1
|
He J, Huang K, Fan X, Chang G. Sulfur Dioxide Alleviates Aortic Dissection Through Inhibiting Vascular Smooth Muscle Cell Phenotype Switch, Migration, and Proliferation via miR-184-3p/Cyp26b1 Axis. Antioxid Redox Signal 2025; 42:672-686. [PMID: 39834177 DOI: 10.1089/ars.2023.0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aims: Abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are considered early events in the onset of thoracic aortic dissection (TAD). Endogenous sulfur dioxide (SO2), primarily produced by aspartate aminotransferase (AAT1) in mammals, has been reported to inhibit the migration and proliferation of VSMCs. However, the role of SO2 in the development of TAD remains unclear. Results: Endogenous SO2 production was decreased in aortic samples from patients with TAD. Supplementation with SO2 ameliorated β-aminopropionitrile-induced vascular injury in mice. Increasing the expression of SO2 pathway might reverse the abnormal migration, proliferation, and phenotypic switching in VSMCs. MicroRNA sequencing revealed miR-184-3p as the miRNA with the most significant increased expression level after AAT1 knockdown, and Cyp26b1 was predicted to be its potential target. A decrease in the SO2 pathway resulted in reduced Cyp26b1 expression, impairing VSMCs function, while restoring Cyp26b1 expression with miR-184-3p inhibitors could improve the VSMCs function. Innovation: This research extends the application of endogenous SO2 to the aortic diseases and elucidates the role of miRNA in endogenous SO2 regulatory network, highlighting its potential as a target for clinical practice. Conclusion: Endogenous SO2 inhibits the migration and proliferation of VSMCs in TAD progression via the miR-184-3p/Cyp26b1 axis. Antioxid. Redox Signal. 42, 672-686.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Animals
- Sulfur Dioxide/pharmacology
- Sulfur Dioxide/metabolism
- Mice
- Humans
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/drug therapy
- Aortic Dissection/genetics
- Phenotype
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Male
- Cytochrome P-450 Enzyme System/metabolism
- Cytochrome P-450 Enzyme System/genetics
- Signal Transduction
- Oxygenases
Collapse
Affiliation(s)
- Jie He
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), The First Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Department of Cardiovascular Surgery, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kan Huang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), The First Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangqi Chang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), The First Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
| |
Collapse
|
2
|
Auddino S, Aiello E, Grieco GE, Fignani D, Licata G, Bruttini M, Mori A, Berteramo AF, Pedace E, Nigi L, Formichi C, Guay C, Quero G, Tondolo V, Di Giuseppe G, Soldovieri L, Ciccarelli G, Mari A, Giaccari A, Mezza T, Po A, Regazzi R, Dotta F, Sebastiani G. Comprehensive sequencing profile and functional analysis of IsomiRs in human pancreatic islets and beta cells. Diabetologia 2025:10.1007/s00125-025-06397-4. [PMID: 40102237 DOI: 10.1007/s00125-025-06397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025]
Abstract
AIMS/HYPOTHESIS MiRNAs regulate gene expression, influencing beta cell function and pathways. Isoforms of miRNA (isomiRs), sequence variants of miRNAs with post-transcriptional modifications, exhibit cell-type-specific expression and functions. Despite their biological significance, a comprehensive isomiR profile in human pancreatic islets and beta cells remains unexplored. This study aims to profile isomiR expression in four beta cell sources: (1) laser capture microdissected human islets (LCM-HI); (2) collagenase-isolated human islets (CI-HI); (3) sorted beta cells; and (4) the EndoC-βH1 beta cell line, and to investigate their potential role in beta cell function. METHODS Small RNA-seq and/or small RNA dataset analysis was conducted on human pancreatic islets and beta cells. Data were processed using the sRNAbench bioinformatics pipeline to classify isomiRs based on sequence variations. A beta cell-specific isomiR signature was identified via cross-validation across datasets. Correlations between LCM-HI isomiR expression and in vivo clinical parameters were analysed using regression models. Functional validation of isomiR-411-5p-Ext5p(+1) was performed via overexpression in EndoC-βH1 cells and CI-HI, followed by glucose-stimulated insulin secretion (GSIS) assays and/or