1
|
Viot J, Loyon R, Adib N, Laurent-Puig P, de Reyniès A, André F, Monnien F, André T, Svrcek M, Turpin A, Selmani Z, Arnould L, Guyard L, Gilbert N, Boureux A, Adotevi O, Vienot A, Abdeljaoued S, Vernerey D, Borg C, Gautheret D. Deciphering human endogenous retrovirus expression in colorectal cancers: exploratory analysis regarding prognostic value in liver metastases. EBioMedicine 2025; 116:105727. [PMID: 40381378 DOI: 10.1016/j.ebiom.2025.105727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Human Endogenous RetroVirus (HERV) expression in tumours reflects epigenetic dysregulation of cancer and an oncogenic factor through promoter/enhancer action on genes. While more than 50% of colorectal cancers develop liver metastases, HERV has not been studied in this context. METHODS We collected 400 RNA-seq samples from over 200 patients with primary and liver metastases, including public data and a novel set of 200 samples. FINDINGS We observed global stability of HERV expression between liver metastases and primary colorectal cancers, suggesting an early oncogenic footprint. We identified a list of 17 HERV loci for liver metastatic colorectal cancer (lmCRC) characterization; with tumour-specificity validated in single-cell metastatic colorectal cancer data and normal tissue bulk RNA-seq. Eleven loci produced HERV-derived peptides as per tandem mass spectrometry from primary colorectal cancer. Six loci were associated with the risk of relapse after lmCRC surgery. Four, HERVH_Xp22.32a, HERVH_20p11.23b, HERVH_13q33.3, HERVH_13q31.3, had adverse prognostic value (log-rank p-value 0.028, 0.0083, 9e-4, 0.05, respectively) while two, HERVH_Xp22.2c (log-rank p-value 0.032) and HERVH_8q21.3b (in multivariable models) were associated with better prognosis. Moreover, the markers showed a cumulative effect on survival when expressed. Some were associated with decreased cytotoxic immune cells and most of them correlated with cell cycle pathways. INTERPRETATION These findings provide insights into the lmCRC transcriptome landscape by suggesting prognostic markers and potential therapeutic targets. FUNDING This work was supported by funding from institutional grants from Inserm, EFS, University of Bourgogne Franche-Comté, national found "Agence Nationale de la Recherche - ANR-JCJC: Projet HERIC and ANR-22-CE45-0007", and "La ligue contre le cancer".
Collapse
Affiliation(s)
- Julien Viot
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France; Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.
| | - Romain Loyon
- Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Nawfel Adib
- Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Pierre Laurent-Puig
- Department of Biology, Institut du Cancer Paris CARPEM, APHP, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, EPIGENETEC, Paris 75006, France
| | - Aurélien de Reyniès
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, EPIGENETEC, Paris 75006, France
| | - Fabrice André
- Paris-Saclay University, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Franck Monnien
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France; Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Thierry André
- Department of Medical Oncology, Sorbonne University, Saint-Antoine Hospital, AP-HP, Paris, France
| | - Magali Svrcek
- Department of Pathology, Saint-Antoine Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Anthony Turpin
- Department of Oncology, Lille University Hospital, France; CNRS UMR9020, INSERM UMR1277, University of Lille, Institut Pasteur, Lille, France
| | - Zohair Selmani
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France; Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Laurent Arnould
- Department of Tumour Biology and Pathology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France; CCRB Ferdinand Cabanne de Dijon, France
| | - Laura Guyard
- Department of Tumour Biology and Pathology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, France; CCRB Ferdinand Cabanne de Dijon, France
| | - Nicolas Gilbert
- IRMB, INSERM U1183, Hopital Saint-Eloi, Universite de Montpellier, Montpellier, France
| | - Anthony Boureux
- IRMB, INSERM U1183, Hopital Saint-Eloi, Universite de Montpellier, Montpellier, France
| | - Olivier Adotevi
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France; Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Angélique Vienot
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France; Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Syrine Abdeljaoued
- Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Dewi Vernerey
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France
| | - Christophe Borg
- Département d'Oncologie Médicale, CHU Besançon, Besançon 25000, France; Université Marie et Louis Pasteur, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, Gif-sur-Yvette 91190, France
| |
Collapse
|
2
|
He J, Luo (罗海涛) H, Wang (王伟) W, Bu (卜德超) D, Zou (邹正楷) Z, Wang (王浩霖) H, Tang H, Han Z, Luo W, Shen J, Xie F, Zhao (赵屹) Y, Xiang Z. CIEC: Cross-tissue Immune Cell Type Enrichment and Expression Map Visualization for Cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 23:qzae067. [PMID: 39363510 PMCID: PMC12065431 DOI: 10.1093/gpbjnl/qzae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Single-cell transcriptome sequencing technology has been applied to decode the cell types and functional states of immune cells, revealing their tissue-specific gene expression patterns and functions in cancer immunity. Comprehensive assessments of immune cells within and across tissues will provide us with a deeper understanding of the tumor immune system in general. Here, we present Cross-tissue Immune cell type or state Enrichment analysis of gene lists for Cancer (CIEC), the first web-based application that integrates database and enrichment analysis to estimate the cross-tissue immune cell types or states. CIEC version 1.0 consists of 480 samples covering primary tumor, adjacent normal tissue, lymph node, metastasis tissue, and peripheral blood from 323 cancer patients. By applying integrative analysis, we constructed an immune cell type/state map for each context, and adopted our previously developed Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology Based Annotation System (KOBAS) algorithm to estimate the enrichment for context-specific immune cell types/states. In addition, CIEC also provides an easy-to-use online interface for users to comprehensively analyze the immune cell characteristics mapped across multiple tissues, including expression map, correlation, similar gene detection, signature score, and expression comparison. We believe that CIEC will be a valuable resource for exploring the intrinsic characteristics of immune cells in cancer patients and for potentially guiding novel cancer-immune biomarker development and immunotherapy strategies. CIEC is freely accessible at http://ciec.gene.ac/.
Collapse
Affiliation(s)
- Jinhua He
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Haitao Luo (罗海涛)
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen 518081, China
| | - Wei Wang (王伟)
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen 518081, China
| | - Dechao Bu (卜德超)
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhengkai Zou (邹正楷)
- School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haolin Wang (王浩霖)
- School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongzhen Tang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen 518081, China
| | - Zeping Han
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Wenfeng Luo
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Jian Shen
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Fangmei Xie
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Yi Zhao (赵屹)
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiming Xiang
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| |
Collapse
|
3
|
Summer M, Riaz S, Ali S, Noor Q, Ashraf R, Khan RRM. Understanding the Dual Role of Macrophages in Tumor Growth and Therapy: A Mechanistic Review. Chem Biodivers 2025; 22:e202402976. [PMID: 39869825 DOI: 10.1002/cbdv.202402976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Macrophages are heterogeneous cells that are the mediators of tissue homeostasis. These immune cells originated from monocytes and are classified into two basic categories, M1 and M2 macrophages. M1 macrophages exhibit anti-tumorous inflammatory reactions due to the behavior of phagocytosis. M2 macrophages or tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and have a basic role in tumor progression by interacting with other immune cells in TME. By the expression of various cytokines, chemokines, and growth factors, TAMs lead to strengthening tumor cell proliferation, angiogenesis, and suppression of the immune system which further support invasion and metastasis. This review discusses recent and updated mechanisms regarding tumor progression by M2 macrophages. Moreover, the current therapeutic approaches targeting TAMs, their advantages, and limitations are also summarized, and further treatment approaches are outlined along with an elaboration of the tumor regression role of macrophages. This comprehensive review article possibly helps to understand the mechanisms underlying the tumor progression and regression role of macrophages in a comparative way from a basic level to the advanced one.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Saima Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Qudsia Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Ashraf
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rana Rashad Mahmood Khan
- Faculty of Chemistry and Life Sciences, Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
4
|
Xie Z, Zheng G, Niu L, Du K, Li R, Dan H, Duan L, Wu H, Ren G, Dou X, Dai S, Feng F, Zhang J, Zheng J. SPP1 + macrophages in colorectal cancer: Markers of malignancy and promising therapeutic targets. Genes Dis 2025; 12:101340. [PMID: 40092488 PMCID: PMC11907465 DOI: 10.1016/j.gendis.2024.101340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 03/19/2025] Open
Abstract
SPP1+ macrophages have been identified as key players in the colorectal cancer (CRC) tumor microenvironment, but their function remains unclear. This study integrated single-cell and spatial transcriptomics with bulk sequencing to investigate the roles and mechanisms of SPP1 + macrophages in CRC. Our findings revealed a pronounced elevation of SPP1 + macrophages in CRC, especially within tumor territories. These macrophages served as markers for CRC initiation, progression, metastasis, and potential prognosis. Furthermore, they showed heightened transcriptional activity in genes linked to angiogenesis, epithelial-mesenchymal transition, glycolysis, hypoxia, and immunosuppression. SPP1 protein amplified CRC cell migration and invasion, potentially mediating cellular crosstalk via the SPP1-CD44, SPP1-PTGER4, and SPP1-a4b1 complex axes. Patients with a high proportion of SPP1 + macrophages could benefit more from immune checkpoint blockade therapy. Interestingly, CSF1R expression was significantly enriched in C1QC + macrophages versus SPP1 + macrophages, possibly explaining limited anti-CSF1R monotherapy effects. In conclusion, we propose an SPP1 + macrophage model in CRC, highlighting such macrophages as a promising therapeutic target due to their malignancy markers.
Collapse
Affiliation(s)
- Zhenyu Xie
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Gaozan Zheng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Liaoran Niu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Kunli Du
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Ruikai Li
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Hanjun Dan
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Lili Duan
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Hongze Wu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Guangming Ren
- Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Xinyu Dou
- Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Songchen Dai
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110016, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning 110016, China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Jianyong Zheng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
5
|
Wang H, Qiu B, Li X, Ying Y, Wang Y, Chen H, Zeng F, Shi J, Huang J, Wu Z, Chen Z, Che X, Li Q, Fan Y, Li B, Wang Q, Huang C, Chen Y, Li T, Mo K, Wang Q, Cui C. Single cell analysis reveals that SPP1 + macrophages enhance tumor progression by triggering fibroblast extracellular vesicles. Transl Oncol 2025; 55:102347. [PMID: 40086324 PMCID: PMC11954126 DOI: 10.1016/j.tranon.2025.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Patients with liver metastatic colorectal cancer (mCRC) have a poor prognosis and are the leading cause of death in colorectal cancer (CRC) patients, but the mechanisms associated with CRC metastasis have not been fully elucidated. In this study, we obtained data from the Gene Expression Omnibus database and characterized the single-cell profiles of CRC, mCRC and healthy samples at single-cell resolution, and explored the cells that influence CRC metastasis. We find that AQP1+ CRC identified as highly malignant tumor cells exhibited proliferative and metastatic characteristics. Immunosuppressive properties are present in the tumor microenvironment (TME), while NOTCH3+ Fib is identified to play a facilitating role in the metastatic colonization of CRC. Importantly, we reveal that tumor-associated macrophages (TAM) characterized by SPP1-specific high expression may be involved in TME remodeling through intercellular communication. Specifically, SPP1+ TAM mediates the generation of Fib-derived extracellular vesicle through the APOE-LRP1 axis, which in turn delivers tumor growth-promoting factors in the TME. This study deepens the understanding of the mechanism of TME in mCRC and lays the scientific foundation for the development of therapeutic regimens for mCRC patients.
Collapse
Affiliation(s)
- Haocheng Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bowen Qiu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xinyu Li
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Yao Ying
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yue Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hungchen Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fanan Zeng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junyao Shi
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junpeng Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ziying Wu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zequn Chen
- Department of Gastrointestinal Surgery, First Ward of Maoming People's Hospital, Maoming 525000, China
| | - Xiao Che
- Department of Abdominal Hernia Surgery, Maoming People's Hospital, Southern Medical University, Maoming 525000, China
| | - Qingzhong Li
- Guangzhou University of Traditional Chinese Medicine, Maoming 525000, China
| | - Yingming Fan
- Department of General Surgery, Guangning County People's Hospital, Guangdong Medical University, Zhaoqing 526300, China
| | - Bingyao Li
- Department of General Surgery, Guangning People's Hospital, Zhaoqing 526300, China
| | - Qun Wang
- Department of Emergency, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, China
| | - Chengyu Huang
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Yixuan Chen
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Ting Li
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Ke Mo
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| | - Qian Wang
- Department of Gastrointestinal surgery, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528000, China.
