1
|
An C, Jiang C, Pei W, Li A, Wang M, Wang Y, Wang H, Zuo L. Intestinal epithelial cells in health and disease. Tissue Barriers 2025:2504744. [PMID: 40401816 DOI: 10.1080/21688370.2025.2504744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025] Open
Abstract
This comprehensive review delves into the pivotal role of intestinal epithelial cells in the context of various diseases. It provides an in-depth analysis of the diverse types and functions of these cells, explores the influence of multiple signaling pathways on their differentiation, and elucidates their critical roles in a spectrum of diseases. The significance of the gastrointestinal tract in maintaining overall health is extremely important and cannot be exaggerated. This complex and elongated organ acts as a crucial link between the internal and external environments, making it vulnerable to various harmful influences. Preserving the normal structure and function of the gut is essential for well-being. Intestinal epithelial cells serve as the primary defense mechanism within the gastrointestinal tract and play a crucial role in preventing harmful substances from infiltrating the body. As the main components of the digestive system, they not only participate in the absorption and secretion of nutrients and the maintenance of barrier function but also play a pivotal role in immune defense. Therefore, the health of intestinal epithelial cells is of vital importance for overall health.
Collapse
Affiliation(s)
- Chenchen An
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| | - Chonggui Jiang
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| | - Wangxiang Pei
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| | - Ao Li
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
- The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
| | - Minghui Wang
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yufei Wang
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Hua Wang
- Inflammation and Immune- Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Zuo
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Liu Y, Wu L, Li X, Chen Y, Chen R, Lv C, Chen J, Fan X, Duan G, Zhong F, Sun Q, Shi Q, Ni H, Sun L, Xu J, Tang W, Li J. The protective role of PYY in intestinal mucosal defects induced by SATB2 deficiency in inflammatory bowel disease. Cell Death Discov 2025; 11:227. [PMID: 40340969 PMCID: PMC12062304 DOI: 10.1038/s41420-025-02511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
Impaired colonic mucosal repair is a critical issue in inflammatory bowel diseases (IBD). SATB2 is essential for maintaining colonic epithelial homeostasis, but its role in mucosal repair is unclear. In this study, flow cytometry was used to assess SATB2's role in colonic epithelial repair in a radiation injury model. SATB2 knockout mice exhibited defective epithelial repair, with a marked reduction in goblet and enteroendocrine cells. Mechanistically, SATB2 directly regulated PPAR-γ transcription, and PYY was observed to translocate into the nucleus and promote the transcription of PPAR-γ target genes. In organoids derived from patients with Crohn's disease, PYY supplementation significantly improved epithelial regeneration, outperforming the PPAR-γ agonist rosiglitazone. In conclusion, SATB2 deficiency impairs colonic epithelial repair, which can be rescued by PYY through activation of PPAR-γ-dependent transcription. These findings suggest that PYY may serve as a promising therapeutic molecule to promote epithelial repair in IBD.
Collapse
Affiliation(s)
- Yao Liu
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Lanqing Wu
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoli Li
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yongyu Chen
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Ruidong Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caiyun Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Juan Chen
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xinjuan Fan
- Department of Pathology, The Six Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Fan Zhong
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qianyun Shi
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hengli Ni
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Lina Sun
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Wen Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jianming Li
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Ye Q, Taleb SJ, Zhao J, Zhao Y. Emerging role of BMPs/BMPR2 signaling pathway in treatment for pulmonary fibrosis. Biomed Pharmacother 2024; 178:117178. [PMID: 39142248 PMCID: PMC11364484 DOI: 10.1016/j.biopha.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary fibrosis is a fatal and chronic lung disease that is characterized by accumulation of thickened scar in the lungs and impairment of gas exchange. The cases with unknown etiology are referred as idiopathic pulmonary fibrosis (IPF). There are currently no effective therapeutics to cure the disease; thus, the investigation of the pathogenesis of IPF is of great importance. Recent studies on bone morphogenic proteins (BMPs) and their receptors have indicated that reduction of BMP signaling in lungs may play a significant role in the development of lung fibrosis. BMPs are members of TGF-β superfamily, and they have been shown to play an anti-fibrotic role in combating TGF-β-mediated pathways. The impact of BMP receptors, in particular BMPR2, on pulmonary fibrosis is growing attraction to researchers. Previous studies on BMPR2 have often focused on pulmonary arterial hypertension (PAH). Given the strong clinical association between PAH and lung fibrosis, understanding BMPs/BMPR2-mediated signaling pathway is important for development of therapeutic strategies to treat IPF. In this review, we comprehensively review recent studies regarding the biological functions of BMPs and their receptors in lungs, especially focusing on their roles in the pathogenesis of pulmonary fibrosis and fibrosis resolution.
