1
|
Zhao K, Zhang Y, Liao Z, Zhang W, Li G, Shi P, Cheng Z, Chen Y, Li S, Wang K, Song Y, Feng X, An R, Yang C. Melatonin mitigates intervertebral disc degeneration by suppressing NLRP3 inflammasome activation via the EGR1/DDX3X pathway. FASEB J 2024; 38:e70143. [PMID: 39708233 DOI: 10.1096/fj.202302453rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 12/23/2024]
Abstract
Intervertebral disc degeneration (IVDD), is one of the leading causes of low back pain. Inflammation is considered to be the main pathophysiological process of IVDD. The nucleotide-binding domain and leucine-rich pyrin domain containing 3 (NLRP3) inflammasome-mediated inflammatory responses are critically involved in the progression of IVDD. Melatonin is known for its anti-inflammatory and antioxidant effects. However, little is known about the potential effects of melatonin in the pathological process of IVDD. We found that the expression of EGR1, DDX3X, and NLRP3 inflammasome increased and extracellular matrix (ECM) degraded in IVDD. With the application of EGR1 siRNA, the expression of DDX3X and the activation of NLRP3 inflammasome were inhibited in stress-induced NP cells. DDX3X/NLRP3 was regulated on dependence of EGR1. Besides, the utility of melatonin mitigated the EGR1-induced overproduction of DDX3X and activation of NLRP3 inflammasome, thus protecting cells from pyroptosis and ECM degradation. In vivo, in a rat IVDD model, melatonin was found to be able to delay the development of IVDD by imageological and histological evaluation. In conclusion, our study demonstrated that melatonin prevented IVDD progression by regulating EGR1/DDX3X/NLRP3 axis. Our study provides insight into melatonin as a new target for therapeutic approaches for IVDD.
Collapse
Affiliation(s)
- Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Ruengket P, Roytrakul S, Tongthainan D, Boonnak K, Taruyanon K, Sangkharak B, Fungfuang W. Analysis of the serum proteome profile of wild stump-tailed macaques ( Macaca arctoides) seropositive for Zika virus antibodies in Thailand. Front Vet Sci 2024; 11:1463160. [PMID: 39600882 PMCID: PMC11588686 DOI: 10.3389/fvets.2024.1463160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Zika virus (ZIKV) is a member of the Flaviviridae virus family and poses a significant global health concern. ZIKV is transmitted by Aedes mosquitoes, and it has been implicated in various neurological conditions associated with fetal brain development. ZIKV has two transmission cycles: a sylvatic cycle in which nonhuman primates are infected via arboreal mosquito bites, and an interhuman (urban) cycle in which the virus is transmitted among primates by Aedes mosquitoes. ZIKV was first discovered in wild macaques, and the danger posed by the virus is increased due to the close proximity between humans and wild animals in modern society. However, data regarding the extent and role of infection in nonhuman primates are limited. Thus, there is an urgent need for improved surveillance, diagnostic methods, and public health interventions to effectively combat ZIKV transmission and its associated health impacts in Southeast Asia. In this study, we used a proteomics and bioinformatics approach to profile serum proteins in wild stump-tailed macaques seropositive for neutralizing antibodies against ZIKV. A total of 9,532 total proteins were identified, and 338 differentially expressed proteins were identified between naïve and seropositive animals. A total of 52 important proteins were used to construct a serum proteomic profile. These 52 important proteins were associated with immune and inflammatory responses (36.54%), neurological damage (23.08%), viral activities (21.15%), the apoptosis signaling pathway (9.61%), and other pathways (9.61%). Our proteomic profile identified proteins that inhibit the apoptosis pathway, intracellular resource competition with the virus, and neurological damage due to ZIKV and the host immune and defense responses.