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
6
|
Xuan Z, Wu Z, Cheng L, Jiang J, Zhang Y, Xia Y. SCGB3A1-Epi and KLK10-Epi Crosstalk With Fibroblasts Promotes Liver Metastasis of Breast Cancer and Pancreatic Ductal Adenocarcinoma. Cancer Med 2025; 14:e70904. [PMID: 40357856 PMCID: PMC12070254 DOI: 10.1002/cam4.70904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The liver often serves as the principal site for metastatic spread from a variety of solid tumors, and metastasis to the liver markedly diminishes patient survival. Single-cell RNA sequencing (scRNA-seq) has helped uncover the complexity of liver tumor metastasis. However, the key cellular subtypes of breast cancer and pancreatic ductal adenocarcinoma (PDAC) with liver metastasis and their mechanisms of action are unclear, making treatment difficult. METHODS We used integrated scRNA-seq data to dissect liver metastasis-specific epithelial cell subtypes in breast cancer and PDAC, and elucidated their mechanisms through functional analyses and intercellular interactions with fibroblasts. RESULTS Interestingly, our results show that SCGB3A1-Epi and KLK10-Epi are key drivers of liver metastasis in breast cancer and PDAC, respectively. These subtypes are associated with high malignancy rates and involved in oxidative phosphorylation and other critical pathways. Specific ligand-receptor interactions were observed between these epithelial subtypes and fibroblasts, with significant interactions between CD74-APP receptors in SCGB3A1-Epi and Fib-11 in breast cancer and between SPP1-CD44 receptors in KLK10-Epi and Fib-11 in PDAC. High expression levels of Fib-11 and CD74 were correlated with improved survival in breast cancer, whereas high SPP1 and CD44 expression predicted worse PDAC outcomes. Fib-11 is implicated in signaling pathways associated with tumor metastasis, particularly those involving cell adhesion molecules. CONCLUSIONS We revealed the cellular heterogeneity of liver metastasis and provided a crucial research foundation for developing novel therapeutic strategies to specifically target metastatic cell subtypes, thereby enhancing patient prognosis.
Collapse
Affiliation(s)
- Zixue Xuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Department of PharmacyZhejiang Provincial People's Hospital Bijie HospitalBijieGuizhouChina
| | - Zhongxiu Wu
- Department of PharmacyZhejiang Provincial People's Hospital Bijie HospitalBijieGuizhouChina
| | - Lei Cheng
- Department of PharmacyZhejiang Provincial People's Hospital Bijie HospitalBijieGuizhouChina
| | - Jinying Jiang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Department of PharmacyZhejiang Provincial People's Hospital Bijie HospitalBijieGuizhouChina
| | - Yuan Zhang
- Department of PharmacyZhejiang Provincial People's Hospital Bijie HospitalBijieGuizhouChina
| | - Yuxuan Xia
- Outpatient Department, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
7
|
Sun J, Zhou S, Sun Y, Zeng Y. The clinical significance and potential therapeutic target of tumor-associated macrophage in non-small cell lung cancer. Front Med (Lausanne) 2025; 12:1541104. [PMID: 40370720 PMCID: PMC12076932 DOI: 10.3389/fmed.2025.1541104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/27/2025] [Indexed: 05/16/2025] Open
Abstract
One of the leading causes of cancer-related mortality globally is non-small cell lung cancer (NSCLC). It has become a significant public health concern due to its rising incidence rate and fatality. Tumor-associated macrophage (TAM) is important in the tumor microenvironment (TME) of NSCLC because they have an impact on the development, metastasis, and incidence of tumors. As a crucial element of the TME, TAM contributes to tumor immune evasion, facilitates tumor proliferation and metastasis, and modulates tumor angiogenesis, immunosuppression, and treatment resistance through the secretion of diverse cytokines, chemokines, and growth factors. Consequently, TAM assumes a multifaceted and intricate function in the onset, progression, and therapeutic response of NSCLC, serving as a crucial focal point for comprehending the tumor microenvironment and formulating novel therapeutic methods. The study aims to review the biological properties and potential processes of TAM in NSCLC, investigate its involvement in the clinical of NSCLC patients, and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiazheng Sun
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sirui Zhou
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalu Sun
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Yulan Zeng
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Zhang J, Li Z, Zhang Q, Ma W, Fan W, Dong J, Tian J, Liao H, Guo J, Cao Y, Yin J, Zheng G, Li N. LAMA4 + CD90 + eCAFs provide immunosuppressive microenvironment for liver cancer through induction of CD8 + T cell senescence. Cell Commun Signal 2025; 23:203. [PMID: 40289085 PMCID: PMC12036274 DOI: 10.1186/s12964-025-02162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Despite significant advances in cancer biology research and treatment, clinical outcomes for patients with liver cancer remain unsatisfactory. The biological and molecular mechanisms underlying the bidirectional signaling between tumor cells and the tumor microenvironment (TME), which promotes tumor progression in the liver, remain to be elucidated. Fibroblasts are crucial regulators of tumor progression and response to therapy; however, our understanding of their roles remains limited. Here, we integrated single-cell RNA sequencing and spatial transcriptomic data of pan-liver cancers to characterize the different subtypes of cancer-associated fibroblasts (CAFs). siRNA transfection was used for knockdown the expression of LAMA4. Western blot assay was used for gene expression analysis. Flow cytometry was used to detect proliferation, toxicity and cytolytic capacity of CD8+ T cells. To establish a spontaneous murine hepatocellular carcinoma (HCC) model, a combined DEN and CCL4 approach was performed. Notably, we identified CD90+ extracellular matrix CAFs (eCAFs) associated with poor prognosis. These CD90+ eCAFs, located distal to the tumor nest, overlapped with the distribution of CD8+ T cells. Functional experiments demonstrated that CD90+ eCAFs recruited CD8+ T cells and inhibited their function through secretion of LAMA4. Further investigation revealed that LAMA4 induced the CD8+ T cell senescence through a DNA damage signaling pathway mediated by the receptor ITGA6. In a mouse model of spontaneous HCC, targeting LAMA4 can inhibit the progression of malignant transformation and synergize with anti-PD-1 therapy. Our study reveals the function of specific CAFs subtypes and highlights the importance of interactions with the immune system.
Collapse
Affiliation(s)
- Jianlei Zhang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, 230031, China
| | - Zhihui Li
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, China
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, 230031, China
| | - Qiong Zhang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, China
| | - Wen Ma
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, China
| | - Weina Fan
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, China
| | - Jing Dong
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, China
| | - Jingjie Tian
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, China
| | - Hongfan Liao
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, China
| | - Junzhe Guo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, 230031, China
| | - Yabing Cao
- Kiang Wu Hospital, Macao SAR, Macao, China
| | - Jiang Yin
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, China.
| | - Guopei Zheng
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, China.
| | - Nan Li
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, China.
| |
Collapse
|
9
|
Zhang G, Yu H, Liu J, Dong G, Cai Z. Myeloid-lineage-specific membrane protein LRRC25 suppresses immunity in solid tumor and is a potential cancer immunotherapy checkpoint target. Cell Rep 2025; 44:115631. [PMID: 40279244 DOI: 10.1016/j.celrep.2025.115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/20/2025] [Accepted: 04/09/2025] [Indexed: 04/27/2025] Open
Abstract
Leucine-rich repeat containing 25 (LRRC25), a type I membrane protein, is specifically expressed in myeloid cells including neutrophils and macrophages. The anti-inflammatory role of LRRC25 was suggested in a few pathogenic models. However, its role in cancer immunity has not been interrogated. Here, we demonstrate that LRRC25 is robustly expressed in tumor-associated macrophages (TAMs). Lrrc25 deficiency in the tumor microenvironment (TME) suppresses growth of multiple murine tumor models by reprogramming TAMs toward an anti-tumor phenotype and thereby enhancing infiltration and activation of CD8+ T cells. The Nox2-ROS-Nlrp3-Il1β pathway is elevated in Lrrc25-deficient TAMs. Furthermore, a human myeloid cell line or mice with loss of Lrrc25 appear normal, indicating that LRRC25 is a safe immune target. Our results suggest that as an unappreciated immune checkpoint for tumor immunotherapy, the myeloid-specific membrane protein LRRC25 orchestrates the activity of TAMs via the canonical Nlrp3-IL1β inflammatory pathway and influences CD8+ T cell chemotaxis to the TME.
Collapse
Affiliation(s)
- Guorong Zhang
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hanzhi Yu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jingjing Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Ge Dong
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Zhigang Cai
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China; Department of Rheumatology and Immunology, Tianjin Medical University Tianjin General Hospital, Tianjin, China.
| |
Collapse
|
10
|
Wu J, Song J, Ge Y, Hou S, Chang Y, Chen X, Nie Z, Guo L, Yin J. PRIM1 enhances colorectal cancer liver metastasis via promoting neutrophil recruitment and formation of neutrophil extracellular trap. Cell Signal 2025; 132:111822. [PMID: 40250692 DOI: 10.1016/j.cellsig.2025.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Despite advances in treatment, liver metastasis remains the predominant pattern of distant spread for colorectal cancer (CRC) and a major cause of cancer-related mortality. DNA Primase Subunit 1 (PRIM1) has been reported to play important roles in cancer progression. This study investigated the role of PRIM1 in CRC liver metastasis, focusing on its influence on neutrophil recruitment and the formation of neutrophil extracellular traps (NETs). In this study, PRIM1 was upregulated in liver metastasis tumor tissues. CCK-8 and Transwell assays showed that the proliferation, migration and invasion of CRC cells were promoted with the ablation of PRIM1 and inhibited with PRIM1 overexpression. For in vivo investigation, we observed that PRIM1 ablation reduced the number and size of metastasis nodules of MC38 cells. Importantly, PRIM1 depletion obviously reduced the percentage of Ly6G+ neutrophils in liver. In contrast, overexpression of PRIM1 reversed these effects. Besides, depletion of neutrophils by anti-Ly6G antibody in mice notably attenuated liver metastasis burden induced by the upregulation of PRIM1. Western blot and immunohistochemistry assays revealed that three chemokines CXCL8, C-GSF and CXCL2 were confirmed to be upregulated with PRIM1 overexpression. Furthermore, PRIM1 overexpression reduced the formation of NETs. These results suggested that PRIM1 could facilitate the liver metastasis of CRC via recruiting neutrophils and NET formation. In conclusion, our novel findings highlighted the important role of PRIM1 in neutrophil recruitment and CRC metastasis and provided new perspectives and potential targets for future research and treatment for CRC.
Collapse
Affiliation(s)
- Ju Wu
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China
| | - Jianhui Song
- Department of General Surgery, Affiliated Xinhua Hospital of Dalian University, Dalian 116021, China
| | - Yuzhuang Ge
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China
| | - Shuangshuang Hou
- Department of General Surgery, Fuyang Normal University Second Affiliated Hospital, Fuyang 236000, China
| | - Yaoyuan Chang
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China
| | - Xi Chen
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China
| | - Zhequn Nie
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China.
| | - Lianyi Guo
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| | - Jiajun Yin
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China.
| |
Collapse
|
11
|
Li L, Chen M, Reis RL, Kundu SC, Xiao B, Shi X. Advancements of nanoscale drug formulations for combination treatment of colorectal cancer. Int J Pharm 2025; 674:125508. [PMID: 40132771 DOI: 10.1016/j.ijpharm.2025.125508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Combination chemotherapy is widely utilized in treating colorectal cancer (CRC), particularly for patients who are ineligible for surgery or those with metastatic CRC (mCRC). While this therapeutic method has demonstrated efficacy in managing CRC and mCRC, its broader clinical application is limited due to the unique physical properties, mechanisms of action, and pharmacokinetics of different chemotherapeutic drugs. Consequently, achieving satisfactory treatment outcomes proves to be challenging. Nanotechnology has given rise to innovative drug systems that are precise, controllable, and highly efficient in drug delivery. These nanoscale drug delivery systems can integrate the advantageous aspects of various therapeutic modalities, including chemotherapy, gene therapy, and immunotherapy. This review aims to explain the application of nano-drug delivery system in the treatment of colorectal cancer. Through its unique physical/chemical properties and biological functions, it can solve the limitations of traditional therapy and achieve more accurate, efficient and safe treatment. The advantages/disadvantages, physical and chemical characteristics of various drug delivery systems are described in detail, and suggestions on selecting reasonable NDDSs according to different drug combination methods are given to achieve the best therapeutic effect. This review paper presents an exhaustive summary of the diverse range of drugs utilized in chemotherapy, in addition to outlining strategies for effectively integrating chemotherapy with other treatment modalities. Furthermore, it delves into the principle of selecting carriers for various drug combinations.
