1
|
Wu H, Liu Z, Li Y. Intestinal microbiota and respiratory system diseases: Relationships with three common respiratory virus infections. Microb Pathog 2025; 203:107500. [PMID: 40139334 DOI: 10.1016/j.micpath.2025.107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
In recent years, the role of the intestinal microbiota in regulating host health and immune balance has attracted widespread attention. This study provides an in-depth analysis of the close relationship between the intestinal microbiota and respiratory system diseases, with a focus on three common respiratory virus infections, including respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and influenza virus. The research indicates that during RSV infection, there is a significant decrease in intestinal microbial diversity, suggesting the impact of the virus on the intestinal ecosystem. In SARS-CoV-2 infection, there are evident alterations in the intestinal microbiota, which are positively correlated with the severity of the disease. Similarly, influenza virus infection is associated with dysbiosis of the intestinal microbiota, and studies have shown that the application of specific probiotics exhibits beneficial effects against influenza virus infection. Further research indicates that the intestinal microbiota exerts a wide and profound impact on the occurrence and development of respiratory system diseases through various mechanisms, including modulation of the immune system and production of short-chain fatty acids (SCFAs). This article comprehensively analyzes these research advances, providing new perspectives and potential strategies for the prevention and treatment of future respiratory system diseases. This study not only deepens our understanding of the relationship between the intestinal microbiota and respiratory system diseases but also offers valuable insights for further exploring the role of host-microbiota interactions in the development of diseases.
Collapse
Affiliation(s)
- Haonan Wu
- Department of Respiratory, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- The First Hospital of Jilin University, Changchun, China.
| | - Yanan Li
- Department of Respiratory, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Wen TZ, Li TR, Chen XY, Chen HY, Wang S, Fu WJ, Xiao SQ, Luo J, Tang R, Ji JL, Huang JF, He ZC, Luo T, Zhao HL, Chen C, Miao JY, Niu Q, Wang Y, Bian XW, Yao XH. Increased adrenal steroidogenesis and suppressed corticosteroid responsiveness in critical COVID-19. Metabolism 2024; 160:155980. [PMID: 39053691 DOI: 10.1016/j.metabol.2024.155980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The effect of coronavirus disease 2019 (COVID-19) on adrenal endocrine metabolism in critically ill patients remains unclear. This study aimed to investigate the alterations in adrenal steroidogenic activity, elucidate underlying mechanisms, provide in situ histopathological evidence, and examine the clinical implications. METHODS The comparative analyses of the adrenal cortices from 24 patients with fatal COVID-19 and 20 matched controls were performed, excluding patients previously treated with glucocorticoids. SARS-CoV-2 and its receptors were identified and pathological alterations were examined. Furthermore, histological examinations, immunohistochemical staining and ultrastructural analyses were performed to assess corticosteroid biosynthesis. The zona glomerulosa (ZG) and zona fasciculata (ZF) were then dissected for proteomic analyses. The biological processes that affected steroidogenesis were analyzed by integrating histological, proteomic, and clinical data. Finally, the immunoreactivity and responsive genes of mineralocorticoid and glucocorticoid receptors in essential tissues were quantitatively measured to evaluate corticosteroid responsiveness. FINDINGS The demographic characteristics of COVID-19 patients were comparable with those of controls. SARS-CoV-2-like particles were identified in the adrenocortical cells of three patients; however, these particles did not affect cellular morphology or steroid synthesis compared with SARS-CoV-2-negative specimens. Although the adrenals exhibited focal necrosis, vacuolization, microthrombi, and inflammation, widespread degeneration was not evident. Notably, corticosteroid biosynthesis was significantly enhanced in both the ZG and ZF of COVID-19 patients. The increase in the inflammatory response and cellular differentiation in the adrenal cortices of patients with critical COVID-19 was positively correlated with heightened steroidogenic activity. Additionally, the appearance of more dual-ZG/ZF identity cells in COVID-19 adrenals was in accordance with the increased steroidogenic function. However, activated mineralocorticoid and glucocorticoid receptors and their responsive genes in vital tissues were markedly reduced in patients with critical COVID-19. INTERPRETATION Critical COVID-19 was characterized by potentiated adrenal steroidogenesis, associated with increased inflammation, enhanced differentiation and elevated dual-ZG/ZF identity cells, alongside suppressed corticosteroid responsiveness. These alterations implied the reduced effectiveness of conventional corticosteroid therapy and underscored the need for evaluation of the adrenal axis and corticosteroid sensitivity.
Collapse
Affiliation(s)
- Tian-Zi Wen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tian-Ran Li
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xin-Yu Chen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - He-Yuan Chen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shuai Wang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wen-Juan Fu
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shi-Qi Xiao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jie Luo
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Rui Tang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jia-Le Ji
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jia-Feng Huang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Zhi-Cheng He
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tao Luo
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Hong-Liang Zhao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Cong Chen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jing-Ya Miao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qin Niu
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yan Wang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China; Jinfeng Laboratory, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China; YuYue Laboratory, Chongqing, China.