transcriptomic analysis. RESULTS IsomiRs constituted 59.2 ± 1.9% (LCM-HI), 59.6 ± 2.4% (CI-HI), 42.3 ± 7.2% (sorted beta cells) and 43.8 ± 1.2% (EndoC-βH1) of total miRNA reads (data represented as mean ± SD), with 3' end trimming (Trim3p) being the predominant modification. A beta cell-specific isomiR signature of 30 sequences was identified, with isomiR-411-5p-Ext5p(+1) showing a significant inverse correlation with basal insulin secretion (p=0.0009, partial R2=0.68) and total insulin secretion (p=0.005, partial R2=0.54). Overexpression of isomiR-411-5p-Ext5p(+1), but not of its canonical counterpart, importantly reduced GSIS by 51% ( ± 15.2%; mean ± SD) (p=0.01) in EndoC-βH1 cells. Transcriptomic analysis performed in EndoC-βH1 cells and CI-HI identified 47 genes significantly downregulated by isomiR-411-5p-Ext5p(+1) (false discovery rate [FDR]<0.05) but not by the canonical miRNA, with enriched pathways related to Golgi vesicle biogenesis (FDR=0.017) and trans-Golgi vesicle budding (FDR=0.018). TargetScan analysis confirmed seed sequence-dependent target specificity for 81 genes uniquely regulated by the isomiR (p=1.1 × 10⁻⁹). CONCLUSIONS/INTERPRETATION This study provides the first comprehensive isomiR profiling in human islets and beta cells, revealing their substantial contribution to miRNA regulation. IsomiR-411-5p-Ext5p(+1) emerges as a distinct key modulator of insulin secretion and granule dynamics in beta cells. These findings highlight isomiRs as potential biomarkers and therapeutic targets for diabetes, warranting further exploration of their roles in beta cell biology.
Collapse
Affiliation(s)
- Stefano Auddino
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giuseppina E Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Marco Bruttini
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Alessia Mori
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Andrea F Berteramo
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Erika Pedace
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Quero
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Chirurgia Digestiva, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Vincenzo Tondolo
- General Surgery Unit, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Gianfranco Di Giuseppe
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Laura Soldovieri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gea Ciccarelli
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Giaccari
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy.
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy.
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| |
Collapse
|
3
|
Tian X, Wang L, Zhong L, Zhang K, Ge X, Luo Z, Zhai X, Liu S. The research progress and future directions in the pathophysiological mechanisms of type 2 diabetes mellitus from the perspective of precision medicine. Front Med (Lausanne) 2025; 12:1555077. [PMID: 40109716 PMCID: PMC11919862 DOI: 10.3389/fmed.2025.1555077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder characterized by pathophysiological mechanisms such as insulin resistance and β-cell dysfunction. Recent advancements in T2DM research have unveiled intricate multi-level regulatory networks and contributing factors underlying this disease. The emergence of precision medicine has introduced new perspectives and methodologies for understanding T2DM pathophysiology. A recent study found that personalized treatment based on genetic, metabolic, and microbiome data can improve the management of T2DM by more than 30%. This perspective aims to summarize the progress in T2DM pathophysiological research from the past 5 years and to outline potential directions for future studies within the framework of precision medicine. T2DM develops through the interplay of factors such as gut microbiota, genetic and epigenetic modifications, metabolic processes, mitophagy, NK cell activity, and environmental influences. Future research should focus on understanding insulin resistance, β-cell dysfunction, interactions between gut microbiota and their metabolites, and the regulatory roles of miRNA and genes. By leveraging artificial intelligence and integrating data from genomics, epigenomics, metabolomics, and microbiomics, researchers can gain deeper insights into the pathophysiological mechanisms and heterogeneity of T2DM. Additionally, exploring the combined effects and interactions of these factors may pave the way for more effective prevention strategies and personalized treatments for T2DM.