Collapse
Affiliation(s)
- Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Maohua Chen
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4800-058, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetic, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4800-058, Portugal
| | - Bo Xiao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Xiaoxiao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
12
|
Wang X, Gu J, Tang H, Gu L, Bi Y, Kong Y, Shan Q, Yin J, Lou M, Li S, Liu Y. Single-Cell Profiling and Proteomics-Based Insights Into mTORC1-Mediated Angio+TAMs Polarization in Recurrent IDH-Mutant Gliomas. CNS Neurosci Ther 2025; 31:e70371. [PMID: 40202138 PMCID: PMC11979715 DOI: 10.1111/cns.70371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND IDH mutant gliomas often exhibit recurrence and progression, with the mTORC1 pathway and tumor-associated macrophages potentially contributing to these processes. However, the precise mechanisms are not fully understood. This study seeks to investigate these relationships using proteomic, phosphoproteomic, and multi-dimensional transcriptomic approaches. METHODS This study established a matched transcriptomic, proteomic, and phosphoproteomic cohort of IDH-mutant gliomas with recurrence and progression, incorporating multiple glioma-related datasets. We first identified the genomic landscape of recurrent IDH-mutant gliomas through multi-dimensional differential enrichment, GSVA, and deconvolution analyses. Next, we explored tumor-associated macrophage subpopulations using single-cell sequencing in mouse models of IDH-mutant and wild-type gliomas, analyzing transcriptional changes via AddmodelScore and pseudotime analysis. We then identified these subpopulations in matched primary and recurrent IDH-mutant datasets, investigating their interactions with the tumor microenvironment and performing deconvolution to explore their contribution to glioma progression. Finally, spatial transcriptomics was used to map these subpopulations to glioma tissue sections, revealing spatial co-localization with mTORC1 and angiogenesis-related pathways. RESULTS Multi-dimensional differential enrichment, GSVA, and deconvolution analyses indicated that the mTORC1 pathway and the proportion of M2 macrophages are upregulated during the recurrence and progression of IDH-mutant gliomas. CGGA database analysis showed that mTORC1 activity is significantly higher in recurrent IDH-mutant gliomas compared to IDH-wildtype, with a correlation to M2 macrophage infiltration. KSEA revealed that AURKA is enriched during progression, and its inhibition reduces mTORC1 pathway activity. Single-cell sequencing in mouse models identified a distinct glioma subpopulation with upregulated mTORC1, exhibiting both M2 macrophage and angiogenesis transcriptional features, which increased after implantation of IDH-mutant tumor cells. Similarly, human glioma single-cell data revealed the same subpopulation, with cell-cell communication analysis showing active VEGF signaling. Finally, spatial transcriptomics deconvolution confirmed the co-localization of this subpopulation with mTORC1 and VEGFA in high-grade IDH-mutant gliomas. CONCLUSIONS Our findings suggest mTORC1 activation and Angio-TAMs play key roles in the recurrence and progression of IDH-mutant gliomas.
Collapse
Affiliation(s)
- Xu Wang
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
| | - Jingyan Gu
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hongyu Tang
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lianping Gu
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
- Nanjing Medical UniversityJiangsuChina
| | - Yunke Bi
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
| | - Yue Kong
- Sun Yat‐Sen University Guanghua School of StomatologyGuangzhouChina
| | - Qiao Shan
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
| | - Jian Yin
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
| | - Meiqing Lou
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
- Shanghai Jiao Tong University School of MedicineShanghaiChina
- Nanjing Medical UniversityJiangsuChina
| | - Shouwei Li
- Department of NeurosurgeryCapital Medical University Sanbo Brain HospitalBeijingChina
| | - Yaohua Liu
- Department of NeurosurgeryShanghai General HospitalShanghaiChina
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
13
|
Fei H, Lu X, Shi Z, Liu X, Yang C, Zhu X, Lin Y, Jiang Z, Wang J, Huang D, Liu L, Zhang S, Jiang L. Deciphering the preeclampsia-specific immune microenvironment and the role of pro-inflammatory macrophages at the maternal-fetal interface. eLife 2025; 13:RP100002. [PMID: 40152904 PMCID: PMC11952753 DOI: 10.7554/elife.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RA-CCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3-CCR7+Helios-CD127-CD8+) and pro-inflam Macs (CD206-CD163-CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163-CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206- pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1-IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal-fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.
Collapse
Affiliation(s)
- Haiyi Fei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Zhan Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Cuiyu Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiaohong Zhu
- Department of Obstetrics and Gynecology, Zhejiang Xiaoshan HospitalHangzhouChina
| | - Yuhan Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Ziqun Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Jianmin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Dong Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Liu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| |
Collapse
|
14
|
Liu L, Ba Y, Yang S, Zuo A, Liu S, Zhang Y, Xu S, Weng S, Liu B, Luo P, Cheng Q, Deng J, Xu H, Chen Y, Zhang C, Zhou X, Ren Y, Han X, Hou Z, Liu Z. FOS-driven inflammatory CAFs promote colorectal cancer liver metastasis via the SFRP1-FGFR2-HIF1 axis. Theranostics 2025; 15:4593-4613. [PMID: 40225580 PMCID: PMC11984394 DOI: 10.7150/thno.111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/15/2025] [Indexed: 04/15/2025] Open
Abstract
Rationale: Cancer-associated fibroblasts (CAFs) exhibit diverse functions, yet their roles in colorectal cancer liver metastasis (CRLM) remain poorly understood. Methods: Through integrated analysis of single-cell RNA sequencing and spatial transcriptomics from colorectal cancer patients (CRCP: non-metastatic primary tumors; CRCM: metastatic primary tumors with liver metastases), combined with in vitro and in vivo models to investigate the role of CAFs in CRLM. In vitro experiments included six groups to reveal the role of SFRP1-producing CAFs, comprising PBS (control) and recombinant human SFRP1 (rhSFRP1) treated SW480 cells, PBS (control) and recombinant mouse SFRP1 (rmSFRP1) treated CT26 cells, and conditioned medium (CM) derived from CAF-NC and CAF-Sfrp1 treated CT26 cells. Preclinical models were further employed to elucidate the role of SFRP1 in CRLM. Subcutaneous xenografts models were constructed from PBS (control) and rhSFRP1 treated SW480 cells. For orthotopic tumor metastasis models, CT26 cells were pre-cultured with CAF-NC or CAF-Sfrp1 and then orthotopically injected into BALB/c mice. Results: We identified an inflammatory CAF subtype (CFD+ iCAFs) associated with poor clinical outcomes, advanced staging, and metastasis. Transcriptional regulation analysis revealed FOS-mediated differentiation of CFD+ iCAFs drives SFRP1 overexpression. In vitro and in vivo experiments confirmed that SFRP1-producing CAFs promote tumor stemness and epithelial-mesenchymal transition (EMT). Mechanistically, SFRP1 from CFD+ iCAFs binds FGFR2, activating the HIF1 signaling pathway to enhance tumor stemness, EMT, and CRLM progression. Conclusion: This study highlights CFD+ iCAFs as key regulators of tumor-stromal interactions and identifies SFRP1 as a potential therapeutic target in CRLM.
Collapse
Affiliation(s)
- Long Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of hepatobiliary surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, 710061, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Aning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China
| | - Shuqin Xu
- Department of hepatobiliary surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, 710061, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Benyu Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, United Kingdom
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China
| | - Yukang Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China
| | - Chuhan Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China
| | - Zhenyu Hou
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
15
|
Zhao T, Luo Y, Sun Y, Wei Z. Characterizing macrophage diversity in colorectal malignancies through single-cell genomics. Front Immunol 2025; 16:1526668. [PMID: 40191203 PMCID: PMC11968368 DOI: 10.3389/fimmu.2025.1526668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract, with increasing incidence and mortality rates, posing a significant burden on human health. Its progression relies on various mechanisms, among which the tumor microenvironment and tumor-associated macrophages (TAMs) have garnered increasing attention. Macrophage infiltration in various solid tumors is associated with poor prognosis and is linked to chemotherapy resistance in many cancers. These significant biological behaviors depend on the heterogeneity of macrophages. Tumor-promoting TAMs comprise subpopulations characterized by distinct markers and unique transcriptional profiles, rendering them potential targets for anticancer therapies through either depletion or reprogramming from a pro-tumoral to an anti-tumoral state. Single-cell RNA sequencing technology has significantly enhanced our research resolution, breaking the traditional simplistic definitions of macrophage subtypes and deepening our understanding of the diversity within TAMs. However, a unified elucidation of the nomenclature and molecular characteristics associated with this diversity remains lacking. In this review, we assess the application of conventional macrophage polarization subtypes in colorectal malignancies and explore several unique subtypes defined from a single-cell omics perspective in recent years, categorizing them based on their potential functions.
Collapse
Affiliation(s)
- Tingshuo Zhao
- First Clinical Medical College, Shanxi Medical University, Tai Yuan, China
| | - Yinyi Luo
- First Clinical Medical College, Shanxi Medical University, Tai Yuan, China
| | - Yuanjie Sun
- First Clinical Medical College, Shanxi Medical University, Tai Yuan, China
| | - Zhigang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Shanxi Medical University, Tai Yuan, China
| |
Collapse
|
16
|
Liu Y, Ma J, Ma Y, Wang BZ, Wang Y, Yuan J, Zhang F, Zhao X, Chen K, Zhang X, Wang H. Neutrophil extracellular traps impede cancer metastatic seeding via protease-activated receptor 2-mediated downregulation of phagocytic checkpoint CD24. J Immunother Cancer 2025; 13:e010813. [PMID: 40010762 PMCID: PMC11865804 DOI: 10.1136/jitc-2024-010813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Phagocytic clearance by macrophages represents a critical immune surveillance mechanism in cancer liver metastasis. Neutrophils, the most abundant immune cells encountered by cancer cells in circulation, play key roles in metastasis through neutrophil extracellular traps (NETs). Although NETs promote macrophage phagocytosis during infection, whether they regulate phagocytosis during cancer metastasis is unknown. The present study aimed to explore the roles of NETs in regulating macrophage phagocytosis during the seeding process of liver metastasis and the mechanisms underlying the roles. METHODS A lipopolysaccharide-induced NET model was applied to study the role of NETs on colorectal cancer (CRC) liver metastasis. The neutrophils isolated from human peripheral blood were stimulated with PMA to release NETs, which were collected and added to the cultures of different CRC cell lines for in vitro studies. Macrophage phagocytosis was assessed with flow cytometry in vitro and in vivo. RNA-seq and microRNA array analyses were performed to identify key pathways regulated by NETs and downstream key molecules. The macrophage phenotypes were evaluated using immunohistochemistry, flow cytometry, and cytokine and chemokine arrays. RESULTS NETs promote macrophage phagocytosis both in vitro and in vivo. Neutrophil elastase (NE), which was able to inactivate the canonical signal of protease-activated receptor 2 (PAR2), downregulated the phagocytotic checkpoint CD24. Notably, PAR2 deficiency imitated the effect of NETs on phagocytosis and CD24. Mechanistic studies indicated that inhibiting PAR2 expression upregulated miR-34a and miR-146a and downregulated CD24 in cancer cells. In addition, PAR2 depletion enhanced the recruitment and M1 polarization of macrophages by upregulating CSF-1 and CXCL1. The correlation of NETs/NE and CD24 was corroborated using human CRC specimens. Furthermore, PAR2 blockade combined with an anti-EGFR antibody (cetuximab (CTX)) synergistically enhanced the phagocytic ability of macrophages and suppressed liver metastasis in vivo. CONCLUSIONS NET-derived elastase inactivated PAR2 canonical signaling and promoted phagocytosis by downregulating CD24, which functions as a phagocytotic checkpoint in CRC liver metastasis. Thus, PAR2 inhibitors combined with CTX may serve as a novel therapeutic strategy against advanced CRC.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Jianhui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Bing-Zhi Wang
- Department of Pathology and Resident Training Base, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Yinong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Junhu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Fanyu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Xinhua Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| | - Kun Chen
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Liaoning, China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Liaoning, China
| | - Xiaoli Zhang
- Department of Injury and Repair, Beijing Neurosurgical Institute, Capital Medical University, Beijing, Beijing, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Beijing, China
| |
Collapse
|
17
|
Dong W, Li S, Tang W, Sun Q, Zhu P, Wang M, Xu B. To investigate the tumor promotion role of PLOD3 in colorectal cancer and its potential as a prognostic biomarker and therapeutic target. Sci Rep 2025; 15:5371. [PMID: 39948137 PMCID: PMC11825652 DOI: 10.1038/s41598-025-89521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
PLOD3 (procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3), a key enzyme involved in collagen post-translational modification, is critical for maintaining the structural integrity of the extracellular matrix (ECM). Dysregulation of PLOD3 has been implicated in various malignancies, including colorectal cancer (CRC).This study aimed to elucidate the role of PLOD3 in CRC and evaluate its potential as a prognostic biomarker and therapeutic target. We conducted a comprehensive analysis utilizing data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) to evaluate PLOD3 expression in CRC. Univariate and multivariate Cox regression analyses were conducted to investigate its impact on overall survival. Functional assays, including wound healing, Transwell migration, and invasion assays, were carried out in CRC cell lines with modified PLOD3 expression to elucidate its role in regulating tumor cell behavior. Furthermore, Gene Set Enrichment Analysis (GSEA) was employed to identify signaling pathways associated with PLOD3 expression. Our findings demonstrate that PLOD3 is significantly overexpressed in CRC tissues compared to normal tissues, and its elevated expression is associated with poor prognosis and reduced overall survival. The study also developed a RiskScore model incorporating PLOD3 and 11 other genes, which exhibited strong predictive performance for patient outcomes. Functional experiments confirmed that PLOD3 overexpression enhances CRC cell migration and invasion. GSEA linked high PLOD3 expression to the activation of epithelial-mesenchymal transition (EMT) and metastasis-related pathways. In conclusion, PLOD3 plays a pivotal role in CRC progression by promoting tumor growth and metastasis. Its elevated expression serves as an independent prognostic marker and a potential target for therapeutic intervention, offering new insights into the molecular mechanisms driving CRC.