| | - Xiao-Hong Yao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| |
Collapse
|
3
|
Anandakrishnan N, Yi Z, Sun Z, Liu T, Haydak J, Eddy S, Jayaraman P, DeFronzo S, Saha A, Sun Q, Yang D, Mendoza A, Mosoyan G, Wen HH, Schaub JA, Fu J, Kehrer T, Menon R, Otto EA, Godfrey B, Suarez-Farinas M, Leffters S, Twumasi A, Meliambro K, Charney AW, García-Sastre A, Campbell KN, Gusella GL, He JC, Miorin L, Nadkarni GN, Wisnivesky J, Li H, Kretzler M, Coca SG, Chan L, Zhang W, Azeloglu EU. Integrated multiomics implicates dysregulation of ECM and cell adhesion pathways as drivers of severe COVID-associated kidney injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304401. [PMID: 38562892 PMCID: PMC10984064 DOI: 10.1101/2024.03.18.24304401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
COVID-19 has been a significant public health concern for the last four years; however, little is known about the mechanisms that lead to severe COVID-associated kidney injury. In this multicenter study, we combined quantitative deep urinary proteomics and machine learning to predict severe acute outcomes in hospitalized COVID-19 patients. Using a 10-fold cross-validated random forest algorithm, we identified a set of urinary proteins that demonstrated predictive power for both discovery and validation set with 87% and 79% accuracy, respectively. These predictive urinary biomarkers were recapitulated in non-COVID acute kidney injury revealing overlapping injury mechanisms. We further combined orthogonal multiomics datasets to understand the mechanisms that drive severe COVID-associated kidney injury. Functional overlap and network analysis of urinary proteomics, plasma proteomics and urine sediment single-cell RNA sequencing showed that extracellular matrix and autophagy-associated pathways were uniquely impacted in severe COVID-19. Differentially abundant proteins associated with these pathways exhibited high expression in cells in the juxtamedullary nephron, endothelial cells, and podocytes, indicating that these kidney cell types could be potential targets. Further, single-cell transcriptomic analysis of kidney organoids infected with SARS-CoV-2 revealed dysregulation of extracellular matrix organization in multiple nephron segments, recapitulating the clinically observed fibrotic response across multiomics datasets. Ligand-receptor interaction analysis of the podocyte and tubule organoid clusters showed significant reduction and loss of interaction between integrins and basement membrane receptors in the infected kidney organoids. Collectively, these data suggest that extracellular matrix degradation and adhesion-associated mechanisms could be a main driver of COVID-associated kidney injury and severe outcomes.
Collapse
|
4
|
Nguyen TTT, Kim YT, Jeong G, Jin M. Immunopathology of and potential therapeutics for secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome: a translational perspective. Exp Mol Med 2024; 56:559-569. [PMID: 38448692 PMCID: PMC10984945 DOI: 10.1038/s12276-024-01182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 03/08/2024] Open
Abstract
Secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome (sHLH/MAS) is a life-threatening immune disorder triggered by rheumatic disease, infections, malignancies, or medications. Characterized by the presence of hemophagocytic macrophages and a fulminant cytokine storm, sHLH/MAS leads to hyperferritinemia and multiorgan failure and rapidly progresses to death. The high mortality rate and the lack of specific treatments necessitate the development of a new drug. However, the complex and largely unknown immunopathologic mechanisms of sHLH/MAS, which involve dysfunction of various immune cells, diverse etiologies, and different clinical contexts make this effort challenging. This review introduces the terminology, diagnosis, and clinical features of sHLH/MAS. From a translational perspective, this review focuses on the immunopathological mechanisms linked to various etiologies, emphasizing potential drug targets, including key molecules and signaling pathways. We also discuss immunomodulatory biologics, existing drugs under clinical evaluation, and novel therapies in clinical trials. This systematic review aims to provide insights and highlight opportunities for the development of novel sHLH/MAS therapeutics.
Collapse
Affiliation(s)
- Tram T T Nguyen
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Yoon Tae Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Geunyeol Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mirim Jin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
5
|
Mahmoodi M, Mohammadi Henjeroei F, Hassanshahi G, Nosratabadi R. Do chemokine/chemokine receptor axes play paramount parts in trafficking and oriented locomotion of monocytes/macrophages toward the lungs of COVID-19 infected patients? A systematic review. Cytokine 2024; 175:156497. [PMID: 38190792 DOI: 10.1016/j.cyto.2023.156497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
The COVID-19 (coronavirus disease 2019) is a well-defined viral infection, resulting from SARS-CoV-2 (severe acute respiratory syndrome- coronavirus-2). The innate immune system serves as the first line of defense to limit viral spreading and subsequently stimulate adaptive immune responses by the prominent aids of its cellular and molecular arms. Monocytes are defined as the most prominent innate immune cells (IICs) that are reactive against invading pathogens. These cells support host protection against the virus that is mediated by several non-specific mechanisms such as phagocytosis, producing antiviral enzymes, and recruitment of immune cells toward and into the infected tissues. They have the ability to egress from blood and migrate to the SARS-CoV-2 infected regions by the aid of some defense-related functions like chemotaxis, which is mediated by chemical compounds, e.g., chemokines. Chemokines, in addition to their related ligands are categorized within the most important and deserved agents involved in oriented trafficking of monocytes/macrophages towards and within the lung parenchyma in both steady state and pathological circumstances, including COVID-19-raised infection. However, the overexpression of chemokines could have deleterious effects on various organs through the induction of cytokine storm and may be the most important leading mechanisms in the pathogenesis of COVID-19. Authors have aimed the current review article to describe present knowledge about the interplay between monocytes/macrophages and SARS-CoV-2 with a focus on the ability of IICs to migrate and home into the lung of COVID-19 patients through various chemokine-chemokine receptor axes to promote our understanding regarding this disease.