Collapse
Affiliation(s)
- Xinyi Tian
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liuqing Wang
- Institute of Chinese Medical History and Literatures, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liuting Zhong
- First School of Clinical Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Kaiqi Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolei Ge
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengrong Luo
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Zhai
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaoyan Liu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Luo Y, Li JE, Zeng H, Zhang Y, Yang S, Liu J. Semaglutide alleviates the pancreatic β cell function via the METTL14 signaling and modulating gut microbiota in type 2 diabetes mellitus mice. Life Sci 2025; 361:123328. [PMID: 39719165 DOI: 10.1016/j.lfs.2024.123328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
AIMS Semaglutide, a novel long-acting GLP-1RA, stimulates insulin and suppresses islet-secreted glucagon to reduce glucose levels. It has been unveiled that m6A mRNA modification plays a pivotal role in regulating β cell function. However, it remains unclear whether semaglutide can elicit protective effects through manipulating m6A modification and the underlying mechanism. We aimed to elucidate the role played by semaglutide in m6A modification, and to explore its specific regulatory targets. Furthermore, we also delve into its effects on gut microbiota. MAIN METHODS Five-week-old male C57BL/6 mice were assigned to two dietary groups and fed a control or high-fat diet for 4 weeks. Then T2DM was induced in high-fat diet-fed mice via streptozotocin (STZ), the main groups were resampled to include treatment with semaglutide (SEM, 40 μg/kg) for another 4 weeks, totaling three groups: Control, Model (T2DM), T2DM + SEM. Additionally, we elucidated specific regulatory targets and signaling pathways in palmitic acid (PA)-stimulated beta-TC-6 cells. Immunofluorescence, Western blot, and RT-qPCR were used in the study. KEY FINDINGS Semaglutide mitigated pancreatic damage, enhanced islet cell proliferation, and restored islet size and alpha- and beta-cell masses. It also improved the expression of METTL14, pancreatic duodenal homeobox 1 (PDX-1), and protecting mitochondria, and modulated the PDX1 expression in an m6A-dependent manner. Concurrently, semaglutide significantly decreases the abundance of Firmicutes, Actinobacteriota, and Lactobacillus, while increasing the Bacteroides and norank_f_Muribaculaceae content, and the production of short-chain fatty acids (SCFA). SIGNIFICANCE Semaglutide positively influences by regulating m6A modifications to alleviate pancreatic beta cell dysfunction and modulate the gut microbiome.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jin-E Li
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Haixia Zeng
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Yuying Zhang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Shiqi Yang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang City, Jiangxi Province, China; Branch of National Clinical Research Center for Metabolic Diseases, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
5
|
Lalani S, Knudsen J, Kenney J, Hober D, DiPersio CM, Gerber A. A novel microRNA promotes coxsackievirus B4 infection of pancreatic β cells. Front Immunol 2024; 15:1414894. [PMID: 39697323 PMCID: PMC11652211 DOI: 10.3389/fimmu.2024.1414894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 12/20/2024] Open
Abstract
The epidemiological association of coxsackievirus B infection with type 1 diabetes suggests that therapeutic strategies that reduce viral load could delay or prevent disease onset. Moreover, recent studies suggest that treatment with antiviral agents against coxsackievirus B may help preserve insulin levels in type 1 diabetic patients. In the current study, we performed small RNA-sequencing to show that infection of immortalized trophoblast cells with coxsackievirus caused differential regulation of several miRNAs. One of these, hsa-miR-AMC1, was similarly upregulated in human pancreatic β cells infected with coxsackievirus B4. Moreover, treatment of β cells with non-cytotoxic concentrations of an antagomir that targets hsa-miR-AMC1 led to decreased CVB4 infection, suggesting a positive feedback loop wherein this microRNA further promotes viral infection. Interestingly, some predicted target genes of hsa-miR-AMC1 are shared with hsa-miR-184, a microRNA that is known to suppress genes that regulate insulin production in pancreatic β cells. Consistently, treatment of coxsackievirus B4-infected β cells with the hsa-miR-AMC1 antagomir was associated with a trend toward increased insulin production. Taken together, our findings implicate novel hsa-miR-AMC1 as a potential early biomarker of coxsackievirus B4-induced type 1 diabetes and suggest that inhibiting hsa-miR-AMC1 may provide therapeutic benefit to type 1 diabetes patients. Our findings also support the use of trophoblast cells as a model for identifying microRNAs that might be useful diagnostic markers or therapeutic targets for coxsackievirus B-induced type 1 diabetes.