Collapse
Affiliation(s)
- Wanhui Dong
- Department of Medical Oncology, Lu'an Hospital Affiliated To Anhui University of Chinese Medicine, No. 73, Mozitan Road, Lu'an, 237000, Anhui, China
| | - Su Li
- Oncology Radiotherapy Department, Affiliated Hospital of West Anhui Health Vocational College, No. 73, Mozitan Road, Lu'an, 237000, Anhui, China
| | - Wei Tang
- Department of Medical Oncology, Lu'an Hospital Affiliated To Anhui University of Chinese Medicine, No. 73, Mozitan Road, Lu'an, 237000, Anhui, China
| | - Qingming Sun
- Department of Medical Oncology, Lu'an Hospital Affiliated To Anhui University of Chinese Medicine, No. 73, Mozitan Road, Lu'an, 237000, Anhui, China
| | - Pei Zhu
- Department of Medical Oncology, Lu'an Hospital Affiliated To Anhui University of Chinese Medicine, No. 73, Mozitan Road, Lu'an, 237000, Anhui, China
| | - Mingxing Wang
- Department of Medical Oncology, Lu'an Hospital Affiliated To Anhui University of Chinese Medicine, No. 73, Mozitan Road, Lu'an, 237000, Anhui, China
| | - Bin Xu
- Oncology Radiotherapy Department, Affiliated Hospital of West Anhui Health Vocational College, No. 73, Mozitan Road, Lu'an, 237000, Anhui, China.
| |
Collapse
|
18
|
Jiang W, Guan B, Sun H, Mi Y, Cai S, Wan R, Li X, Lian P, Li D, Zhao S. WNT11 Promotes immune evasion and resistance to Anti-PD-1 therapy in liver metastasis. Nat Commun 2025; 16:1429. [PMID: 39920102 PMCID: PMC11806061 DOI: 10.1038/s41467-025-56714-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
Liver metastasis (LM) poses a significant challenge in cancer treatment, with limited available therapeutic options and poor prognosis. Understanding the dynamics of tumor microenvironment (TME) and immune interactions is crucial for developing effective treatments. We find that WNT11 promoted CD8+ T-cell exclusion and suppression, which was correlated with poor prognosis in LM. Mechanistically, WNT11-overexpressing tumor cells directly reduce CD8+ T-cell recruitment and activity by decreasing CXCL10 and CCL4 expression through CAMKII-mediated β-catenin/AFF3 downregulation. WNT11-overexpressing tumor cells promote immunosuppressive macrophage polarization by inducing IL17D expression via the CAMKII/NF-κB pathway, which result in CD8+ T-cell suppression. Moreover, CAMKII inhibition increases the efficacy of anti-PD-1 therapy in mouse model of LM. Serum expression of WNT11 is identified as a potential minimally invasive biomarker in the management of colorectal cancer-LM with immunotherapy. Our findings highlight WNT11/CAMKII axis as a critical regulator of the TME and a promising target for immunotherapy in patients with LM.
Collapse
Affiliation(s)
- Weiliang Jiang
- Cancer Institute, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai, China
| | - Bingjie Guan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai, China
| | - Hongcheng Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai, China
| | - Yushuai Mi
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Road, Jinan, Shandong, China
| | - Sanjun Cai
- Cancer Institute, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong'an Road, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong'an Road, Shanghai, China
| | - Peng Lian
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong'an Road, Shanghai, China
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong'an Road, Shanghai, China.
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong'an Road, Shanghai, China.
| |
Collapse
|
19
|
Cheng PSW, Zaccaria M, Biffi G. Functional heterogeneity of fibroblasts in primary tumors and metastases. Trends Cancer 2025; 11:135-153. [PMID: 39674792 DOI: 10.1016/j.trecan.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant components of the tumor microenvironment (TME) of most solid malignancies and have emerged as key regulators of cancer progression and therapy response. Although recent technological advances have uncovered substantial CAF molecular heterogeneity at the single-cell level, defining functional roles for most described CAF populations remains challenging. With the aim of bridging CAF molecular and functional heterogeneity, this review focuses on recently identified functional interactions of CAF subtypes with malignant cells, immune cells, and other stromal cells in primary tumors and metastases. Dissecting the heterogeneous functional crosstalk of specific CAF populations with other components is starting to uncover candidate combinatorial strategies for therapeutically targeting the TME and cancer progression.
Collapse
Affiliation(s)
- Priscilla S W Cheng
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Marta Zaccaria
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|
20
|
Vienot A, Vernerey D, Bouard A, Klajer E, Kim S, Tournigand C, Louvet C, André T, Rousseau B, Wespiser M, Spehner L, Wang YA, Weispfenning A, Dochy E, Borg C. Stanniocalcin 1 in Patients with Refractory Colorectal Cancer Treated with Regorafenib: A Post Hoc Biomarker Analysis of the TEXCAN and CORRECT Trials. CANCER RESEARCH COMMUNICATIONS 2025; 5:287-294. [PMID: 39807836 PMCID: PMC11811826 DOI: 10.1158/2767-9764.crc-24-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/27/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
SIGNIFICANCE STC1 is a protein secreted by intratumor endothelial cells in which plasma concentrations increase in patients with chemorefractory mCRC. Based on analyses of patients with refractory mCRC in the TEXCAN and CORRECT trials, we found that STC1 plasma levels had a prognostic role for OS, with high levels associated with poor outcome. A predictive role for baseline STC1 levels was pointed out for regorafenib efficacy.
Collapse
Affiliation(s)
- Angélique Vienot
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Dewi Vernerey
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Adeline Bouard
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Elodie Klajer
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Stefano Kim
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | | | | | - Thierry André
- Sorbonne Université and Hôpital Saint-Antoine, Paris, France
| | | | - Mylène Wespiser
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Laurie Spehner
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Ying A. Wang
- Bayer HealthCare Pharmaceuticals, Cambridge, Massachusetts
| | | | | | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| |
Collapse
|
21
|
Fan X, Li B, Zhang F, Liu M, Kwan H, Liu Z, Su T. FGF19-Activated Hepatic Stellate Cells Release ANGPTL4 that Promotes Colorectal Cancer Liver Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413525. [PMID: 39716892 PMCID: PMC11831508 DOI: 10.1002/advs.202413525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Indexed: 12/25/2024]
Abstract
Liver and lung are the most common metastatic sites in colorectal cancer (CRC), where the tumor microenvironment (TME) plays a crucial role in the progression and metastasis of CRC. Understanding the interactions between various types of cells in the TME can suggest innovative therapeutic strategies. Using single-cell RNA sequencing (scRNA-Seq) and clinical samples, fibroblast growth factor-19 (FGF19, rodent FGF15) is found to mediate a significant interaction between CRC cells and cancer-associated fibroblasts (CAFs), activating the hepatic stellate cells (HSCs)-to-CAFs differentiation. In various CRC metastatic mouse models, it is shown that FGF15 has a more pronounced effect on liver metastasis compared to pulmonary metastasis. More importantly, the differentially expressed genes (DEGs) are also identified from the RNA-Seq dataset upon the activation of HSCs by FGF19 and compared the DEGs in matched primary and metastatic mRNA samples from patients with CRC liver metastasis (CRCLM), it is found that the ANGPTL4 gene is significantly associated with HSCs activation. Different mouse models also demonstrated the impact of the FGF19/ANGPTL4 axis on the severity of CRCLM. Importantly, disruption of this axis significantly inhibits CRCLM in vivo. This study is among the first to demonstrate the impact of the FGF19/ANGPTL4 axis on CRCLM, offering a novel therapeutic strategy.
Collapse
Affiliation(s)
- Xueying Fan
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangdong Key Laboratory for Translational Cancer Research of Chinese MedicineInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdong519031China
| | - Baoting Li
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangdong Key Laboratory for Translational Cancer Research of Chinese MedicineInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Fan Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangdong Key Laboratory for Translational Cancer Research of Chinese MedicineInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Meng Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangdong Key Laboratory for Translational Cancer Research of Chinese MedicineInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
| | - Hiu‐Yee Kwan
- Centre for Cancer and Inflammation ResearchSchool of Chinese MedicineHong Kong Baptist UniversityHong Kong999077China
- Institute of Research and Continuing EducationHong Kong Baptist UniversityShenzhen518000China
- Institute of Systems Medicine and Health SciencesHong Kong Baptist UniversityHong Kong999077China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangdong Key Laboratory for Translational Cancer Research of Chinese MedicineInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdong519031China
| | - Tao Su
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangdong Key Laboratory for Translational Cancer Research of Chinese MedicineInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdong510006China
- Chinese Medicine Guangdong LaboratoryHengqinGuangdong519031China
| |
Collapse
|
22
|
Hu C, Huang X, Chen J, Liang W, Yang K, Jiang H, Yang K, Ou Q, Li X, Zhang Y. Dissecting the cellular reprogramming and tumor microenvironment in left- and right-sided Colorectal Cancer by single cell RNA sequencing. Transl Res 2025; 276:22-37. [PMID: 39675521 DOI: 10.1016/j.trsl.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Sidedness and staging are major sources of tumor microenvironment (TME) differences in colorectal cancer (CRC). Subpopulation compositions of stromal cells and immune cells, and interactions between cells collectively constitute the immunosuppressive microenvironment of CRC. In this study, we comprehensively collected single-cell RNA sequencing data from public databases. We filtered out 126,279 cells from 55 CRC samples to characterize the differences in cellular composition, and to elucidate the transcriptional features and potential functions of cell types, temporally and positionally. We observed an increased degree of hypoxia in right side-specific cancer cells compared to left-sided cancer. Cancer-associated fibroblasts (CAFs) illustrated molecular signatures tremendously tended to be associated with functions that orchestrate extracellular matrix remodeling and angiogenesis, and right-sided CAFs characterized the stronger cancer invasion signals. Crosstalk between side-specific cancer cells and stromal together with immune cells characterized CRC via different sample groups, and was pertinent to worse prognosis. Our study captured immunosuppressive pattern exhibiting more intricate intercellular interactions in right-sided CRC. Additionally, during malignant progression of CRC, the transformation of CD8+ T cell cytotoxic and exhausted properties and macrophage pro-inflammatory and anti-inflammatory properties epitomized the cellular reprogramming phenomenon that the function of TME shifted from promoting immunity to suppressive immunity. Our study shed lights on refining personalized therapeutic regimens during malignant progression in left- and right-sided CRCs.