Collapse
Affiliation(s)
- Merat Mahmoodi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Mohammadi Henjeroei
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, RafsanjanUniversity of Medical Sciences, Rafsanjan, Iran
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
6
|
Montenegro YHA, Bobermin LD, Sesterheim P, Salvato RS, Anschau F, de Oliveira MJS, Wyse ATS, Netto CA, Gonçalves CAS, Quincozes-Santos A, Leipnitz G. Serum of COVID-19 patients changes neuroinflammation and mitochondrial homeostasis markers in hippocampus of aged rats. J Neurovirol 2023; 29:577-587. [PMID: 37501054 DOI: 10.1007/s13365-023-01156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Patients affected by COVID-19 present mostly with respiratory symptoms but acute neurological symptoms are also commonly observed. Furthermore, a considerable number of individuals develop persistent and often remitting symptoms months after infection, characterizing the condition called long-COVID. Since the pathophysiology of acute and persistent neurological manifestations is not fully established, we evaluated the expression of different genes in hippocampal slices of aged rats exposed to the serum of a post-COVID (sPC) individual and to the serum of patients infected by SARS-CoV-2 [Zeta (sZeta) and Gamma (sGamma) variants]. The expression of proteins related to inflammatory process, redox homeostasis, mitochondrial quality control and glial reactivity was determined. Our data show that the exposure to sPC, sZeta and sGamma differentially altered the mRNA levels of most inflammatory proteins and reduced those of antioxidant response markers in rat hippocampus. Furthermore, a decrease in the expression of mitochondrial biogenesis genes was induced by all serum samples, whereas a reduction in mitochondrial dynamics was only caused by sPC. Regarding the glial reactivity, S100B expression was modified by sPC and sZeta. These findings demonstrate that changes in the inflammatory response and a reduction of mitochondrial biogenesis and dynamics may contribute to the neurological damage observed in COVID-19 patients.
Collapse
Affiliation(s)
- Yorran Hardman A Montenegro
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil.
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências da Saúde: Cardiologia, Instituto de Cardiologia/ Fundação Universitária de Cardiologia, RS, Porto Alegre, Brazil
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Richard Steiner Salvato
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Fernando Anschau
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Setor de Pesquisa da Gerência de Ensino, Pesquisa e Inovação do Grupo Hospitalar Conceição (GHC), RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Avaliação de Tecnologias para o SUS do GHC, Porto Alegre, RS, Brazil
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria José Santos de Oliveira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Carlos-Alberto Saraiva Gonçalves
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil.
| |
Collapse
|
7
|
Wang Q, Zhang N, Liu L, Ma L, Tan Y, Liu X, Wu J, Chen G, Li X, Liang Y, Zhou F. Comprehensive analysis of clinical prognostic features and tumor microenvironment landscape of CD11b +CD64 + patients with acute myeloid leukemia. Cell Oncol (Dordr) 2023; 46:1253-1268. [PMID: 37071330 DOI: 10.1007/s13402-023-00808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Immunophenotyping surface molecules detected in the clinic are mainly applied in diagnostic confirmation and subtyping. However, the immunomodulatory molecules CD11b and CD64, are highly associated with leukemogenesis. Hence, the prognostic value of them and their potential biological functions merit further investigation. METHODS Flow cytometry was operated to detect immunophenotypic molecules from AML bone marrow samples. Multivariate cox regression, Kaplan-Meier analyses, and nomogram were conducted to predict survival. Transcriptomic data, lymphocyte subsets, and immunohistochemical staining were incorporated to identify potential biological functions of prognostic immunophenotype in acute myeloid leukemia (AML). RESULTS We classified 315 newly diagnosed AML patients of our center based on the expression of CD11b and CD64. The CD11b+CD64+ populations were identified as independent risk factors for overall survival and event-free survival of AML, exhibiting specific clinicopathological features. The predictive models based on CD11b+CD64+ showed high classification performance. In addition, the CD11b+CD64+ subset, characterized by high inhibitory immune checkpoints, M2-macrophage infiltration, low anti-tumor effector cells infiltration, as well as abnormal somatic mutation landscape, presented a distinctive tumor microenvironmental landscape. The CD11b+CD64+ population showd a higher expression of BCL2, and the drug sensitivity indicated that they presented a lower half-maximal inhibitory concentration value for BCL2 inhibitor, and could benefit more from the above medicine. CONCLUSIONS This work might be of benefit to enhanced understanding of CD11b+CD64+ in the prognosis and leukemogenesis, and yielded novel biomarkers to guide immunotherapy and targeted therapy for AML.
Collapse
Affiliation(s)
- Qian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Nan Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Li Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Yuxin Tan
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Jinxian Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Xinqi Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Yuxing Liang
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China.