Collapse
Affiliation(s)
- Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States.
| |
Collapse
|
4
|
Cheng S, Zheng S, Zhong M, Gyawali KR, Pan W, Xu M, Huang H, Huang X. Current situation of sporotrichosis in China. Future Microbiol 2024; 19:1097-1106. [PMID: 39056139 PMCID: PMC11323943 DOI: 10.1080/17460913.2024.2352283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/03/2024] [Indexed: 07/28/2024] Open
Abstract
Sporotrichosis, a mycosis resulting from cutaneous or subcutaneous infection with the dimorphic fungus Sporothrix, has been reported in China, particularly in the northeast region. In this review, we conducted a thorough examination of the recent advancements in sporotrichosis in China, encompassing aspects such as etiology, epidemiology, pathogenesis, clinical manifestations, diagnosis and treatment strategies. Within the Chinese context, fixed cutaneous sporotrichosis represents the prevailing clinical manifestation. Fungal culture stands as the gold standard for diagnosing sporotrichosis, while polymerase chain reaction techniques can enhance both the specificity and sensitivity of diagnosis. Besides conventional systemic antifungal agents, alternative modalities such as Chinese herbal medicines, photodynamic therapy and laser therapy show potential efficacy against sporotrichosis.
Collapse
Affiliation(s)
- Shuqiong Cheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siqi Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Meizhen Zhong
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Keshav Raj Gyawali
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wen Pan
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Meinian Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huaiqiu Huang
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
5
|
Hao S, Yao C, Meng P, Jia Y, Li L, Zhang C, Guo X. HT-2 mycotoxin and selenium deficiency: Effects on Femur development and integrity in Young mice. Toxicon 2024; 245:107767. [PMID: 38768830 DOI: 10.1016/j.toxicon.2024.107767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Kashin-Beck Disease (KBD), an osteoarticular disorder, is potentially influenced by several factors, among which selenium deficiency and HT-2 mycotoxin exposure are considered significant. However, the combined effect of these factors on femoral development remains unclear, Conducted over eight weeks on forty-eight male mice categorized into control, selenium-deficient, and HT-2 toxin-exposed groups, including dual-exposure sets, this study comprehensively monitored body weight, bone metabolism markers, and cellular health. Employing biomechanical analysis, micro-computed tomography (micro-CT), and transmission electron microscopy (TEM), we unearthed a reduction in body weight due to HT-2 toxin alone, with selenium deficiency exacerbating these effects synergistically. Our results unveil that both factors independently affect bone metabolism, yet their confluence leads to a pronounced degradation of bone health parameters, including alterations in calcium, phosphorus, and vitamin D levels, alongside marked changes in osteoblast and osteoclast activity and bone cell structures. The notable damage to femoral cortical and trabecular architectures underscores the perilous interplay between dietary selenium absence and HT-2 toxin presence, necessitating a deeper understanding of their separate and joint effects on bone integrity. These discoveries underscore the imperative for a nuanced approach to toxicology research and public health policy, highlighting the pivotal influence of environmental and nutritional factors on skeletal well-being.
Collapse
Affiliation(s)
- Shuichu Hao
- Department of Orthopaedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Cong Yao
- Nursing Department, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Peilin Meng
- Department of Orthopaedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yumen Jia
- Department of Orthopaedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liu Li
- Department of Orthopaedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chun Zhang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
6
|
Sawata S, Shimizu S, Matsumi Y, Kono Y, Kihara K, Yamamoto M, Sakamoto T, Umekita Y, Fujiwara Y. BMP Signaling Is a Prognostic Marker in Patients With Colorectal Cancer and Associates With Frailty. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:416-423. [PMID: 38962548 PMCID: PMC11215445 DOI: 10.21873/cdp.10341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 07/05/2024]
Abstract
Background/Aim Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β superfamily of ligands and have been shown to promote or suppress colorectal cancer (CRC) growth. Developing treatments that target BMPs is challenging due to their multiple roles, including involvement in the inflammatory response and nutritional status. The present study evaluated the prognostic value of BMP-4, which is believed to be highly expressed in CRC, and its correlation with inflammatory and nutrition statuses in patients with CRC. Materials and Methods We analyzed BMP-4 expression in tumor tissues from 144 patients who underwent CRC surgery using immunohistochemistry and evaluated the relationship between BMP-4 levels and clinical outcomes. Results Kaplan-Meier analysis revealed that patients with high expression levels of BMP-4 exhibited a shorter overall survival rate than those with low levels of expression. Multivariate analysis revealed that BMP-4 expression was an independent prognostic factor for overall survival and death from other diseases in CRC patients. Furthermore, high BMP-4 expression was significantly correlated with high C-reactive protein/Albumin ratio, sarcopenia, and osteopenia. Conclusion BMP-4 is a significant prognostic factor in CRC, particularly in predicting death from other diseases, while also showing associations with inflammatory and nutritional statuses.