Collapse
Affiliation(s)
- Congxue Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaozhi Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jing Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Weixin Liang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Kaiyue Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hui Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Kuan Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qi Ou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
23
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Miroshnichenko E, Kosyreva A, Fatkhudinov T. The Role of Macrophages in Various Types of Tumors and the Possibility of Their Use as Targets for Antitumor Therapy. Cancers (Basel) 2025; 17:342. [PMID: 39941714 PMCID: PMC11815841 DOI: 10.3390/cancers17030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
In solid tumors, tumor-associated macrophages (TAMs) are one of the most numerous populations and play an important role in the processes of tumor cell invasion, metastasis, and angiogenesis. Therefore, TAMs are considered promising diagnostic and prognostic biomarkers of tumors, and many attempts have been made to influence these cells as part of antitumor therapy. There are several key principles of action on ТАМs: the inhibition of monocyte/macrophage transition; the destruction of macrophages; the reprogramming of macrophage phenotypes (polarization of M2 macrophages to M1); the stimulation of phagocytic activity of macrophages and CAR-M therapy. Despite the large number of studies in this area, to date, there are no adequate approaches using antitumor therapy based on alterations in TAM functioning that would show high efficacy when administered in a mono-regimen for the treatment of malignant neoplasms. Studies devoted to the evaluation of the efficacy of drugs acting on TAMs are characterized by a small sample and the large heterogeneity of patient groups; in addition, in such studies, chemotherapy or immunotherapy is used, which significantly complicates the evaluation of the effectiveness of the agent acting on TAMs. In this review, we attempted to systematize the evidence on attempts to influence TAMs in malignancies such as lung cancer, breast cancer, colorectal cancer, cervical cancer, prostate cancer, gastric cancer, head and neck squamous cell cancer, and soft tissue sarcomas.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Ekaterina Miroshnichenko
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology, FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| |
Collapse
|
24
|
Li R, He S, Qin T, Ma Y, Xu K, Liu S, Zhan W. Glycosylation gene expression profiles enable prognosis prediction for colorectal cancer. Sci Rep 2025; 15:798. [PMID: 39755729 PMCID: PMC11700200 DOI: 10.1038/s41598-024-84300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
This study developed a prognostic model for patients with colon adenocarcinoma (COAD) based on glycosylation-associated genes. By analyzing TCGA-COAD data, 110 key genes were identified, and a prognostic model incorporating five glycosylation-related genes was constructed. The model exhibits good predictive performance and is significantly associated with clinical features such as age, N stage, M stage, and lymph node count. The prognostic genes are involved in various biological processes and pathways, influence T cell differentiation, and may contribute to CRC development. High-risk patients show a higher degree of immune cell infiltration. This model aids in the early diagnosis, prognosis assessment, and treatment planning for CRC, and offers a direction for further research.
Collapse
Affiliation(s)
- Rui Li
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, Guizhou, China
| | - Sha He
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, Guizhou, China
| | - Ting Qin
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, Guizhou, China
| | - Yanyan Ma
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, Guizhou, China
| | - Kunyao Xu
- Department of Geriatrics, The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, China
| | - Shan Liu
- The Second Clinical School of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, China
| | - Wei Zhan
- Department of Anus and Intestine Surgery, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang City, 550004, Guizhou Province, China.
| |
Collapse
|
25
|
Hu S, Qin J, Ding M, Gao R, Xiao Q, Lou J, Chen Y, Wang S, Pan Y. Bulk integrated single-cell-spatial transcriptomics reveals the impact of preoperative chemotherapy on cancer-associated fibroblasts and tumor cells in colorectal cancer, and construction of related predictive models using machine learning. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167535. [PMID: 39374811 DOI: 10.1016/j.bbadis.2024.167535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Preoperative chemotherapy (PC) is an important component of Colorectal cancer (CRC) treatment, but its effects on the biological functions of fibroblasts and epithelial cells in CRC are unclear. METHODS This study utilized bulk, single-cell, and spatial transcriptomic sequencing data from 22 independent cohorts of CRC. Through bioinformatics analysis and in vitro experiments, the research investigated the impact of PC on fibroblast and epithelial cells in CRC. Subpopulations associated with PC and CRC prognosis were identified, and a predictive model was constructed using machine learning. RESULTS PC significantly attenuated the pathways related to tumor progression in fibroblasts and epithelial cells. NOTCH3 + Fibroblast (NOTCH3 + Fib), TNNT1 + Epithelial (TNNT1 + Epi), and HSPA1A + Epithelial (HSPA1A + Epi) subpopulations were identified in the adjacent spatial region and were associated with poor prognosis in CRC. PC effectively diminished the presence of these subpopulations, concurrently inhibiting pathway activity and intercellular crosstalk. A risk signature model, named the Preoperative Chemotherapy Risk Signature Model (PCRSM), was constructed using machine learning. PCRSM emerged as an independent prognostic indicator for CRC, impacting both overall survival (OS) and recurrence-free survival (RFS), surpassing the performance of 89 previously published CRC risk signatures. Additionally, patients with a high PCRSM risk score showed sensitivity to fluorouracil-based adjuvant chemotherapy (FOLFOX) but resistance to single chemotherapy drugs (such as Bevacizumab and Oxaliplatin). Furthermore, this study predicted that patients with high PCRSM were resistant to anti-PD1therapy. CONCLUSION In conclusion, this study identified three cell subpopulations (NOTCH3 + Fib, TNNT1 + Epi, and HSPA1A + Epi) associated with PC, which can be targeted to improve the prognosis of CRC patients. The PCRSM model shows promise in enhancing the survival and treatment of CRC patients.
Collapse
Affiliation(s)
- Shangshang Hu
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jian Qin
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Muzi Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - Rui Gao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - QianNi Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - Jinwei Lou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - Yuhan Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211122, Jiangsu, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China; Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211100, Jiangsu, China.
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China; Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211100, Jiangsu, China.
| |
Collapse
|
26
|
Sanghvi N, Calvo-Alcañiz C, Rajagopal PS, Scalera S, Canu V, Sinha S, Schischlik F, Wang K, Madan S, Shulman E, Papanicolau-Sengos A, Blandino G, Ruppin E, Nair NU. Charting the transcriptomic landscape of primary and metastatic cancers in relation to their origin and target normal tissues. SCIENCE ADVANCES 2024; 10:eadn0220. [PMID: 39642223 PMCID: PMC11623296 DOI: 10.1126/sciadv.adn0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 10/31/2024] [Indexed: 12/08/2024]
Abstract
Metastasis is a leading cause of cancer-related deaths, yet understanding how metastatic tumors adapt from their origin to their target tissues remains a fundamental challenge. To address this, we assessed whether primary and metastatic tumors more closely resemble their tissues of origin or target tissues in terms of gene expression. We analyzed expression profiles from multiple cancer types and normal tissues, including single-cell and bulk RNA sequencing data from both paired and unpaired patient cohorts. Primary tumors were overall more transcriptomically similar to their tissues of origin, while metastases shifted toward their target tissues. However, pathway-level analysis highlighted critical metabolic and immune transcriptomic changes toward target tissues during metastasis in both primary and metastatic tumors. In addition, primary tumors exhibited higher activity in cancer hallmarks such as "Activating Invasion and Metastasis" when compared to metastases. This comprehensive analysis provides a transcriptome-wide view of the processes through which cancer tumors adapt to their metastatic environments before and after metastasis.
Collapse
Affiliation(s)
- Neel Sanghvi
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Camilo Calvo-Alcañiz
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Padma S. Rajagopal
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stefano Scalera
- Translational Oncology Research Unit, IRCSS Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, Italy
| | - Valeria Canu
- Translational Oncology Research Unit, IRCSS Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, Italy
| | - Sanju Sinha
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Fiorella Schischlik
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kun Wang
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sanna Madan
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Eldad Shulman
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Antonios Papanicolau-Sengos
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCSS Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, Italy
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nishanth Ulhas Nair
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
27
|
Ran R, Trapecar M, Brubaker DK. Systematic analysis of human colorectal cancer scRNA-seq revealed limited pro-tumoral IL-17 production potential in gamma delta T cells. Neoplasia 2024; 58:101072. [PMID: 39454432 PMCID: PMC11539345 DOI: 10.1016/j.neo.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Gamma delta T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin-17 (IL-17) within the tumor microenvironment of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including poised effector-like T cells, tissue-resident memory T cells, progenitor exhausted-like T cells, and exhausted T cells, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. We proposed anti-tumor γδ T effector cells may arise from tissue-resident progenitor cells based on the trajectory analysis. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA.
| |
Collapse
|
28
|
Li P, Huang D. Targeting the JAK-STAT pathway in colorectal cancer: mechanisms, clinical implications, and therapeutic potential. Front Cell Dev Biol 2024; 12:1507621. [PMID: 39659524 PMCID: PMC11628519 DOI: 10.3389/fcell.2024.1507621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and fatal malignancies worldwide, consistently ranking among the top three in terms of incidence and mortality. Despite notable advancements in early detection and therapeutic interventions, survival outcomes for advanced-stage CRC are still dismal, largely due to issues such as drug resistance and metastasis. Recent research has increasingly implicated the JAK-STAT signaling pathway as a pivotal contributor to CRC pathogenesis. This evolutionarily conserved pathway plays a key role in transmitting extracellular signals to the nucleus, thereby modulating gene expression involved in numerous fundamental biological processes. In CRC, dysregulation of the JAK-STAT pathway is frequently observed and is strongly associated with tumor progression, including processes such as cellular proliferation, apoptosis, metastasis, immune evasion, and the sustenance of cancer stem cells. Given its integral role in CRC advancement, the JAK-STAT pathway has gained recognition as a viable therapeutic target. Extensive evidence from preclinical and clinical models supports the efficacy and safety of targeting components of the JAK-STAT pathway, presenting new therapeutic possibilities for patients with CRC, particularly in addressing drug resistance and enhancing treatment outcomes. This review offers a detailed exploration of the JAK-STAT pathway, focusing on its regulatory mechanisms in CRC-related malignancies. Moreover, it examines the association between JAK-STAT protein expression, clinical features, prognosis, and its therapeutic potential in CRC management.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
29
|
Zhu C, Liao JY, Liu YY, Chen ZY, Chang RZ, Chen XP, Zhang BX, Liang JN. Immune dynamics shaping pre-metastatic and metastatic niches in liver metastases: from molecular mechanisms to therapeutic strategies. Mol Cancer 2024; 23:254. [PMID: 39543660 PMCID: PMC11562679 DOI: 10.1186/s12943-024-02171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Liver metastases are commonly detected in the advanced stages of various malignant tumors, representing a significant clinical challenge. Throughout the process of liver metastases formation, immune cells play a pivotal role, particularly in the pre-metastatic and metastatic niches within the liver. Immune cells establish extensive and intricate interactions with tumor cells and other components in the liver, collectively promoting and sustaining the growth of liver metastases. Despite the limited efficacy of existing therapeutic modalities against some advanced liver metastases, novel immune-based treatment approaches are continuously being explored and validated. Building on the systematic elucidation of the immunosuppressive characteristics of liver metastases, we explored the potential of novel immunotherapies applicable to patients with liver metastases from multiple dimensions.
Collapse
Affiliation(s)
- Chang Zhu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jing-Yu Liao
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yi-Yang Liu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ze-Yu Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Rui-Zhi Chang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| | - Jun-Nan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| |
Collapse
|
30
|
Shin S, Kim HH, Kim JW, Rim D, An C, Chung YJ, Lee SH. Cellular responses to neoadjuvant FOLFOX6-bevacizumab treatment in colorectal cancers analyzed by single-cell transcriptome analysis. Pathol Res Pract 2024; 263:155681. [PMID: 39471526 DOI: 10.1016/j.prp.2024.155681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Neoadjuvant chemotherapy combined with bevacizumab is used to treat colorectal cancer (CRC) patients by targeting tumor and vascular cells. However, it is known that other cells in the tumor microenvironment (TME) also change in response to this treatment. To investigate the changes in TME subpopulations in response to neoadjuvant FOLFOX6 plus bevacizumab, we studied pre- and post-treatment CRC tissues in four patients using single-cell RNA sequencing (scRNA-seq). This analysis classified nine cell types, including epithelial, vascular, immune cells, and fibroblasts. The cellular responses were widespread across the cell types, but there were specific subpopulations that altered, especially in vascular, immune, and fibroblast cells. In vascular subpopulations, CDH13-endothelial, arteriole, and CA4 capillary cells were selectively reduced. In immune cells, CD4+, CD8+ T cells, conventional dendritic cell type 1 (cDC1), and CCL19-expressing migrating DC (migDC-1) increased, while Th17, Th22, and tumor-associated macrophage (TAM) cells decreased, indicating that the treatment might be immunostimulatory. In fibroblasts, two major cancer-associated fibroblasts (matrix CAF (mCAF) and inflammatory CAF (iCAF)) increased, while conventional fibroblasts decreased, suggesting that the treatment remodeled the reparative/inflammatory processes, which might lead to reduced aggressiveness from the cancer-associated fibroblasts. In summary, our study reveals that neoadjuvant FOLFOX6 plus bevacizumab leads to alterations in particular subpopulations of vascular, immune, and reparative/inflammatory cells in the TME of CRCs. These alterations include vascular reduction, immunologic stimulation, and reduction of cancer-associated fibroblasts, which may underlie the responsiveness to the therapy in CRC. Our results may provide insights into the mechanisms of responsiveness/resistance to neoadjuvant FOLFOX6 plus bevacizumab therapy in CRCs.