Collapse
Affiliation(s)
- Pakorn Ruengket
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, The Rajamangala University of Technology Tawan-ok, Chonburi, Thailand
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokwan Taruyanon
- Wildlife Conservation Division Protected Areas Regional Office 3, Department of National Parks, Wildlife and Plant Conservation, Ratchaburi, Thailand
| | - Bencharong Sangkharak
- Wildlife Conservation Division, Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Wirasak Fungfuang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Cai J, Li C, Liu S, Tan M, Sun Y, Sun X, Yang M, He B. Angiogenin-mediated tsRNAs control inflammation and metabolic disorder by regulating NLRP3 inflammasome. Cell Death Differ 2024; 31:1057-1069. [PMID: 38740959 PMCID: PMC11303556 DOI: 10.1038/s41418-024-01311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
The cellular stress response system in immune cells plays a crucial role in regulating the development of inflammatory diseases. In response to cellular damage or microbial infection, the assembly of the NLRP3 inflammasome induces pyroptosis and the release of inflammatory cytokines. Meanwhile, Angiogenin (Ang)-mediated transfer RNA-derived small RNAs (tsRNAs) promote cell survival under stressful conditions. While both tsRNAs and inflammasomes are induced under stress conditions, the interplay between these two systems and their implications in regulating inflammatory diseases remains poorly understood. In this study, it was demonstrated that Ang deficiency exacerbated sodium arsenite-induced activation of NLRP3 inflammasome and pyroptosis. Moreover, Ang-induced 5'-tsRNAs inhibited NLRP3 inflammasome activation and pyroptosis. Mechanistically, 5'-tsRNAs recruit DDX3X protein into stress granules (SGs), consequently inhibiting the interaction between DDX3X and NLRP3, thus leading to the suppression of NLRP3 inflammasome activation. Furthermore, in vivo results showed that Ang deficiency led to the downregulation of tsRNAs, ultimately leading to an exacerbation of NLRP3 inflammasome-dependent inflammation, including lipopolysaccharide-induced systemic inflammation and type-2 diabetes-related inflammation. Altogether, our study sheds a new light on the role of Ang-induced 5'-tsRNAs in regulating NLRP3 inflammasome activation via SGs, and highlights tsRNAs as a promising target for the treatment of NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Jiangxue Cai
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chenxuan Li
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Suyuan Liu
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Meiling Tan
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yiran Sun
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaoxiao Sun
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Miaoxin Yang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
4
|
Liang Z, Damianou A, Vendrell I, Jenkins E, Lassen FH, Washer SJ, Grigoriou A, Liu G, Yi G, Lou H, Cao F, Zheng X, Fernandes RA, Dong T, Tate EW, Di Daniel E, Kessler BM. Proximity proteomics reveals UCH-L1 as an essential regulator of NLRP3-mediated IL-1β production in human macrophages and microglia. Cell Rep 2024; 43:114152. [PMID: 38669140 DOI: 10.1016/j.celrep.2024.114152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Activation of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome complex is an essential innate immune signaling mechanism. To reveal how human NLRP3 inflammasome assembly and activation are controlled, in particular by components of the ubiquitin system, proximity labeling, affinity purification, and RNAi screening approaches were performed. Our study provides an intricate time-resolved molecular map of different phases of NLRP3 inflammasome activation. Also, we show that ubiquitin C-terminal hydrolase 1 (UCH-L1) interacts with the NACHT domain of NLRP3. Downregulation of UCH-L1 decreases pro-interleukin-1β (IL-1β) levels. UCH-L1 chemical inhibition with small molecules interfered with NLRP3 puncta formation and ASC oligomerization, leading to altered IL-1β cleavage and secretion, particularly in microglia cells, which exhibited elevated UCH-L1 expression as compared to monocytes/macrophages. Altogether, we profiled NLRP3 inflammasome activation dynamics and highlight UCH-L1 as an important modulator of NLRP3-mediated IL-1β production, suggesting that a pharmacological inhibitor of UCH-L1 may decrease inflammation-associated pathologies.