Collapse
Affiliation(s)
- Shohei Sawata
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Shota Shimizu
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yoshiaki Matsumi
- Division of Chemical Biology, Technical Department, Tottori University, Yonago, Japan
| | - Yusuke Kono
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kyoichi Kihara
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Manabu Yamamoto
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Teruhisa Sakamoto
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yoshihisa Umekita
- Division of Organ Pathology, Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshiyuki Fujiwara
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
7
|
Fuad MMH, Tichopád T, Ondračková M, Civáňová Křížová K, Seifertová M, Voříšková K, Demko M, Vetešník L, Šimková A. Trematode Diplostomum pseudospathaceum inducing differential immune gene expression in sexual and gynogenetic gibel carp ( Carassius gibelio): parasites facilitating the coexistence of two reproductive forms of the invasive species. Front Immunol 2024; 15:1392569. [PMID: 38983863 PMCID: PMC11231671 DOI: 10.3389/fimmu.2024.1392569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/06/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Parasite-mediated selection is considered one of the potential mechanisms contributing to the coexistence of asexual-sexual complexes. Gibel carp (Carassius gibelio), an invasive fish species in Europe, often forms populations composed of gynogenetic and sexual specimens. Methods The experimental infection was induced in gynogenetic and sexual gibel carp using eye-fluke Diplostomum pseudospathaceum (Trematoda), and the transcriptome profile of the spleen as a major immune organ in fish was analyzed to reveal the differentially expressed immunity-associated genes related to D. pseudospathaceum infection differing between gynogenetic and sexual gibel carp. Results High parasite infection was found in gynogenetic fish when compared to genetically diverse sexuals. Although metacercariae of D. pseudospathaceum are situated in an immune-privileged organ, our results show that eye trematodes may induce a host immune response. We found differential gene expression induced by eye-fluke infection, with various impacts on gynogenetic and sexual hosts, documenting for the majority of DEGs upregulation in sexuals, and downregulation in asexuals. Differences in gene regulation between gynogenetic and sexual gibel carp were evidenced in many immunity-associated genes. GO analyses revealed the importance of genes assigned to the GO terms: immune function, the Notch signaling pathway, MAP kinase tyrosine/threonine/phosphatase activity, and chemokine receptor activity. KEGG analyses revealed the importance of the genes involved in 12 immunity-associated pathways - specifically, FoxO signaling, adipocytokine signaling, TGF-beta signaling, apoptosis, Notch signaling, C-type lectin receptor signaling, efferocytosis, intestinal immune network for IgA production, insulin signaling, virion - human immunodeficiency virus, Toll-like receptor signaling, and phosphatidylinositol signaling system. Discussion Our study indicates the limited potential of asexual fish to cope with higher parasite infection (likely a loss of capacity to induce an effective immune response) and highlights the important role of molecular mechanisms associated with immunity for the coexistence of gynogenetic and sexual gibel carp, potentially contributing to its invasiveness.