| |
Collapse
|
8
|
Wang Q, Zhang N, Liu L, Ma L, Tan Y, Liu X, Wu J, Chen G, Li X, Liang Y, Zhou F. Comprehensive analysis of clinical prognostic features and tumor microenvironment landscape of CD11b+CD64+ patients with acute myeloid leukemia. Cell Oncol (Dordr) 2023; 46:1253-1268. [DOI: 10.doi: 10.1007/s13402-023-00808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/14/2025] Open
|
9
|
Fu Z, Liang D, Zhang W, Shi D, Ma Y, Wei D, Xi J, Yang S, Xu X, Tian D, Zhu Z, Guo M, Jiang L, Yu S, Wang S, Jiang F, Ling Y, Wang S, Chen S, Liu F, Tan Y, Fan X. Host protection against Omicron BA.2.2 sublineages by prior vaccination in spring 2022 COVID-19 outbreak in Shanghai. Front Med 2023; 17:562-575. [PMID: 36949347 PMCID: PMC10033297 DOI: 10.1007/s11684-022-0977-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 03/24/2023]
Abstract
The Omicron family of SARS-CoV-2 variants are currently driving the COVID-19 pandemic. Here we analyzed the clinical laboratory test results of 9911 Omicron BA.2.2 sublineages-infected symptomatic patients without earlier infection histories during a SARS-CoV-2 outbreak in Shanghai in spring 2022. Compared to an earlier patient cohort infected by SARS-CoV-2 prototype strains in 2020, BA.2.2 infection led to distinct fluctuations of pathophysiological markers in the peripheral blood. In particular, severe/critical cases of COVID-19 post BA.2.2 infection were associated with less pro-inflammatory macrophage activation and stronger interferon alpha response in the bronchoalveolar microenvironment. Importantly, the abnormal biomarkers were significantly subdued in individuals who had been immunized by 2 or 3 doses of SARS-CoV-2 prototype-inactivated vaccines, supporting the estimation of an overall 96.02% of protection rate against severe/critical disease in the 4854 cases in our BA.2.2 patient cohort with traceable vaccination records. Furthermore, even though age was a critical risk factor of the severity of COVID-19 post BA.2.2 infection, vaccination-elicited protection against severe/critical COVID-19 reached 90.15% in patients aged ≽ 60 years old. Together, our study delineates the pathophysiological features of Omicron BA.2.2 sublineages and demonstrates significant protection conferred by prior prototype-based inactivated vaccines.
Collapse
Affiliation(s)
- Ziyu Fu
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Dongguo Liang
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Wei Zhang
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Dongling Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yuhua Ma
- Department of Nephrology, Traditional Chinese Medicine Hospital of KunShan, Suzhou, 215300, China
| | - Dong Wei
- Department of Infectious Diseases, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Junxiang Xi
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Sizhe Yang
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Xiaoguang Xu
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Di Tian
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zhaoqing Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Mingquan Guo
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lu Jiang
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Shuting Yu
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Shuai Wang
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Fangyin Jiang
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Yun Ling
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Shengyue Wang
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China.
| | - Feng Liu
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China.
| | - Yun Tan
- Shanghai Institute of Hematology, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China.
| | - Xiaohong Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
10
|
Adnan Mezher M, Bahjat Alrifai S, Mahmood Raoof W. Analysis of Proinflammatory Cytokines in COVID-19 Patients in Baghdad, Iraq. ARCHIVES OF RAZI INSTITUTE 2023; 78:305-313. [PMID: 37312714 PMCID: PMC10258264 DOI: 10.22092/ari.2022.359356.2411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Due to the pandemic of COVID -19 disease and the fact that the effective variables in the severity and control of the disease have not been established, numerous factors have been investigated, including the study of inflammatory factors. A cross-sectional study was carried out to investigate the proinflammatory cytokines in patients with COVID -19, conducted in Baghdad, Iraq. The age of the patients was above > (15) years old, with confirmed infection documented by polymerase chain reaction (PCR). The subjects were 132 patients, 69 (52.3%) males, and 63 (47.7%) females. Patients were divided into three pathological groups: mild patients (45), moderate patients (34), and severe patients (53), each group was divided into four weeks according to symptoms onset date. The most common clinical symptoms were cough, fever, and headache, while sore throat, gastrointestinal symptoms, chest pain, and loss of taste and smell were less common in COVID -19 patients. Sandwich-Enzyme-Linked Immunosorbent Assay kits were used to evaluate levels of proinflammatory cytokines, including IL-1β, IL-6, IL-8, and TNF-α. The results IL-6 and TNF-α were significantly elevated in mild during the four weeks with (P=0.0071) and (0.0266) respectively, levels of IL-1β were increased with highly significant differences (P=0.0001) while levels of IL-8 were decreased with highly significant differences (P=0.0001) during the four weeks. In moderate patients, levels of (IL-1β, IL-6, and IL-8) increased without significance (P=0.661, 0.074, 0.0651), respectively; in contrast, the levels of TNF-α increased with significant (P=0.0452) across four weeks. Severe COVID-19 patients showed significantly increased differences in levels of (IL-6, IL-8, and TNFα) (P=0.0438, 0.0348, 0.0447), respectively, while no significant differences in the level of IL-1β (P=0.0774). This study showed that investigating inflammatory factors in the COVID-19 pandemic is crucial in controlling and treating.