Collapse
Affiliation(s)
- Zhu Liang
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| | - Andreas Damianou
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Iolanda Vendrell
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Edward Jenkins
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Frederik H Lassen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Sam J Washer
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Athina Grigoriou
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Guihai Liu
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Gangshun Yi
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Hantao Lou
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Fangyuan Cao
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Xiaonan Zheng
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Ricardo A Fernandes
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Tao Dong
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Elena Di Daniel
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Benedikt M Kessler
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| |
Collapse
|
5
|
Yang S, Zhou L, Zhao T, Zhu H, Luo T, Jiang K, Shi X, Chen C, Zhang H, Zhao S, Zou X, Zhuge Y, Wang F, Wang L, Jiang M, Xu B. Protective and Adverse Roles of DDX3X in Different Cell Types in Nonalcoholic Steatohepatitis Progression. RESEARCH (WASHINGTON, D.C.) 2023; 6:0275. [PMID: 38090607 PMCID: PMC10712874 DOI: 10.34133/research.0275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/09/2023] [Indexed: 04/19/2025]
Abstract
Persistent hepatic cellular metabolic stress and liver inflammatory stimuli are key signatures of nonalcoholic steatohepatitis (NASH). DDX3X is a vital molecule involved in cell fate decisions in both pro-survival stress granule (SG) and pro-death NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome assembly in response to stress signals. However, the role of DDX3X in NASH remains unclear. We characterized the cell type-specific roles of DDX3X in NASH. Human liver tissues from NASH patients and normal control subjects were collected to assess DDX3X expression and distribution. Nutritional steatohepatitis models were constructed by feeding macrophage-specific DDX3X knockout (DDX3XΔMφ), hepatocyte-specific DDX3X knockout (DDX3XΔhep), and wild-type control (DDX3Xfl/fl) mice a high-fat and high-cholesterol (HFHC) diet, a methionine- and choline-deficient (MCD) diet, and a high-fat/high-iron/high-fructose/high-cholesterol, low-methionine, and choline-deficient (HFHIHFHC-MCD) diet. The study demonstrated that DDX3X was predominantly expressed in macrophages and hepatocytes in control liver tissues, and its expression was down-regulated in patients or mice with NASH. Compared to DDX3Xfl/fl littermates, DDX3XΔMφ mice showed improved liver histology in nutritional steatohepatitis models. Loss of macrophage DDX3X inhibited NLRP3 inflammasome-mediated pyroptosis, causing anti-inflammatory M2 polarization and alleviating hepatocyte steatohepatitic changes. DDX3XΔhep mice developed marked steatohepatitis in multiple nutritional steatohepatitis models compared to DDX3Xfl/fl littermates. DDX3X-deleted hepatocytes showed impaired SG assembly, leading to increased sensitivity and intolerance to metabolic stimulation and resultant steatohepatitis. In conclusion, DDX3X plays opposite roles in different cell types during the progression of NASH. A better understanding of the cell-specific differences in the crosstalk between SG formation and NLRP3 activation is crucial for developing prospective targeted DDX3X inhibitors for the treatment of NASH.
Collapse
Affiliation(s)
- Suzhen Yang
- Department of Gastroenterology,
the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| | - Lin Zhou
- Department of Gastroenterology,
the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| | - Tianming Zhao
- Department of Gastroenterology,
the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
- Department of Gastroenterology,
Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangsu, Nanjing, 210008, China
| | - Hanlong Zhu
- Department of Gastroenterology and Hepatology,
the Affiliated Jinling Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| | - Tingting Luo
- School of Medicine,
Northwest University, Shaanxi, Xi’an, 710069, China
| | - Kang Jiang
- Department of Gastroenterology and Hepatology,
the Affiliated Jinling Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| | - Xiaoxiao Shi
- Department of Gastroenterology and Hepatology,
the Affiliated Jinling Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| | - Chunyan Chen
- Department of Gastroenterology and Hepatology,
the Affiliated Jinling Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| | - Han Zhang
- Department of Gastroenterology,
the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| | - Si Zhao
- Department of Gastroenterology,
the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| | - Xiaoping Zou
- Department of Gastroenterology,
the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| | - Yuzheng Zhuge
- Department of Gastroenterology,
the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| | - Fangyu Wang
- Department of Gastroenterology and Hepatology,
the Affiliated Jinling Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| | - Lei Wang
- Department of Gastroenterology,
the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| | - Mingzuo Jiang
- Department of Gastroenterology and Hepatology,
the Affiliated Jinling Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| | - Bing Xu
- Department of Gastroenterology,
the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, Nanjing, 210002, China
| |
Collapse
|