Collapse
Affiliation(s)
- Md Mehedi Hasan Fuad
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomáš Tichopád
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the Czech Academy of Science, Liběchov, Czechia
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czechia
| | - Markéta Ondračková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czechia
| | | | - Mária Seifertová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Kristýna Voříšková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin Demko
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Lukáš Vetešník
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czechia
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
8
|
He JY, Kim YJ, Mennillo E, Rusu I, Bain J, Rao AA, Andersen C, Law K, Yang H, Tsui J, Shen A, Davidson B, Kushnoor D, Shi Y, Fan F, Cheung A, Zhang L, Fong L, Combes AJ, Pisco AO, Kattah MG, Oh DY. Dysregulation of CD4 + and CD8 + resident memory T, myeloid, and stromal cells in steroid-experienced, checkpoint inhibitor colitis. J Immunother Cancer 2024; 12:e008628. [PMID: 38642938 PMCID: PMC11033653 DOI: 10.1136/jitc-2023-008628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Colitis caused by checkpoint inhibitors (CPI) is frequent and is treated with empiric steroids, but CPI colitis mechanisms in steroid-experienced or refractory disease are unclear. METHODS Using colon biopsies and blood from predominantly steroid-experienced CPI colitis patients, we performed multiplexed single-cell transcriptomics and proteomics to nominate contributing populations. RESULTS CPI colitis biopsies showed enrichment of CD4+resident memory (RM) T cells in addition to CD8+ RM and cytotoxic CD8+ T cells. Matching T cell receptor (TCR) clonotypes suggested that both RMs are progenitors that yield cytotoxic effectors. Activated, CD38+ HLA-DR+ CD4+ RM and cytotoxic CD8+ T cells were enriched in steroid-experienced and a validation data set of steroid-naïve CPI colitis, underscoring their pathogenic potential across steroid exposure. Distinct from ulcerative colitis, CPI colitis exhibited perturbed stromal metabolism (NAD+, tryptophan) impacting epithelial survival and inflammation. Endothelial cells in CPI colitis after anti-TNF and anti-cytotoxic T-lymphocyte-associated antigen 4 (anti-CTLA-4) upregulated the integrin α4β7 ligand molecular vascular addressin cell adhesion molecule 1 (MAdCAM-1), which may preferentially respond to vedolizumab (anti-α4β7). CONCLUSIONS These findings nominate CD4+ RM and MAdCAM-1+ endothelial cells for targeting in specific subsets of CPI colitis patients.
Collapse
Affiliation(s)
- Jun Yan He
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yang-Joon Kim
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Elvira Mennillo
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Iulia Rusu
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jared Bain
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Arjun A Rao
- CoLabs, University of California, San Francisco, San Francisco, California, USA
| | | | - Karen Law
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Hai Yang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jessica Tsui
- CoLabs, University of California, San Francisco, San Francisco, California, USA
| | - Alan Shen
- CoLabs, University of California, San Francisco, San Francisco, California, USA
| | - Brittany Davidson
- CoLabs, University of California, San Francisco, San Francisco, California, USA
| | - Divyashree Kushnoor
- CoLabs, University of California, San Francisco, San Francisco, California, USA
| | - Yimin Shi
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Frances Fan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Alexander Cheung
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Li Zhang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Alexis J Combes
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- CoLabs, University of California, San Francisco, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
- ImmunoX Initiative, University of California, San Francisco, San Francisco, California, USA
| | | | - Michael G Kattah
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Jevšinek Skok D, Hauptman N. In Silico Gene Prioritization Highlights the Significance of Bone Morphogenetic Protein 4 ( BMP4) Promoter Methylation across All Methylation Clusters in Colorectal Cancer. Int J Mol Sci 2023; 24:12692. [PMID: 37628872 PMCID: PMC10454928 DOI: 10.3390/ijms241612692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The cytosine-phosphate-guanine (CpG) island methylator phenotype (CIMP) represents one of the pathways involved in the development of colorectal cancer, characterized by genome-wide hypermethylation. To identify samples exhibiting hypermethylation, we used unsupervised hierarchical clustering on genome-wide methylation data. This clustering analysis revealed the presence of four distinct subtypes within the tumor samples, namely, CIMP-H, CIMP-L, cluster 3, and cluster 4. These subtypes demonstrated varying levels of methylation, categorized as high, intermediate, and very low. To gain further insights, we mapped significant probes from all clusters to Ensembl Regulatory build 89, with a specific focus on those located within promoter regions or bound regions. By intersecting the methylated promoter and bound regions across all methylation subtypes, we identified a total of 253 genes exhibiting aberrant methylation patterns in the promoter regions across all four subtypes of colorectal cancer. Among these genes, our comprehensive genome-wide analysis highlights bone morphogenic protein 4 (BMP4) as the most prominent candidate. This significant finding was derived through the utilization of various bioinformatics tools, emphasizing the potential role of BMP4 in colorectal cancer development and progression.
Collapse
Affiliation(s)
- Daša Jevšinek Skok
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia;
| | - Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|