Collapse
Affiliation(s)
- Salima Lalani
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Joseph Knudsen
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - James Kenney
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Univ Lille, Centre Hospitalier Universitaire de Lille, Lille, France
| | - C. Michael DiPersio
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
- Department of Surgery, Albany Medical College, Albany, NY, United States
| | - Allen Gerber
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
- Department of Neurology, Castle Point Medical Center, Wappingers Falls, NY, United States
| |
Collapse
|
6
|
Xu DW, Li WY, Shi TS, Wang CN, Zhou SY, Liu W, Chen WJ, Zhu BL, Fei H, Cheng DD, Cui ZM, Jiang B. MiR-184-3p in the paraventricular nucleus participates in the neurobiology of depression via regulation of the hypothalamus-pituitary-adrenal axis. Neuropharmacology 2024; 260:110129. [PMID: 39179173 DOI: 10.1016/j.neuropharm.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for the pathogenesis of depression, and increased activity of cAMP response element binding protein (CREB)-regulated transcription co-activator 1 (CRTC1) in the paraventricular nucleus (PVN) plays a critical role. As a well-investigated microRNA (miRNA), miR-184 has two forms, miR-184-3p and miR-184-5p. Recently, miRNAs target genes predictive analysis and dual-luciferase reporter assays identified an inhibitory role of miR-184-3p on CRTC1 expression. Therefore, we speculated that miR-184-3p regulation was responsible for the effects of chronic stress on CRTC1 in the PVN. Various methods, including the chronic social defeat stress (CSDS) model of depression, behavioral tests, Western blotting, co-immunoprecipitation (Co-IP), quantitative real-time reverse transcription PCR (qRT-PCR), immunofluorescence, and adeno-associated virus (AAV)-mediated gene transfer, were used. CSDS evidently downregulated the level of miR-184-3p, but not miR-184-5p, in the PVN. Genetic knockdown and pharmacological inhibition of miR-184-3p in the PVN induced various depressive-like symptoms (e.g., abnormal behaviors, HPA hyperactivity, enhanced CRTC1 function in PVN neurons, downregulation of hippocampal neurogenesis, and decreased brain-derived neurotrophic factor (BDNF) signaling) in naïve male C57BL/6J mice. In contrast, genetic overexpression and pharmacological activation of miR-184-3p in the PVN produced significant beneficial effects against CSDS. MiR-184-3p in the PVN was necessary for the antidepressant actions of two well-known SSRIs, fluoxetine and paroxetine. Collectively. miR-184-3p was also implicated in the neurobiology of depression and may be a viable target for novel antidepressants.
Collapse
Affiliation(s)
- Da-Wei Xu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Si-Yi Zhou
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei Liu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Hao Fei
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Dong-Dong Cheng
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Zhi-Ming Cui
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China.
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
7
|
Auddino S, Aiello E, Grieco GE, Dotta F, Sebastiani G. A three-layer perspective on miRNA regulation in β cell inflammation. Trends Endocrinol Metab 2024:S1043-2760(24)00257-1. [PMID: 39532586 DOI: 10.1016/j.tem.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression post-transcriptionally and influence numerous biological processes. Aberrant miRNA expression is linked to diseases such as diabetes mellitus; indeed, miRNAs regulate pancreatic islet inflammation in both type 1 (T1D) and type 2 diabetes (T2D). Traditionally, miRNA research has focused on canonical sequences and offers a two-layer view - from expression to function. However, advances in RNA sequencing have revealed miRNA variants, called isomiRs, that arise from alternative processing or modifications of canonical sequences. This introduces a three-layer view - from expression, through sequence modifications, to function. We discuss the potential link between cellular stresses and isomiR biogenesis, and how this association could improve our knowledge of islet inflammation and dysfunction.
Collapse
Affiliation(s)
- Stefano Auddino
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy
| | - Elena Aiello
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy.
| | - Guido Sebastiani
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy.
| |
Collapse
|
8
|
Deng F, Zhou B, Zhang S, Cai L. Dexmedetomidine-mediated improvement of perioperative neurocognitive disorders by miR-184-3p-mediated NLRP3. Brain Res 2024; 1842:149051. [PMID: 38830564 DOI: 10.1016/j.brainres.2024.149051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) is a neurological complication in the perioperative period, which may lead to severe poor prognosis. Dexmedetomidine (Dex) is a commonly used sedative in the perioperative period. However, the effect of intraoperative anesthetic Dex on PND remains complicated and confusing. METHODS PND model was established using aged male mice, treated with Dex, and subjected to behavioral tests. The effect of Dex on pyroptosis was assessed by western blot, enzyme-linked immunosorbent assay and immunofluorescence. In addition, the miRNA expression profile of PND mice was identified by small RNA sequencing and performed PCR to detect miRNAs. Finally, the effect of miRNA on mice neuron pyroptosis was verified in vitro. RESULTS We found postoperative cognitive was declined in PND mice compared with control group, while preoperative injection of Dex improved short-term working memory and anxious exploration behavior, alleviated the cognitive impairment. Intriguingly, Dex ameliorated hippocampal inflammation and neuron pyroptosis in PND mice as evidenced by the reduced GSDMD, NLRP3, IL-1β and IL-18. The miRNA expression profile of PND mice hippocampus was disordered, including 5 miRNAs up-regulated and 17 miRNAs down-regulated, compared to the sham group. Dysregulated miRNAs were mainly enriched in biological functions related to neuronal development and signaling pathways related to pyroptosis. MiR-184-3p was the key miRNA, overexpression of miR-184-3p blocked the inhibitory effect of Dex on neuron pyroptosis, which was manifested as increased expression of GSDMD and NLRP3, increased inflammatory factors IL-1β and IL-18. CONCLUSIONS This study revealed that miR-184-3p may mediate NLRP3 to prevent the alleviating effect of Dex on PND, which provides a new potential way to improve the therapeutic intervention of PND.
