hydroxyl-rich reduction-responsive cationic polymeric nanoparticle, TGIC-CA (TC), was developed in this work, which also enhanced the therapeutic effects of Volasertib on osteosarcoma. TC was prepared by the ring-opening reaction between amino and epoxy groups by one-pot method, which had the good complexing ability with nucleic acids, reduction-responsive degradability and gene transfection performance. TC/miR-22 combined with volasertib could inhibit proliferation, migration and promote apoptosis of osteosarcoma cells in vitro. The anti-tumor mechanisms were revealed as TC/miR-22 and volasertib could inhibit the PI3K/Akt signaling pathway synergistically. Furthermore, this strategy showed outstanding tumor suppression performance in animal models of orthotopic osteosarcoma, especially in patient-derived chemo-resistant and chemo-intolerant patient-derived xenograft (PDX) models, which reduced the risk of tumor lung metastasis and overcame drug resistance. Therefore, it has great potential for efficient treatment of metastasis and drug resistance of osteosarcoma by the strategy of localized, sustained delivery of miR-22 using the cationic nanocarriers combined with non-traditional chemotherapy drugs.
Collapse
Affiliation(s)
- Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Chengyue Lei
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, China
| | - Meiyu Shao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meizhou Sun
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianxun Guo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Jingjing Cao
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Jing-Jun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Peng Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Yuwen Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
- JST Sarcopenia Research Centre, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Xu Y, Li J, Luo Y, Ma J, Huang P, Chen Y, He Z. Carvedilol exhibits anti-acute T lymphoblastic leukemia effect in vitro and in vivo via inhibiting β-ARs signaling pathway. Biochem Biophys Res Commun 2023; 639:150-160. [PMID: 36495764 DOI: 10.1016/j.bbrc.2022.11.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
An increasing number of studies have focus upon β-adrenergic receptor blockers and their anti-tumor effects. However, the use of Carvedilol (CVD), the third generation β-AR blocker, has not been explored for use against T-ALL. In this study, the level of β-ARs was explored in pediatric T-ALL patients. Moreover, the antitumor effects of CVD against T-ALL were assessed in vitro and in vivo, and the underlying mechanisms were investigated. The viability of T-ALL cells following CVD treatment was detected using a CCK-8 assay, and the apoptotic and cell cycle effects were measured using flow cytometry. The protein levels of β-ARs, cAMP, Epac, JAK2, STAT3, p-STAT3, PI3K, p-PI3K, AKT, p-AKT, mTOR, cyclin D1, PCNA, and cleaved caspase-3 were assessed by Western blotting. In vivo experiments were used to investigate the effect of CVD on T-ALL growth in mice. The results indicated that β-ARs were highly expressed in the newly diagnosed T-ALL cells when compared to those in the control group (P < 0.05). In vitro, CVD significantly inhibited T-ALL cell viability, promoted apoptosis and blocked the G0/G1 phase of cell cycle. After CVD treatment, the protein levels of β-ARs, cAMP, Epac, PI3K, p-PI3K, AKT, p-AKT, mTOR, JAK2, STAT3, p-STAT3, cyclin D1 and PCNA were significantly downregulated (P < 0.05); whereas cleaved caspase-3 was significantly upregulated (P < 0.05). In vivo, the volume and weight of the xenograft tumors were significantly decreased in the CVD group (P < 0.05). CVD promoted xenograft tumor apoptosis and reduced the proportion of CEM-C1 cells in murine peripheral blood and bone marrow (P < 0.05). Our results demonstrate that β-ARs are expressed in T-ALL. CVD has a strong antitumor effect against T-ALL and inhibits β-AR associated signaling pathways. Therefore, CVD may provide a potential therapy for T-ALL.
Collapse
Affiliation(s)
- Yanpeng Xu
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, People's Republic of China
| | - Jiahuan Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China
| | - Yan Luo
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China
| | - Jinhua Ma
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, People's Republic of China
| | - Yan Chen
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China.
| | - Zhixu He
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, People's Republic of China.
| |
Collapse
|
10
|
Human Bone Marrow Mesenchymal Stem Cell (hBMSCs)-Derived miR-29a-3p-Containing Exosomes Impede Laryngocarcinoma Cell Malignant Phenotypes by Inhibiting PTEN. Stem Cells Int 2022; 2022:8133632. [PMID: 36338027 PMCID: PMC9635976 DOI: 10.1155/2022/8133632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Although microRNA-29a-3p was reported to inhibit laryngocarcinoma progression, the potential mechanisms have not been explored clearly. Laryngocarcinoma tissues were collected for analyzing the levels of miR-29a-3p and phosphatase and tensin homolog (PTEN). The miR mimics or inhibitor was transfected into laryngocarcinoma cell lines M4E and Hep2 for the investigation of the biological functions (proliferative, invasion, migratory rates, and apoptotic rates) of this miRNA. The exosomes (Exo) from human bone marrow mesenchymal stem cells (hBMSCs) after the transfection of miR mimics/inhibitor/si-PTEN were isolated and used to stimulate M4E and Hep2 cells. The in vivo mouse model was constructed to verify our findings. The miR-29a-3p level was decreased, and PTEN level was elevated in laryngocarcinoma tissues and the cancer cell lines. MiR mimics could inhibit proliferative, invasive migratory rates while promoting apoptotic rates of M4E and Hep2 cells. MiR-29a-3p was enriched in hBMSC-derived Exo, and the Exo from miR-29a-3p mimics transfected hBMSCs could inhibit laryngocarcinoma cell malignant phenotypes in vitro and prevent tumor progression in vivo. In addition, the direct binding relationship between miR-29a-3p and PTEN in this disease was determined. In conclusion, hBMSC-derived Exo with upregulated miR-29a-3p inhibited laryngocarcinoma progression via regulating PTEN, providing a potential diagnostic and therapeutic target in this disease.
Collapse
|