Collapse
Affiliation(s)
| | - S Bahjat Alrifai
- Collage of Medicine, Ibn Sina University of Medical and Pharmaceutical Science, Baghdad, Iraq
| | | |
Collapse
|
11
|
Sukocheva OA, Maksoud R, Beeraka NM, Madhunapantula SV, Sinelnikov M, Nikolenko VN, Neganova ME, Klochkov SG, Amjad Kamal M, Staines DR, Marshall-Gradisnik S. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J Adv Res 2022; 40:179-196. [PMID: 36100326 PMCID: PMC8619886 DOI: 10.1016/j.jare.2021.11.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease (COVID-19) triggers the development of numerous pathologies and infection-linked complications and exacerbates existing pathologies in nearly all body systems. Aside from the primarily targeted respiratory organs, adverse SARS-CoV-2 effects were observed in nervous, cardiovascular, gastrointestinal/metabolic, immune, and other systems in COVID-19 survivors. Long-term effects of this viral infection have been recently observed and represent distressing sequelae recognised by the World Health Organisation (WHO) as a distinct clinical entity defined as post-COVID-19 condition. Considering the pandemic is still ongoing, more time is required to confirm post COVID-19 condition diagnosis in the COVID-19 infected cohorts, although many reported post COVID-19 symptoms overlap with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). AIMS OF REVIEW In this study, COVID-19 clinical presentation and associated post-infection sequelae (post-COVID-19 condition) were reviewed and compared with ME/CFS symptomatology. KEY SCIENTIFIC CONCEPTS OF REVIEW The onset, progression, and symptom profile of post COVID-19 condition patients have considerable overlap with ME/CFS. Considering the large scope and range of pro-inflammatory effects of this virus, it is reasonable to expect development of post COVID-19 clinical complications in a proportion of the affected population. There are reports of a later debilitating syndrome onset three months post COVID-19 infection (often described as long-COVID-19), marked by the presence of fatigue, headache, cognitive dysfunction, post-exertional malaise, orthostatic intolerance, and dyspnoea. Acute inflammation, oxidative stress, and increased levels of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα), have been reported in SARS-CoV-2 infected patients. Longitudinal monitoring of post COVID-19 patients is warranted to understand the long-term effects of SARS-CoV-2 infection and the pathomechanism of post COVID-19 condition.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park 5042, SA, Australia; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| | - Rebekah Maksoud
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Narasimha M Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - SabbaRao V Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India; Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Mikhail Sinelnikov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Donald R Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
12
|
Ware CF, Croft M, Neil GA. Realigning the LIGHT signaling network to control dysregulated inflammation. J Exp Med 2022; 219:213236. [PMID: 35604387 PMCID: PMC9130030 DOI: 10.1084/jem.20220236] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Advances in understanding the physiologic functions of the tumor necrosis factor superfamily (TNFSF) of ligands, receptors, and signaling networks are providing deeper insight into pathogenesis of infectious and autoimmune diseases and cancer. LIGHT (TNFSF14) has emerged as an important modulator of critical innate and adaptive immune responses. LIGHT and its signaling receptors, herpesvirus entry mediator (TNFRSF14), and lymphotoxin β receptor, form an immune regulatory network with two co-receptors of herpesvirus entry mediator, checkpoint inhibitor B and T lymphocyte attenuator, and CD160. Deciphering the fundamental features of this network reveals new understanding to guide therapeutic development. Accumulating evidence from infectious diseases points to the dysregulation of the LIGHT network as a disease-driving mechanism in autoimmune and inflammatory reactions in barrier organs, including coronavirus disease 2019 pneumonia and inflammatory bowel diseases. Recent clinical results warrant further investigation of the LIGHT regulatory network and application of target-modifying therapeutics for disease intervention.
Collapse
Affiliation(s)
- Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA
| | | |
Collapse
|
13
|
Duan C, Ma R, Zeng X, Chen B, Hou D, Liu R, Li X, Liu L, Li T, Huang H. SARS-CoV-2 Achieves Immune Escape by Destroying Mitochondrial Quality: Comprehensive Analysis of the Cellular Landscapes of Lung and Blood Specimens From Patients With COVID-19. Front Immunol 2022; 13:946731. [PMID: 35844544 PMCID: PMC9283956 DOI: 10.3389/fimmu.2022.946731] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondria get caught in the crossfire of coronavirus disease 2019 (COVID-19) and antiviral immunity. The mitochondria-mediated antiviral immunity represents the host’s first line of defense against viral infection, and the mitochondria are important targets of COVID-19. However, the specific manifestations of mitochondrial damage in patients with COVID-19 have not been systematically clarified. This study comprehensively analyzed one single-cell RNA-sequencing dataset of lung tissue and two bulk RNA-sequencing datasets of blood from COVID-19 patients. We found significant changes in mitochondrion-related gene expression, mitochondrial functions, and related metabolic pathways in patients with COVID-19. SARS-CoV-2 first infected the host alveolar epithelial cells, which may have induced excessive mitochondrial fission, inhibited mitochondrial degradation, and destroyed the mitochondrial calcium uniporter (MCU). The type II alveolar epithelial cell count decreased and the transformation from type II to type I alveolar epithelial cells was blocked, which exacerbated viral immune escape and replication in COVID-19 patients. Subsequently, alveolar macrophages phagocytized the infected alveolar epithelial cells, which decreased mitochondrial respiratory capacity and activated the ROS–HIF1A pathway in macrophages, thereby aggravating the pro-inflammatory reaction in the lungs. Infected macrophages released large amounts of interferon into the blood, activating mitochondrial IFI27 expression and destroying energy metabolism in immune cells. The plasma differentiation of B cells and lung-blood interaction of regulatory T cells (Tregs) was exacerbated, resulting in a cytokine storm and excessive inflammation. Thus, our findings systematically explain immune escape and excessive inflammation seen during COVID-19 from the perspective of mitochondrial quality imbalance.