Collapse
Affiliation(s)
- Fumou Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Shenglan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lily Cai
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China..
| |
Collapse
|
9
|
Wang H, Dong Y, Wang M, Li S, Zhou Y, Ji Y. The miR184-3p targets neuron-specific ecdysone inducible protein 78 to promote rice black streaked dwarf virus propagation in its planthopper vector. PEST MANAGEMENT SCIENCE 2024; 80:4417-4426. [PMID: 38676556 DOI: 10.1002/ps.8150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding RNAs that play a pivotal role in antiviral infection. The miR184-3p has been identified to promote rice black streaked dwarf virus (RBSDV) infection in vector Laodelphax striatellus, whether it targets other genes of L. striatellus to modulate RBSDV propagation remains unknown. RESULTS We first analyzed the expression profiles of miR184-3p and its role in regulating RBSDV infection in L. striatellus. Then the candidate genes expression of miR184-3p were systemically analyzed with gain and loss function of miR184-3p, and the interaction of candidate gene, ecdysone inducible protein 78 (Eip78) with miR184-3p was verified by dual luciferase reporter assay. We found Eip78 is evolutionary conserved among agricultural pests and predominantly expressed in the central nervous system (CNS) of L. striatellus. Knockdown of Eip78 effectively increased RBSDV propagation and transmission. Blockade with Eip78 antibody or injection with Eip78 protein could significantly regulate RBSDV infection. Further analysis revealed that knockdown of Eip78 specifically suppresses RBSDV infection in the head part but not in the body part of L. striatellus. Besides, knockdown of ecdysone receptor (EcR) notably restricted Eip78 expression and increased RBSDV accumulation in L. striatellus. CONCLUSIONS Taken together, we identified a novel target gene of miR184-3p, Eip78, a member of the ecdysone signaling pathway, and revealed the anti-RBSDV role of Eip78 in the CNS of L. striatellus. These results shed light on the interaction mechanisms of miRNAs, virus and ecdysone signaling pathway in insect vector. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haitao Wang
- Institute of Plant Protection, Key Laboratory of Food Quality and Safety of Jiangsu Province, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Dong
- Institute of Plant Protection, Key Laboratory of Food Quality and Safety of Jiangsu Province, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Man Wang
- Institute of Plant Protection, Key Laboratory of Food Quality and Safety of Jiangsu Province, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shuo Li
- Institute of Plant Protection, Key Laboratory of Food Quality and Safety of Jiangsu Province, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yijun Zhou
- Institute of Plant Protection, Key Laboratory of Food Quality and Safety of Jiangsu Province, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yinghua Ji
- Institute of Plant Protection, Key Laboratory of Food Quality and Safety of Jiangsu Province, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
10
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
11
|
Carr ER, Higgins PB, McClenaghan NH, Flatt PR, McCloskey AG. MicroRNA regulation of islet and enteroendocrine peptides: Physiology and therapeutic implications for type 2 diabetes. Peptides 2024; 176:171196. [PMID: 38492669 DOI: 10.1016/j.peptides.2024.171196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The pathogenesis of type 2 diabetes (T2D) is associated with dysregulation of glucoregulatory hormones, including both islet and enteroendocrine peptides. Microribonucleic acids (miRNAs) are short noncoding RNA sequences which post transcriptionally inhibit protein synthesis by binding to complementary messenger RNA (mRNA). Essential for normal cell activities, including proliferation and apoptosis, dysregulation of these noncoding RNA molecules have been linked to several diseases, including diabetes, where alterations in miRNA expression within pancreatic islets have been observed. This may occur as a compensatory mechanism to maintain beta-cell mass/function (e.g., downregulation of miR-7), or conversely, lead to further beta-cell demise and disease progression (e.g., upregulation of miR-187). Thus, targeting miRNAs has potential for novel diagnostic and therapeutic applications in T2D. This is reinforced by the success seen to date with miRNA-based therapeutics for other conditions currently in clinical trials. In this review, differential expression of miRNAs in human islets associated with T2D will be discussed along with further consideration of their effects on the production and secretion of islet and incretin hormones. This analysis further unravels the therapeutic potential of miRNAs and offers insights into novel strategies for T2D management.