Collapse
Affiliation(s)
- Sun Shin
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Hyun Ho Kim
- Departments of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Jae Woong Kim
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Doeun Rim
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Changhyeok An
- Departments of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| | - Yeun-Jun Chung
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| | - Sug Hyung Lee
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| |
Collapse
|
31
|
Qazi S, Trieu V. TGFB2 mRNA Levels Prognostically Interact with Interferon-Alpha Receptor Activation of IRF9 and IFI27, and an Immune Checkpoint LGALS9 to Impact Overall Survival in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2024; 25:11221. [PMID: 39457004 PMCID: PMC11508538 DOI: 10.3390/ijms252011221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The treatment of pancreatic ductal adenocarcinoma (PDAC) is an unmet challenge, with the median overall survival rate remaining less than a year, even with the use of FOLFIRINOX-based therapies. This study analyzed archived macrophage-associated mRNA expression using datasets deposited in the UCSC Xena web platform to compare normal pancreatic tissue and PDAC tumor samples. The TGFB2 gene exhibited low mRNA expression levels in normal tissue, with less than one TPM. In contrast, in tumor tissue, TGFB2 expression levels exhibited a 7.9-fold increase in mRNA expression relative to normal tissue (p < 0.0001). Additionally, components of the type-I interferon signaling pathway exhibited significant upregulation of mRNA levels in tumor tissue, including Interferon alpha/beta receptor 1 (IFNAR1; 3.4-fold increase, p < 0.0001), Interferon regulatory factor 9 (IRF9; 4.2-fold increase, p < 0.0001), Signal transducer and activator of transcription 1 (STAT1; 7.1-fold increase, p < 0.0001), and Interferon Alpha Inducible Protein 27 (IFI27; 66.3-fold increase, p < 0.0001). We also utilized TCGA datasets deposited in cBioportal and KMplotter to relate mRNA expression levels to overall survival outcomes. These increased levels of mRNA expression were found to be prognostically significant, whereby patients with high expression levels of either TGFB2, IRF9, or IFI27 showed median OS times ranging from 16 to 20 months (p < 0.01 compared to 72 months for patients with low levels of expression for both TGFB2 and either IRF9 or IFI27). Examination of the KMplotter database determined the prognostic impact of TGFB2 mRNA expression levels by comparing patients expressing high versus low levels of TGFB2 (50th percentile cut-off) in low macrophage TME. In TME with low macrophage levels, patients with high levels of TGFB2 mRNA exhibited significantly shorter OS outcomes than patients with low TGFB2 mRNA levels (Median OS of 15.3 versus 72.7 months, p < 0.0001). Furthermore, multivariate Cox regression models were applied to control for age at diagnosis. Nine genes exhibited significant increases in hazard ratios for TGFB2 mRNA expression, marker gene mRNA expression, and a significant interaction term between TGFB2 and marker gene expression (mRNA for markers: C1QA, CD74, HLA-DQB1, HLA-DRB1, HLA-F, IFI27, IRF9, LGALS9, MARCO). The results of our study suggest that a combination of pharmacological tools can be used in treating PDAC patients, targeting both TGFB2 and the components of the type-I interferon signaling pathway. The significant statistical interaction between TGFB2 and the nine marker genes suggests that TGFB2 is a negative prognostic indicator at low levels of the IFN-I activated genes and TAM marker expression, including the immune checkpoint LGALS9 (upregulated 16.5-fold in tumor tissue; p < 0.0001).
Collapse
MESH Headings
- Humans
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Female
- Male
- Gene Expression Regulation, Neoplastic
- Transforming Growth Factor beta2/genetics
- Transforming Growth Factor beta2/metabolism
- Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics
- Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism
- Middle Aged
- Aged
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Galectins
Collapse
Affiliation(s)
- Sanjive Qazi
- Oncotelic Therapeutics, 29397 Agoura Road, Suite 107, Agoura Hills, CA 91301, USA;
| | | |
Collapse
|
32
|
Zhang F, Jiang Q, Cai J, Meng F, Tang W, Liu Z, Lin X, Liu W, Zhou Y, Shen X, Xue R, Dong L, Zhang S. Activation of NOD1 on tumor-associated macrophages augments CD8 + T cell-mediated antitumor immunity in hepatocellular carcinoma. SCIENCE ADVANCES 2024; 10:eadp8266. [PMID: 39356756 PMCID: PMC11446285 DOI: 10.1126/sciadv.adp8266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
The efficacy of immunotherapy targeting the PD-1/PD-L1 pathway in hepatocellular carcinoma (HCC) is limited. NOD-like receptors (NLRs) comprise a highly evolutionarily conserved family of cytosolic bacterial sensors, yet their impact on antitumor immunity against HCC remains unclear. In this study, we uncovered that NOD1, a well-studied member of NLR family, exhibits predominant expression in tumor-associated macrophages (TAMs) and correlates positively with improved prognosis and responses to anti-PD-1 treatments in patients with HCC. Activation of NOD1 in vivo augments antitumor immunity and enhances the effectiveness of anti-PD-1 therapy. Mechanistically, NOD1 activation resulted in diminished expression of perilipin 5, thereby hindering fatty acid oxidation and inducing free fatty acid accumulation in TAMs. This metabolic alteration promoted membrane localization of the costimulatory molecule OX40L in a lipid modification-dependent manner, thereby activating CD8+ T cells. These findings unveil a previously unrecognized role for NOD1 in fortifying antitumor T cell immunity in HCC, potentially advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Qiuyu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Jialiang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Fansheng Meng
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Zhiyong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Xiahui Lin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Wenfeng Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Yi Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dongan Road, Shanghai, 200030, P.R. China
| |
Collapse
|
33
|
Nee K, Hosohama L, Alobuia W, Kim AC, Senthil M, Eng OS. Defining Colorectal Cancer Cells on a Single Cell Level Reveals LGR5+ Proliferative Stem Cell Expression in Peritoneal Metastasis. Ann Surg Oncol 2024; 31:6369-6372. [PMID: 39014167 DOI: 10.1245/s10434-024-15783-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Affiliation(s)
- Kevin Nee
- Department of Surgery, Stanford University, Stanford, CA, USA.
| | - Linzi Hosohama
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Wilson Alobuia
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Alex C Kim
- Department of Surgery, Division of Surgical Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Maheswari Senthil
- Department of Surgery, Division of Surgical Oncology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Oliver S Eng
- Department of Surgery, Division of Surgical Oncology, School of Medicine, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
34
|
Xuan Z, Zhang Y, Li D, Wang K, Huang P, Shi J. PLXNB1/SEMA4D signals mediate interactions between malignant epithelial and immune cells to promote colorectal cancer liver metastasis. J Cell Mol Med 2024; 28:e70142. [PMID: 39443302 PMCID: PMC11499074 DOI: 10.1111/jcmm.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Distal metastases result from metastatic microenvironment and tumour epithelial cell interactions, the cellular heterogeneity of primary colorectal cancer (CRC) and liver metastases (LM) was evaluated by integrating single-cell sequencing data, and the collected gene expression data from metastatic epithelial cell subsets was used to construct a prognostic model and to identify intercellular receptor-ligand interactions between epithelial and immune cells in CRC and LM. Multiplex immunofluorescence staining, and in vitro wound healing, cell migration and cell apoptosis assays were performed to further explore the biological relevance of identified potential regulatory molecules. In this study, approximately 17 epithelial cell subtypes were detected, with Epi-11 cells being highly expressed in LM tissues compared with CRC samples. Furthermore, patients with high expression of the metastasis-related genetic profile of Epi-11 had a poorer prognosis. By predicting receptor-ligand interactions, Epi-11 cells were found to interact more with myeloid and T/natural killer cells in LM tissues when compared to primary CRC samples, which was mediated by the PLXNB1/SEMA4D axis. In addition, high SEMA4D expression was correlated with decreased overall survival of patients with CRC, whereas PLXNB1 was not. SEMA4D knockdown prevented the migration and promoted the apoptosis of HCT116 cells in vitro. In summary, Epi-11 cells, an important subset of epithelial cells, may drive the LM of CRC and act by crosstalk with immune cells through the PLXNB1/SEMA4D signalling axis.
Collapse
Affiliation(s)
- Zixue Xuan
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeZhejiangHangzhouChina
- Department of PharmacyZhejiang Provincial People's Hospital Bijie HospitalBijieGuizhouChina
| | - Yuan Zhang
- Department of PharmacyZhejiang Provincial People's Hospital Bijie HospitalBijieGuizhouChina
| | - Dan Li
- Department of PharmacyZhejiang Provincial People's Hospital Bijie HospitalBijieGuizhouChina
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeZhejiangHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeZhejiangHangzhouChina
| | - Jiana Shi
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeZhejiangHangzhouChina
| |
Collapse
|
35
|
Cai J, Zhang W, Lu Y, Liu W, Zhou H, Liu M, Bi X, Liu J, Chen J, Yin Y, Deng Y, Luo Z, Yang Y, Chen Q, Chen X, Xu Z, Zhang Y, Wu C, Long Q, Huang C, Yan C, Liu Y, Guo L, Li W, Yuan P, Jiao Y, Song W, Wang X, Huang Z, Ying J, Zhao H. Single-cell exome sequencing reveals polyclonal seeding and TRPS1 mutations in colon cancer metastasis. Signal Transduct Target Ther 2024; 9:247. [PMID: 39307879 PMCID: PMC11417107 DOI: 10.1038/s41392-024-01960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/22/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Liver metastasis remains the primary cause of mortality in patients with colon cancer. Identifying specific driver gene mutations that contribute to metastasis may offer viable therapeutic targets. To explore clonal evolution and genetic heterogeneity within the metastasis, we conducted single-cell exome sequencing on 150 single cells isolated from the primary tumor, liver metastasis, and lymphatic metastasis from a stage IV colon cancer patient. The genetic landscape of the tumor samples revealed that both lymphatic and liver metastases originated from the same region of the primary tumor. Notably, the liver metastasis was derived directly from the primary tumor, bypassing the lymph nodes. Comparative analysis of the sequencing data for individual cell pairs within different tumors demonstrated that the genetic heterogeneity of both liver and lymphatic metastases was also greater than that of the primary tumor. This finding indicates that liver and lymphatic metastases arose from clusters of circulating tumor cell (CTC) of a polyclonal origin, rather than from a single cell from the primary tumor. Single-cell transcriptome analysis suggested that higher EMT score and CNV scores were associated with more polyclonal metastasis. Additionally, a mutation in the TRPS1 (Transcriptional repressor GATA binding 1) gene, TRPS1 R544Q, was enriched in the single cells from the liver metastasis. The mutation significantly increased CRC invasion and migration both in vitro and in vivo through the TRPS1R544Q/ZEB1 axis. Further TRPS1 mutations were detected in additional colon cancer cases, correlating with advanced-stage disease and inferior prognosis. These results reveal polyclonal seeding and TRPS1 mutation as potential mechanisms driving the development of liver metastases in colon cancer.