Collapse
Affiliation(s)
- Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Chenyang Duan, ; He Huang,
| | - Ruiyan Ma
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xue Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongyao Hou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuehan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangming Liu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Chenyang Duan, ; He Huang,
| |
Collapse
|
14
|
Integrated analysis of gut microbiome and host immune responses in COVID-19. Front Med 2022; 16:263-275. [PMID: 35258762 PMCID: PMC8902486 DOI: 10.1007/s11684-022-0921-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates that the gut microbiome contributes to the host immune response to infectious diseases. Here, to explore the role of the gut microbiome in the host immune responses in COVID-19, we conducted shotgun metagenomic sequencing and immune profiling of 14 severe/critical and 24 mild/moderate COVID-19 cases as well as 31 healthy control samples. We found that the diversity of the gut microbiome was reduced in severe/critical COVID-19 cases compared to mild/moderate ones. We identified the abundance of some gut microbes altered post-SARS-CoV-2 infection and related to disease severity, such as Enterococcus faecium, Coprococcus comes, Roseburia intestinalis, Akkermansia muciniphila, Bacteroides cellulosilyticus and Blautia obeum. We further analyzed the correlation between the abundance of gut microbes and host responses, and obtained a correlation map between clinical features of COVID-19 and 16 severity-related gut microbe, including Coprococcus comes that was positively correlated with CD3+/CD4+/CD8+ lymphocyte counts. In addition, an integrative analysis of gut microbiome and the transcriptome of peripheral blood mononuclear cells (PBMCs) showed that genes related to viral transcription and apoptosis were up-regulated in Coprococcus comes low samples. Moreover, a number of metabolic pathways in gut microbes were also found to be differentially enriched in severe/critical or mild/moderate COVID-19 cases, including the superpathways of polyamine biosynthesis II and sulfur oxidation that were suppressed in severe/critical COVID-19. Together, our study highlighted a potential regulatory role of severity related gut microbes in the immune response of host.
Collapse
|
15
|
PathogenTrack and Yeskit: tools for identifying intracellular pathogens from single-cell RNA-sequencing datasets as illustrated by application to COVID-19. Front Med 2022; 16:251-262. [PMID: 35192147 PMCID: PMC8861993 DOI: 10.1007/s11684-021-0915-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Pathogenic microbes can induce cellular dysfunction, immune response, and cause infectious disease and other diseases including cancers. However, the cellular distributions of pathogens and their impact on host cells remain rarely explored due to the limited methods. Taking advantage of single-cell RNA-sequencing (scRNA-seq) analysis, we can assess the transcriptomic features at the single-cell level. Still, the tools used to interpret pathogens (such as viruses, bacteria, and fungi) at the single-cell level remain to be explored. Here, we introduced PathogenTrack, a python-based computational pipeline that uses unmapped scRNA-seq data to identify intracellular pathogens at the single-cell level. In addition, we established an R package named Yeskit to import, integrate, analyze, and interpret pathogen abundance and transcriptomic features in host cells. Robustness of these tools has been tested on various real and simulated scRNA-seq datasets. PathogenTrack is competitive to the state-of-the-art tools such as Viral-Track, and the first tools for identifying bacteria at the single-cell level. Using the raw data of bronchoalveolar lavage fluid samples (BALF) from COVID-19 patients in the SRA database, we found the SARS-CoV-2 virus exists in multiple cell types including epithelial cells and macrophages. SARS-CoV-2-positive neutrophils showed increased expression of genes related to type I interferon pathway and antigen presenting module. Additionally, we observed the Haemophilus parahaemolyticus in some macrophage and epithelial cells, indicating a co-infection of the bacterium in some severe cases of COVID-19. The PathogenTrack pipeline and the Yeskit package are publicly available at GitHub.
Collapse
|
16
|
Zhang Y, Yang Y, Qiao N, Wang X, Ding L, Zhu X, Liang Y, Han Z, Liu F, Zhang X, Yang X. Early assessment of the safety and immunogenicity of a third dose (booster) of COVID-19 immunization in Chinese adults. Front Med 2022; 16:93-101. [PMID: 35122211 PMCID: PMC8815383 DOI: 10.1007/s11684-021-0914-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Inducing durable and effective immunity against severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) via vaccination is essential to combat the current pandemic of coronavirus disease 2019 (COVID-19). It has been noticed that the strength of anti-COVID-19 vaccination-induced immunity fades over time, which calls for an additional vaccination regime, as known as booster immunization, to restore immunity among previously vaccinated populations. Here we report a pilot open-label trial of a third dose of BBIBP-CorV, an inactivated SARS-CoV-2 vaccine (Vero cell), on 136 participants aged between 18 to 63 years. Safety and immunogenicity in terms of neutralizing antibody titers and cytokine/chemokine responses were analyzed as the main endpoint until day 28. While systemic reactogenicity was either absent or mild, SARS-CoV-2-specific neutralizing antibody titers rapidly arose in all participants within 4 weeks, surpassing the peak antibody titers elicited by the initial two-dose immunization regime. Broad increases of cellular immunity-associated cytokines and chemokines were also detected in the majority of participants after the third vaccination. Furthermore, in an exploratory study, a newly developed recombinant protein vaccine, NVSI-06-08 (CHO Cells), was found to be safe and even more effective than BBIBP-CorV in eliciting humoral immune responses in BBIBP-CorV-primed individuals. Together, these results indicate that a third immunization schedule with either homologous or heterologous vaccine showed favorable safety profiles and restored potent SARS-CoV-2-specific immunity, providing support for further trials of booster vaccination in larger populations.