Collapse
Affiliation(s)
- E R Carr
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland; Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P B Higgins
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland
| | - N H McClenaghan
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - A G McCloskey
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland.
| |
Collapse
|
12
|
Wu W, Wang M, Deng Z, Xi M, Dong Y, Wang H, Zhang J, Wang C, Zhou Y, Xu Q. The miR-184-3p promotes rice black-streaked dwarf virus infection by suppressing Ken in Laodelphax striatellus (Fallén). PEST MANAGEMENT SCIENCE 2024; 80:1849-1858. [PMID: 38050810 DOI: 10.1002/ps.7917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) play a key role in various biological processes by influencing the translation of target messenger RNAs (mRNAs) through post-transcriptional regulation. The miR-184-3p has been identified as an abundant conserved miRNA in insects. However, less is known about its functions in insect-plant virus interactions. RESULTS The function of miR-184-3p in regulation of plant viral infection in insects was investigated using a rice black-streaked dwarf virus (RBSDV) and Laodelphax striatellus (Fallén) interaction system. We found that the expression of miR-184-3p increased in L. striatellus after RBSDV infection. Injection of miR-184-3p mimics increased RBSDV accumulation, while treatment with miR-184-3p antagomirs inhibits the viral accumulation in L. striatellus. Ken, a zinc finger protein, was identified as a target of miR-184-3p. Knockdown of Ken increased the virus accumulation and promoted RBSDV transmission by L. striatellus. CONCLUSION This study demonstrates that RBSDV infection induces the expression of miR-184-3p in its insect vector L. striatellus. The miR-184-3p targets Ken to promote RBSDV accumulation and transmission. These findings provide a new insight into the function of the miRNAs in regulating plant viral infection in its insect vector. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Man Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiting Deng
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Minmin Xi
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yan Dong
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Haitao Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianhua Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Changchun Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yijun Zhou
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiufang Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
13
|
Fattahi M, Rezaee D, Fakhari F, Najafi S, Aghaei-Zarch SM, Beyranvand P, Rashidi MA, Bagheri-Mohammadi S, Zamani-Rarani F, Bakhtiari M, Bakhtiari A, Falahi S, Kenarkoohi A, Majidpoor J, Nguyen PU. microRNA-184 in the landscape of human malignancies: a review to roles and clinical significance. Cell Death Discov 2023; 9:423. [PMID: 38001121 PMCID: PMC10673883 DOI: 10.1038/s41420-023-01718-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs (ncRNAs) with a short length of 19-22 nucleotides. miRNAs are posttranscriptional regulators of gene expression involved in various biological processes like cell growth, apoptosis, and angiogenesis. miR-184 is a well-studied miRNA, for which most studies report its downregulation in cancer cells and tissues and experiments support its role as a tumor suppressor inhibiting malignant biological behaviors of cancer cells in vitro and in vivo. To exert its functions, miR-184 affects some signaling pathways involved in tumorigenesis like Wnt and β-catenin, and AKT/mTORC1 pathway, oncogenic factors (e.g., c-Myc) or apoptotic proteins, such as Bcl-2. Interestingly, clinical investigations have shown miR-184 with good performance as a prognostic/diagnostic biomarker for various cancers. Additionally, exogenous miR-184 in cell and xenograft animal studies suggest it as a therapeutic anticancer target. In this review, we outline the studies that evaluated the roles of miR-184 in tumorigenesis as well as its clinical significance.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Beyranvand
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Amin Rashidi
- Student Research Committee, Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Zamani-Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Abbas Bakhtiari
- Anatomical Sciences Department, Medical Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Azra Kenarkoohi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - P U Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|