Collapse
Affiliation(s)
- Jianqiang Cai
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yalan Lu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wenjie Liu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhou
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmei Liu
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghua Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjiang Yin
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiqiao Deng
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Luo
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Xu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueyang Zhang
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoling Wu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Qizhao Long
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Chunyuan Huang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Lei Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Li
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Yuan
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yucheng Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jianming Ying
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hong Zhao
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
36
|
Chen R, Zhou J, Chen B. Imputing abundance of over 2,500 surface proteins from single-cell transcriptomes with context-agnostic zero-shot deep ensembles. Cell Syst 2024; 15:869-884.e6. [PMID: 39243755 PMCID: PMC11423933 DOI: 10.1016/j.cels.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/23/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
Cell surface proteins serve as primary drug targets and cell identity markers. Techniques such as CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) have enabled the simultaneous quantification of surface protein abundance and transcript expression within individual cells. The published data have been utilized to train machine learning models for predicting surface protein abundance solely from transcript expression. However, the small scale of proteins predicted and the poor generalization ability of these computational approaches across diverse contexts (e.g., different tissues/disease states) impede their widespread adoption. Here, we propose SPIDER (surface protein prediction using deep ensembles from single-cell RNA sequencing), a context-agnostic zero-shot deep ensemble model, which enables large-scale protein abundance prediction and generalizes better to various contexts. Comprehensive benchmarking shows that SPIDER outperforms other state-of-the-art methods. Using the predicted surface abundance of >2,500 proteins from single-cell transcriptomes, we demonstrate the broad applications of SPIDER, including cell type annotation, biomarker/target identification, and cell-cell interaction analysis in hepatocellular carcinoma and colorectal cancer. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Ruoqiao Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Jiayu Zhou
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
37
|
Bai H, Feng L, Schmid F. Macrophage-based cancer immunotherapy: Challenges and opportunities. Exp Cell Res 2024; 442:114198. [PMID: 39103071 DOI: 10.1016/j.yexcr.2024.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Macrophages play crucial roles in the tumor microenvironment (TME), exerting diverse functions ranging from promoting tumor growth and metastasis to orchestrating anti-tumor immune responses. Their plasticity allows them to adopt distinct activation states, often called M1-like (pro-inflammatory) and M2-like (anti-inflammatory or pro-tumoral), significantly influencing tumor progression and response to therapy. Harnessing the potential of macrophages in cancer immunotherapy has emerged as a promising strategy, with increasing interest in targeting these cells directly or modulating their functions within the TME. This review explores the intricate interplay between macrophages, the TME, and immunotherapeutic approaches. We discuss the dynamic phenotypic and functional heterogeneity of tumor-associated macrophages (TAMs), their impact on disease progression, and the mechanisms underlying their response to immunotherapy. Furthermore, we highlight recent advancements in macrophage-based immunotherapeutic strategies, including macrophage-targeting agents, adoptive cell transfer, and engineering approaches. Understanding the complex crosstalk between macrophages and the TME is essential for developing effective immunotherapeutic interventions that exploit the immunomodulatory functions of macrophages to enhance anti-tumor immunity and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Haotian Bai
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| | - Li Feng
- Emergency Department, People's Hospital Affiliated to Shandong First Medical University, Jinan, 271100, Shandong Province, China.
| | - Felix Schmid
- School of Biomedical Sciences, Carleton University, Ottawa, Canada.
| |
Collapse
|
38
|
Xu M, Zhang G, Cui T, Liu J, Wang Q, Shang D, Yu T, Guo B, Huang J, Li C. Cross-modal integration of bulk RNA-seq and single-cell RNA sequencing data to reveal T-cell exhaustion in colorectal cancer. J Cell Mol Med 2024; 28:e70101. [PMID: 39344205 PMCID: PMC11439987 DOI: 10.1111/jcmm.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Colorectal cancer (CRC) is a relatively common malignancy clinically and the second leading cause of cancer-related deaths. Recent studies have identified T-cell exhaustion as playing a crucial role in the pathogenesis of CRC. A long-standing challenge in the clinical management of CRC is to understand how T cells function during its progression and metastasis, and whether potential therapeutic targets for CRC treatment can be predicted through T cells. Here, we propose DeepTEX, a multi-omics deep learning approach that integrates cross-model data to investigate the heterogeneity of T-cell exhaustion in CRC. DeepTEX uses a domain adaptation model to align the data distributions from two different modalities and applies a cross-modal knowledge distillation model to predict the heterogeneity of T-cell exhaustion across diverse patients, identifying key functional pathways and genes. DeepTEX offers valuable insights into the application of deep learning in multi-omics, providing crucial data for exploring the stages of T-cell exhaustion associated with CRC and relevant therapeutic targets.
Collapse
Affiliation(s)
- Mingcong Xu
- School of Computer Science and TechnologyHarbin University of Science and TechnologyHarbinChina
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
| | - Guorui Zhang
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
| | - Ting Cui
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
| | - Jiaqi Liu
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐Omics and Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| | - Qiuyu Wang
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐Omics and Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| | - Desi Shang
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐Omics and Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| | - Tingting Yu
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
| | - Bingzhou Guo
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical UniversityJinanShandongChina
| | - Jinjie Huang
- School of Computer Science and TechnologyHarbin University of Science and TechnologyHarbinChina
| | - Chunquan Li
- Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, The First Affiliated Hospital, University of South ChinaHengyangHunanChina
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South ChinaHengyangHunanChina
- Hunan Provincial Key Laboratory of Multi‐Omics and Artificial Intelligence of Cardiovascular DiseasesUniversity of South ChinaHengyangHunanChina
| |
Collapse
|
39
|
Cañellas-Socias A, Sancho E, Batlle E. Mechanisms of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2024; 21:609-625. [PMID: 38806657 DOI: 10.1038/s41575-024-00934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Despite extensive research and improvements in understanding colorectal cancer (CRC), its metastatic form continues to pose a substantial challenge, primarily owing to limited therapeutic options and a poor prognosis. This Review addresses the emerging focus on metastatic CRC (mCRC), which has historically been under-studied compared with primary CRC despite its lethality. We delve into two crucial aspects: the molecular and cellular determinants facilitating CRC metastasis and the principles guiding the evolution of metastatic disease. Initially, we examine the genetic alterations integral to CRC metastasis, connecting them to clinically marked characteristics of advanced CRC. Subsequently, we scrutinize the role of cellular heterogeneity and plasticity in metastatic spread and therapy resistance. Finally, we explore how the tumour microenvironment influences metastatic disease, emphasizing the effect of stromal gene programmes and the immune context. The ongoing research in these fields holds immense importance, as its future implications are projected to revolutionize the treatment of patients with mCRC, hopefully offering a promising outlook for their survival.
Collapse
Affiliation(s)
- Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
40
|
Zhang Y, Liu G, Zeng Q, Wu W, Lei K, Zhang C, Tang M, Zhang Y, Xiang X, Tan L, Cui R, Qin S, Song X, Yin C, Chen Z, Kuang M. CCL19-producing fibroblasts promote tertiary lymphoid structure formation enhancing anti-tumor IgG response in colorectal cancer liver metastasis. Cancer Cell 2024; 42:1370-1385.e9. [PMID: 39137726 DOI: 10.1016/j.ccell.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/05/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
Tertiary lymphoid structures (TLSs) are associated with enhanced immunity in tumors. However, their formation and functions in colorectal cancer liver metastasis (CRLM) remain unclear. Here, we reveal that intra- and peri-tumor mature TLSs (TLS+) are associated with improved clinical outcomes than TLS- tumors. Using single-cell-RNA-sequencing and spatial-enhanced-resolution-omics-sequencing (Stereo-seq), we reveal that TLS+ tumors are enriched with IgG+ plasma cells (PCs), while TLS- tumors are characterized with IgA+ PCs. By generating TLS-associated PC-derived monoclonal antibodies in vitro, we show that TLS-PCs secrete tumor-targeting antibodies. As the proof-of-concept, we demonstrate the anti-tumor activities of TLS-PC-mAb6 antibody in humanized mouse model of colorectal cancer. We identify a fibroblast lineage secreting CCL19 that facilitates lymphocyte trafficking to TLSs. CCL19 treatment promotes TLS neogenesis and prevents tumor growth in mice. Our data uncover the central role of CCL19+ fibroblasts in TLS formation, which in turn generates therapeutic antibodies to restrict CRLM.
Collapse
Affiliation(s)
- Yifan Zhang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Guangjian Liu
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Qianwen Zeng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenrui Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Kai Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chuankai Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Miaoling Tang
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuting Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao Xiang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Li Tan
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Cui
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Si Qin
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xinming Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Changjun Yin
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, 80336 Munich, Germany.
| | - Zhihang Chen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Sun Yat-sen University Zhongshan School of Medicine, Guangzhou 510080, China.
| |
Collapse
|
41
|
Prakash J, Shaked Y. The Interplay between Extracellular Matrix Remodeling and Cancer Therapeutics. Cancer Discov 2024; 14:1375-1388. [PMID: 39091205 PMCID: PMC11294818 DOI: 10.1158/2159-8290.cd-24-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 08/04/2024]
Abstract
The extracellular matrix (ECM) is an abundant noncellular component of most solid tumors known to support tumor progression and metastasis. The interplay between the ECM and cancer therapeutics opens up new avenues in understanding cancer biology. While the ECM is known to protect the tumor from anticancer agents by serving as a biomechanical barrier, emerging studies show that various cancer therapies induce ECM remodeling, resulting in therapy resistance and tumor progression. This review discusses critical issues in this field including how the ECM influences treatment outcome, how cancer therapies affect ECM remodeling, and the challenges associated with targeting the ECM. Significance: The intricate relationship between the extracellular matrix (ECM) and cancer therapeutics reveals novel insights into tumor biology and its effective treatment. While the ECM may protect tumors from anti-cancer agents, recent research highlights the paradoxical role of therapy-induced ECM remodeling in promoting treatment resistance and tumor progression. This review explores the key aspects of the interplay between ECM and cancer therapeutics.
Collapse
Affiliation(s)
- Jai Prakash
- Engineered Therapeutics Group, Department of Advanced Organ Bioengineering and Therapeutics, Technical Medical Centre, University of Twente, Enschede, the Netherlands.
| | - Yuval Shaked
- Rappaport Faculty of Medicine, Rappaport-Technion Integrated Cancer Center, Technion – Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
42
|
Hou Y, Zhang F, Zong J, Li T, Gan W, Lv S, Yan Z, Zeng Z, Yang L, Zhou M, Zhao W, Yang M. Integrated analysis reveals a novel 5-fluorouracil resistance-based prognostic signature with promising implications for predicting the efficacy of chemotherapy and immunotherapy in patients with colorectal cancer. Apoptosis 2024; 29:1126-1144. [PMID: 38824480 DOI: 10.1007/s10495-024-01981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND 5-Fluorouracil (5-FU) has been used as a standard first-line treatment for colorectal cancer (CRC) patients. Although 5-FU-based chemotherapy and immune checkpoint blockade (ICB) have achieved success in treating CRC, drug resistance and low response rates remain substantial limitations. Thus, it is necessary to construct a 5-FU resistance-related signature (5-FRSig) to predict patient prognosis and identify ideal patients for chemotherapy and immunotherapy. METHODS Using bulk and single-cell RNA sequencing data, we established and validated a novel 5-FRSig model using stepwise regression and multiple CRC cohorts and evaluated its associations with the prognosis, clinical features, immune status, immunotherapy, neoadjuvant therapy, and drug sensitivity of CRC patients through various bioinformatics algorithms. Unsupervised consensus clustering was performed to categorize the 5-FU resistance-related molecular subtypes of CRC. The expression levels of 5-FRSig, immune checkpoints, and immunoregulators were determined using quantitative real-time polymerase chain reaction (RT‒qPCR). Potential small-molecule agents were identified via Connectivity Map (CMap) and molecular docking. RESULTS The 5-FRSig and cluster were confirmed as independent prognostic factors in CRC, as patients in the low-risk group and Cluster 1 had a better prognosis. Notably, 5-FRSig was significantly associated with 5-FU sensitivity, chemotherapy response, immune cell infiltration, immunoreactivity phenotype, immunotherapy efficiency, and drug selection. We predicted 10 potential compounds that bind to the core targets of 5-FRSig with the highest affinity. CONCLUSION We developed a valid 5-FRSig to predict the prognosis, chemotherapeutic response, and immune status of CRC patients, thus optimizing the therapeutic benefits of chemotherapy combined with immunotherapy, which can facilitate the development of personalized treatments and novel molecular targeted therapies for patients with CRC.
Collapse
Affiliation(s)
- Yufang Hou
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Fang Zhang
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jinbao Zong
- Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- Qingdao Hospital of Traditional Chinese Medicine, The affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, 266033, China
| | - Tiegang Li
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenqiang Gan
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Silin Lv
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zheng Yan
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zifan Zeng
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Liu Yang
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingxuan Zhou
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenyi Zhao
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Min Yang
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China.