Collapse
Affiliation(s)
- Yuntao Zhang
- China National Biotec Group Company Limited, Beijing, 100024, China
| | - Yunkai Yang
- China National Biotec Group Company Limited, Beijing, 100024, China
| | - Niu Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xuewei Wang
- China National Biotec Group Company Limited, Beijing, 100024, China
| | - Ling Ding
- Beijing Institute of Biological Products, China National Biotec Group Company Limited, Beijing, 100176, China
| | - Xiujuan Zhu
- Beijing Institute of Biological Products, China National Biotec Group Company Limited, Beijing, 100176, China
| | - Yu Liang
- National Vaccine and Serum Institute, China National Biotec Group Company Limited, Beijing, 101111, China
| | - Zibo Han
- National Vaccine and Serum Institute, China National Biotec Group Company Limited, Beijing, 101111, China
| | - Feng Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiaoming Yang
- China National Biotec Group Company Limited, Beijing, 100024, China.
| |
Collapse
|
17
|
Yavropoulou MP, Filippa MG, Mantzou A, Ntziora F, Mylona M, Tektonidou MG, Vlachogiannis NI, Paraskevis D, Kaltsas GA, Chrousos GP, Sfikakis PP. Alterations in cortisol and interleukin-6 secretion in patients with COVID-19 suggestive of neuroendocrine-immune adaptations. Endocrine 2022; 75:317-327. [PMID: 35043384 PMCID: PMC8765492 DOI: 10.1007/s12020-021-02968-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE The beneficial effect of glucocorticoids in coronavirus disease (COVID-19) is established, but whether adrenal cortisol secretion is impaired in COVID-19 is not fully elucidated. In this case-control study, we investigated the diurnal free bioavailable salivary cortisol secretion in COVID-19 patients. METHODS Fifty-two consecutive COVID-19 patients-before dexamethasone treatment in cases required-recruited between April 15 to June 15, 2021, (NCT04988269) at Laikon Athens University-Hospital, and 33 healthy age- and sex-matched controls were included. Diurnal salivary cortisol (8 a.m., 12, 6, and 10 p.m.), plasma adrenocorticotropin (ACTH) and aldosterone, and serum interleukin-6 (IL-6) and C-reactive protein (CRP) levels were assessed. Diurnal salivary dehydroepiandrosterone (DHEA) and IL-6 were also assessed in subgroups of patients. RESULTS Median CRP and IL-6 measurements were about sixfold higher in patients than controls (both p < 0.001) Morning salivary cortisol levels did not differ between the two groups, but patients exhibited higher median levels of evening and nocturnal salivary cortisol compared to controls [0.391 (0.054, 0663) vs. 0.081 (0.054, 0.243) μg/dl, p < 0.001 and 0.183 (0.090, 0.834) vs. 0.054 (0.054, 0.332) μg/dl, p < 0.001, respectively], resulting in higher time-integrated area under the curve (AUC) (4.81 ± 2.46 vs. 2.75 ± 0.810, respectively, p < 0.001). Circulating ACTH, DHEA, and aldosterone levels were similar in patients and controls. Serum IL-6, but not ACTH levels, was strongly correlated with nocturnal cortisol salivary levels (ρ = 0.555, p < 0.001) in patients. CONCLUSIONS Increased evening and nocturnal but not morning cortisol secretion may occur in even clinically mild COVID-19. In the context of acute viral infection (COVID-19), IL-6 may partially replace ACTH as a stimulus of the glucocorticoid-secreting adrenal zona-fasciculata without influencing the secretion of DHEA and aldosterone. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04988269?term=yavropoulou&draw=2&rank=3 (NCT04988269).
Collapse
Affiliation(s)
- Maria P Yavropoulou
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Maria G Filippa
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Aimilia Mantzou
- University Research Institute of Maternal and Child Health and Precision Medicine Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Fotinie Ntziora
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria Mylona
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria G Tektonidou
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Nikolaos I Vlachogiannis
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Gregory A Kaltsas
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Petros P Sfikakis
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
18
|
Hasankhani A, Bahrami A, Sheybani N, Aria B, Hemati B, Fatehi F, Ghaem Maghami Farahani H, Javanmard G, Rezaee M, Kastelic JP, Barkema HW. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic. Front Immunol 2021; 12:789317. [PMID: 34975885 PMCID: PMC8714803 DOI: 10.3389/fimmu.2021.789317] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background The recent emergence of COVID-19, rapid worldwide spread, and incomplete knowledge of molecular mechanisms underlying SARS-CoV-2 infection have limited development of therapeutic strategies. Our objective was to systematically investigate molecular regulatory mechanisms of COVID-19, using a combination of high throughput RNA-sequencing-based transcriptomics and systems biology approaches. Methods RNA-Seq data from peripheral blood mononuclear cells (PBMCs) of healthy persons, mild and severe 17 COVID-19 patients were analyzed to generate a gene expression matrix. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules in healthy samples as a reference set. For differential co-expression network analysis, module preservation and module-trait relationships approaches were used to identify key modules. Then, protein-protein interaction (PPI) networks, based on co-expressed hub genes, were constructed to identify hub genes/TFs with the highest information transfer (hub-high traffic genes) within candidate modules. Results Based on differential co-expression network analysis, connectivity patterns and network density, 72% (15 of 21) of modules identified in healthy samples were altered by SARS-CoV-2 infection. Therefore, SARS-CoV-2 caused systemic perturbations in host biological gene networks. In functional enrichment analysis, among 15 non-preserved modules and two significant highly-correlated modules (identified by MTRs), 9 modules were directly related to the host immune response and COVID-19 immunopathogenesis. Intriguingly, systemic investigation of SARS-CoV-2 infection identified signaling pathways and key genes/proteins associated with COVID-19's main hallmarks, e.g., cytokine storm, respiratory distress syndrome (ARDS), acute lung injury (ALI), lymphopenia, coagulation disorders, thrombosis, and pregnancy complications, as well as comorbidities associated with COVID-19, e.g., asthma, diabetic complications, cardiovascular diseases (CVDs), liver disorders and acute kidney injury (AKI). Topological analysis with betweenness centrality (BC) identified 290 hub-high traffic genes, central in both co-expression and PPI networks. We also identified several transcriptional regulatory factors, including NFKB1, HIF1A, AHR, and TP53, with important immunoregulatory roles in SARS-CoV-2 infection. Moreover, several hub-high traffic genes, including IL6, IL1B, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2, SUMO1, CASP1, IRAK3, HSPA5, ADRB2, PRF1, GZMB, OASL, CCL5, HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A had the highest rates of information transfer in 9 candidate modules and central roles in COVID-19 immunopathogenesis. Conclusion This study provides comprehensive information on molecular mechanisms of SARS-CoV-2-host interactions and identifies several hub-high traffic genes as promising therapeutic targets for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Behzad Aria
- Department of Physical Education and Sports Science, School of Psychology and Educational Sciences, Yazd University, Yazd, Iran
| | - Behzad Hemati
- Biotechnology Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahsa Rezaee
- Department of Medical Mycology, School of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Tan HW, Xu YM, Lau ATY. Human bronchial-pulmonary proteomics in coronavirus disease 2019 (COVID-19) pandemic: applications and implications. Expert Rev Proteomics 2021; 18:925-938. [PMID: 34812694 DOI: 10.1080/14789450.2021.2010549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The outbreak of the newly discovered human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has disrupted the normal life of almost every civilization worldwide. Studies have shown that the coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 can affect multiple human organs and physiological systems, but the respiratory system remains the primary location for viral infection. AREAS COVERED We summarize how omics technologies are used in SARS-CoV-2 research and specifically review the current knowledge of COVID-19 from the aspect of human bronchial-pulmonary proteomics. Also, knowledge gaps in COVID-19 that can be fulfilled by proteomics are discussed. EXPERT OPINION Overall, human bronchial-pulmonary proteomics plays an important role in revealing the dynamics, functions, tropism, and pathogenicity of SARS-CoV-2, which is crucial for COVID-19 biomarker and therapeutic target discoveries. To more fully understand the impact of COVID-19, research from various angles using multi-omics approaches should also be conducted on the lungs as well as other organs.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
20
|
Yao S, Luo N, Liu J, Zha H, Ai Y, Luo J, Shi S, Wu K. Elevated Serum Levels of Progranulin and Soluble Vascular Cell Adhesion Molecule-1 in Patients with COVID-19. J Inflamm Res 2021; 14:4785-4794. [PMID: 34584437 PMCID: PMC8464378 DOI: 10.2147/jir.s330356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with the angiocentric inflammation and angiogenesis, yet the molecules involved in this process remain to be determined. Methods We did a cross-sectional study of a cohort of patients with COVID-19 in Zunyi, China between February 1 and March 30, 2020. Serum concentrations of PGRN were determined by enzyme-linked immunosorbent assay in patients with COVID-19 at hospital admission and at discharge. In parallel, the serum levels of soluble adhesion molecules, vascular cell adhesion molecule-1 (sVCAM-1), intercellular adhesion molecule-1 (sICAM-1), P-selectin (sP-selectin), and E-selectin (sE-selectin) were assayed by a human adhesion molecule multiplex kit. The association between serum PGRN levels and other laboratory test results was analyzed by Spearman correlation analysis. Results At baseline, the median serum PGRN levels in patients with COVID-19 were 94.8 ng/mL [interquartile range (IQR): 66.6–119.6 ng/mL], which was significantly elevated compared with those in healthy controls (46.3 ng/mL, IQR: 41.8–55.6 ng/mL). Moreover, the median serum sVCAM-1 levels were significantly higher in COVID-19 patients (1396.0 ng/mL, IQR: 1019.1–1774.8 ng/mL) than those in healthy controls (612.4 ng/mL, IQR: 466.4–689.3 ng/mL). However, the levels of sICAM-1, sP-selectin, and sE-selectin were not significantly elevated in patients with COVID-19 when compared to healthy controls. Further analysis showed that serum PGRN levels were significantly positively associated with sVCAM-1 (r= 0.675, P= 0.008) and inversely with sICAM-1 (r= −0.609, P= 0.021) and aspartate aminotransferase levels (r= −0.560, P= 0.037) in patients with COVID-19 at hospital admission. In COVID-19 patients, serum PGRN and sVCAM-1 levels fell significantly after successful treatment. Conclusion The present study demonstrates elevated serum PGRN and sVCAM-1 levels in patients with COVID-19, which may provide clues as to the mechanisms underlying the pathogenesis of COVID-19. Further studies are warranted to evaluate the potential of PGRN and sVCAM-1 as biomarkers and investigate their role in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Shifei Yao
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China.,Scientific Research Center, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - Nanning Luo
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China.,Scientific Research Center, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - Jiaoyang Liu
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China.,Scientific Research Center, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - He Zha
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - Yuanhang Ai
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China.,Scientific Research Center, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - Juan Luo
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China.,Scientific Research Center, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - Shi Shi
- Department of Laboratory Medicine, The Fourth People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| | - Kaifeng Wu
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China.,Scientific Research Center, Zunyi Medical University Third Affiliated Hospital/The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, People's Republic of China
| |
Collapse
|
21
|
Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, Muciño-Olmos EA, Martínez-López YE, Escobedo-Tapia T, Resendis-Antonio O. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol 2021; 12:705646. [PMID: 34603282 PMCID: PMC8481922 DOI: 10.3389/fimmu.2021.705646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.
Collapse
Affiliation(s)
- Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ugo Enrique Avila-Ponce De León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Erick Andrés Muciño-Olmos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Yoscelina E. Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas y de la Salud, UNAM, Mexico City, Mexico
| | - Thelma Escobedo-Tapia
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| |
Collapse
|