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
43
|
Borrelli C, Roberts M, Eletto D, Hussherr MD, Fazilaty H, Valenta T, Lafzi A, Kretz JA, Guido Vinzoni E, Karakatsani A, Adivarahan S, Mannhart A, Kimura S, Meijs A, Baccouche Mhamedi F, Acar IE, Handler K, Ficht X, Platt RJ, Piscuoglio S, Moor AE. In vivo interaction screening reveals liver-derived constraints to metastasis. Nature 2024; 632:411-418. [PMID: 39048831 PMCID: PMC11306111 DOI: 10.1038/s41586-024-07715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
It is estimated that only 0.02% of disseminated tumour cells are able to seed overt metastases1. While this suggests the presence of environmental constraints to metastatic seeding, the landscape of host factors controlling this process remains largely unclear. Here, combining transposon technology2 and fluorescence niche labelling3, we developed an in vivo CRISPR activation screen to systematically investigate the interactions between hepatocytes and metastatic cells. We identify plexin B2 as a critical host-derived regulator of liver colonization in colorectal and pancreatic cancer and melanoma syngeneic mouse models. We dissect a mechanism through which plexin B2 interacts with class IV semaphorins on tumour cells, leading to KLF4 upregulation and thereby promoting the acquisition of epithelial traits. Our results highlight the essential role of signals from the liver parenchyma for the seeding of disseminated tumour cells before the establishment of a growth-promoting niche. Our findings further suggest that epithelialization is required for the adaptation of CRC metastases to their new tissue environment. Blocking the plexin-B2-semaphorin axis abolishes metastatic colonization of the liver and therefore represents a therapeutic strategy for the prevention of hepatic metastases. Finally, our screening approach, which evaluates host-derived extrinsic signals rather than tumour-intrinsic factors for their ability to promote metastatic seeding, is broadly applicable and lays a framework for the screening of environmental constraints to metastasis in other organs and cancer types.
Collapse
Affiliation(s)
- Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Morgan Roberts
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Davide Eletto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Atefeh Lafzi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elena Guido Vinzoni
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Ardian Mannhart
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shoichiro Kimura
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ab Meijs
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Ilhan E Acar
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Salvatore Piscuoglio
- IRCCS Humanitas Research Hospital, Milan, Italy
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
44
|
Chen Y, Liang Z, Lai M. Targeting the devil: Strategies against cancer-associated fibroblasts in colorectal cancer. Transl Res 2024; 270:81-93. [PMID: 38614213 DOI: 10.1016/j.trsl.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Cancer-associated fibroblasts (CAFs), as significant constituents of the tumor microenvironment (TME), play a pivotal role in the progression of cancers, including colorectal cancer (CRC). In this comprehensive review, we presented the origins and activation mechanisms of CAFs in CRC, elaborating on how CAFs drive tumor progression through their interactions with CRC cells, immune cells, vascular endothelial cells, and the extracellular matrix within the TME. We systematically outline the intricate web of interactions among CAFs, tumor cells, and other TME components, and based on this complex interplay, we summarize various therapeutic strategies designed to target CAFs in CRC. It is also essential to recognize that CAFs represent a highly heterogeneous group, encompassing various subtypes such as myofibroblastic CAF (myCAF), inflammatory CAF (iCAF), antigen-presenting CAF (apCAF), vessel-associated CAF (vCAF). Herein, we provide a summary of studies investigating the heterogeneity of CAFs in CRC and the characteristic expression patterns of each subtype. While the majority of CAFs contribute to the exacerbation of CRC malignancy, recent findings have revealed specific subtypes that exert inhibitory effects on CRC progression. Nevertheless, the comprehensive landscape of CAF heterogeneity still awaits exploration. We also highlight pivotal unanswered questions that need to be addressed before CAFs can be recognized as feasible targets for cancer treatment. In conclusion, the aim of our review is to elucidate the significance and challenges of advancing in-depth research on CAFs, while outlining the pathway to uncover the complex roles of CAFs in CRC and underscore their significant potential as therapeutic targets.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Pathology, and Department of Pathology of Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Maode Lai
- Department of Pathology, and Department of Pathology of Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, 310058, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
45
|
Chen R, Zhou J, Chen B. Imputing abundance of over 2500 surface proteins from single-cell transcriptomes with context-agnostic zero-shot deep ensembles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605432. [PMID: 39131290 PMCID: PMC11312525 DOI: 10.1101/2024.07.31.605432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cell surface proteins serve as primary drug targets and cell identity markers. The emergence of techniques like CITE-seq has enabled simultaneous quantification of surface protein abundance and transcript expression for multimodal data analysis within individual cells. The published data have been utilized to train machine learning models for predicting surface protein abundance based solely from transcript expression. However, the small scale of proteins predicted and the poor generalization ability for these computational approaches across diverse contexts, such as different tissues or disease states, impede their widespread adoption. Here we propose SPIDER (surface protein prediction using deep ensembles from single-cell RNA-seq), a context-agnostic zero-shot deep ensemble model, which enables the large-scale prediction of cell surface protein abundance and generalizes better to various contexts. Comprehensive benchmarking shows that SPIDER outperforms other state-of-the-art methods. Using the predicted surface abundance of >2500 proteins from single-cell transcriptomes, we demonstrate the broad applications of SPIDER including cell type annotation, biomarker/target identification, and cell-cell interaction analysis in hepatocellular carcinoma and colorectal cancer.
Collapse
Affiliation(s)
- Ruoqiao Chen
- Department of Pharmacology and Toxicology, Michigan State University, MI, USA
| | - Jiayu Zhou
- Department of Computer Science and Engineering, Michigan State University, MI, USA
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Department of Pediatrics and Human Development, Michigan State University, MI, USA
| |
Collapse
|
46
|
Yin J, Zhu W, Feng S, Yan P, Qin S. The role of cancer-associated fibroblasts in the invasion and metastasis of colorectal cancer. Front Cell Dev Biol 2024; 12:1375543. [PMID: 39139454 PMCID: PMC11319178 DOI: 10.3389/fcell.2024.1375543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and has ranked the third leading cause in cancerassociated death globally. Metastasis is the leading cause of death in colorectal cancer patients. The role of tumor microenvironment (TME) in colorectal cancer metastasis has received increasing attention. As the most abundant cell type in the TME of solid tumors, cancer-associated fibroblasts (CAFs) have been demonstrated to have multiple functions in advancing tumor growth and metastasis. They can remodel the extracellular matrix (ECM) architecture, promote epithelial-mesenchymal transition (EMT), and interact with cancer cells or other stromal cells by secreting growth factors, cytokines, chemokines, and exosomes, facilitating tumor cell invasion into TME and contributing to distant metastasis. This article aims to analyze the sources and heterogeneity of CAFs in CRC, as well as their role in invasion and metastasis, in order to provide new insights into the metastasis mechanism of CRC and its clinical applications.
Collapse
Affiliation(s)
- Jinjin Yin
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Zhu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Senling Feng
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pengke Yan
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shumin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
47
|
Ran R, Trapecar M, Brubaker DK. Systematic Analysis of Human Colorectal Cancer scRNA-seq Revealed Limited Pro-tumoral IL-17 Production Potential in Gamma Delta T Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604156. [PMID: 39071278 PMCID: PMC11275756 DOI: 10.1101/2024.07.18.604156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Gamma delta (γδ) T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin- 17 (IL-17) within the tumor microenvironment (TME) of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing (scRNA-seq) datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including Teff, TRM, Tpex, and Tex, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH
| |
Collapse
|
48
|
Zeng Z, Ma Y, Hu L, Tan B, Liu P, Wang Y, Xing C, Xiong Y, Du H. OmicVerse: a framework for bridging and deepening insights across bulk and single-cell sequencing. Nat Commun 2024; 15:5983. [PMID: 39013860 PMCID: PMC11252408 DOI: 10.1038/s41467-024-50194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Single-cell sequencing is frequently affected by "omission" due to limitations in sequencing throughput, yet bulk RNA-seq may contain these ostensibly "omitted" cells. Here, we introduce the single cell trajectory blending from Bulk RNA-seq (BulkTrajBlend) algorithm, a component of the OmicVerse suite that leverages a Beta-Variational AutoEncoder for data deconvolution and graph neural networks for the discovery of overlapping communities. This approach effectively interpolates and restores the continuity of "omitted" cells within single-cell RNA sequencing datasets. Furthermore, OmicVerse provides an extensive toolkit for both bulk and single cell RNA-seq analysis, offering seamless access to diverse methodologies, streamlining computational processes, fostering exquisite data visualization, and facilitating the extraction of significant biological insights to advance scientific research.
Collapse
Affiliation(s)
- Zehua Zeng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.
| | - Yuqing Ma
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, China
- Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, China
| | - Lei Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Bowen Tan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Peng Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yixuan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Cencan Xing
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun-Yat-Sen University, Guangzhou, Guangdong, China.
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
49
|
Coulton A, Murai J, Qian D, Thakkar K, Lewis CE, Litchfield K. Using a pan-cancer atlas to investigate tumour associated macrophages as regulators of immunotherapy response. Nat Commun 2024; 15:5665. [PMID: 38969631 PMCID: PMC11226649 DOI: 10.1038/s41467-024-49885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
The paradigm for macrophage characterization has evolved from the simple M1/M2 dichotomy to a more complex model that encompasses the broad spectrum of macrophage phenotypic diversity, due to differences in ontogeny and/or local stimuli. We currently lack an in-depth pan-cancer single cell RNA-seq (scRNAseq) atlas of tumour-associated macrophages (TAMs) that fully captures this complexity. In addition, an increased understanding of macrophage diversity could help to explain the variable responses of cancer patients to immunotherapy. Our atlas includes well established macrophage subsets as well as a number of additional ones. We associate macrophage composition with tumour phenotype and show macrophage subsets can vary between primary and metastatic tumours growing in sites like the liver. We also examine macrophage-T cell functional cross talk and identify two subsets of TAMs associated with T cell activation. Analysis of TAM signatures in a large cohort of immune checkpoint inhibitor-treated patients (CPI1000 + ) identify multiple TAM subsets associated with response, including the presence of a subset of TAMs that upregulate collagen-related genes. Finally, we demonstrate the utility of our data as a resource and reference atlas for mapping of novel macrophage datasets using projection. Overall, these advances represent an important step in both macrophage classification and overcoming resistance to immunotherapies in cancer.
Collapse
Affiliation(s)
- Alexander Coulton
- The Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Jun Murai
- The Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Danwen Qian
- The Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Krupa Thakkar
- The Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Claire E Lewis
- Department of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, Sheffield, Yorkshire, S10 2RX, UK.
| | - Kevin Litchfield
- The Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, WC1E 6DD, UK.
| |
Collapse
|
50
|
Yang S, Zhang D, Sun Q, Nie H, Zhang Y, Wang X, Huang Y, Sun Y. Single-Cell and Spatial Transcriptome Profiling Identifies the Transcription Factor BHLHE40 as a Driver of EMT in Metastatic Colorectal Cancer. Cancer Res 2024; 84:2202-2217. [PMID: 38657117 DOI: 10.1158/0008-5472.can-23-3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/14/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Colorectal cancer is one of the most common malignant tumors in humans, with liver metastasis being the primary cause of mortality. The epithelial-mesenchymal transition (EMT) process endows cancer cells with enhanced metastatic potential. To elucidate the cellular mechanisms driving EMT in colorectal cancer, we analyzed single-cell RNA sequencing data from 11 nonmetastatic primary tumors (TnM) and 11 metastatic primary tumors (TM) from colorectal cancer patients. Compared with the TnM group, the TM samples showed elevated numbers of malignant epithelial cell and cancer-associated fibroblast (CAF) subsets that displayed enrichments of EMT, angiogenesis, and TGFβ signaling pathways. One specific TM-enriched subgroup of malignant epithelial cells underwent EMT to transdifferentiate into CXCL1+ CAFs that subsequently differentiated into SFRP2+ CAFs, which was validated by spatial transcriptomic and pseudotime trajectory analyses. Furthermore, cell-cell communication analysis identified BHLHE40 as a probable key transcription factor driving EMT that was associated with poor prognosis. Finally, in vitro and in vivo experiments functionally substantiated that BHLHE40 promoted the proliferation, invasion, migration, EMT, and liver metastasis of colorectal cancer cells. In summary, this study identified BHLHE40 as a key transcription factor regulating EMT that promotes liver metastasis in colorectal cancer. Significance: Integrated analysis of single-cell RNA sequencing and spatial transcriptomics in metastatic colorectal cancer provides insights into the mechanisms underlying EMT and cancer-associated fibroblast differentiation, which could help improve patient diagnosis and treatment.
Collapse
Affiliation(s)
- Sheng Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Dongsheng Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Qingyang Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Hongxu Nie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Yue Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Xiaowei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Yuanjian Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| |
Collapse
|