6
|
Xu Y, Yang Y, Chen X, Jiang D, Zhang F, Guo Y, Hu B, Xu G, Peng S, Wu L, Hu J. NLRP3 inflammasome in cognitive impairment and pharmacological properties of its inhibitors. Transl Neurodegener 2023; 12:49. [PMID: 37915104 PMCID: PMC10621314 DOI: 10.1186/s40035-023-00381-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Cognitive impairment is a multifactorial and multi-step pathological process that places a heavy burden on patients and the society. Neuroinflammation is one of the main factors leading to cognitive impairment. The inflammasomes are multi-protein complexes that respond to various microorganisms and endogenous danger signals, helping to initiate innate protective responses in inflammatory diseases. NLRP3 inflammasomes produce proinflammatory cytokines (interleukin IL-1β and IL-18) by activating caspase-1. In this review, we comprehensively describe the structure and functions of the NLRP3 inflammasome. We also explore the intrinsic relationship between the NLRP3 inflammasome and cognitive impairment, which involves immune cell activation, cell apoptosis, oxidative stress, mitochondrial autophagy, and neuroinflammation. Finally, we describe NLRP3 inflammasome antagonists as targeted therapies to improve cognitive impairment.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, Department of the Second Clinical Medical College of Nanchang University, Nanchang, 330006, China
| | - Yanling Yang
- The Second Affiliated Hospital of Nanchang University, Department of the Second Clinical Medical College of Nanchang University, Nanchang, 330006, China
| | - Xi Chen
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fei Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yao Guo
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
7
|
Hao W, Zhu X, Liu Z, Song Y, Wu S, Lu X, Yang J, Jin C. Aluminum exposure induces central nervous system impairment via activating NLRP3-medicated pyroptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115401. [PMID: 37634479 DOI: 10.1016/j.ecoenv.2023.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE Aluminum is an environmental toxicant whose long-term exposure is closely associated with nervous system impairment. This study mainly investigated neurological impairment induced by subchronic aluminum exposure via activating NLRP3-medicated pyroptosis pathway. METHODS In vivo, Kunming mice were exposed to AlCl3 (30.3 mg/kg, 101 mg/kg and 303 mg/kg) via drinking water for 3 months, and administered with Rsv (100 mg/kg) by gavage for 1 month. Cognitive impairment was assessed by Morris water maze test, and pathological injury was detected via H&E staining. BBB integrity, pyroptosis and neuroinflammation were evaluated through western blotting and immunofluorescence methods. In vitro, BV2 microglia was treated with AlCl3 (0.5 mM, 1 mM and 2 mM) to sensitize pyroptosis pathway. The protein interaction was verified by co-immunoprecipitation, and neuronal damage was estimated via a conditioned medium co-culture system with BV2 and TH22 cells. RESULTS Our results showed that AlCl3 induced mice memory disorder, BBB destruction, and pathological injury. Besides, aluminum caused glial activation, sensitized DDX3X-NLRP3 pyroptosis pathway, released cytokines IL-1β and IL-18, initiating neuroinflammation. BV2 microglia treated with AlCl3 emerged hyperactivation and pyroptotic death, and Ddx3x knockdown inhibited pyroptosis signaling pathway. DDX3X acted as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome and G3BP1 stress granules. Furthermore, aluminum-activated microglia had an adverse effect on co-cultured neurons and destroyed nervous system homeostasis. CONCLUSION Aluminum exposure could induce pyroptosis and neurotoxicity. DDX3X determined live or die via selectively regulating pro-survival stress granules or pro-death NLRP3 inflammasome. Excessive activation of microglia might damage neurons and aggravate nerve injury.
Collapse
Affiliation(s)
- Wudi Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China; Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaoying Zhu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Ziyue Liu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yushuai Song
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Luo T, Yang S, Zhao T, Zhu H, Chen C, Shi X, Chen D, Wang K, Jiang K, Xu D, Cheng M, Li J, Li W, Xu W, Zhou L, Jiang M, Xu B. Hepatocyte DDX3X protects against drug-induced acute liver injury via controlling stress granule formation and oxidative stress. Cell Death Dis 2023; 14:400. [PMID: 37407573 DOI: 10.1038/s41419-023-05913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Drug-induced liver injury (DILI) is the leading cause of acute liver failure (ALF). Continuous and prolonged hepatic cellular oxidative stress and liver inflammatory stimuli are key signatures of DILI. DEAD-box helicase 3, X-linked (DDX3X) is a central regulator in pro-survival stress granule (SG) assembly in response to stress signals. However, the role of DDX3X in DILI remains unknown. Herein, we characterized the hepatocyte-specific role of DDX3X in DILI. Human liver tissues of DILI patients and control subjects were used to evaluate DDX3X expression. APAP, CCl4 and TAA models of DILI were established and compared between hepatocyte-specific DDX3X knockout (DDX3XΔhep) and wild-type control (DDX3Xfl/fl) mice. Hepatic expression of DDX3X was significantly decreased in the pathogenesis of DILI compared with controls in human and mice. Compared to DDX3Xfl/fl mice, DDX3XΔhep mice developed significant liver injury in multiple DILI models. DDX3X deficiency aggravates APAP induced oxidative stress and hepatocyte death by affecting the pro-survival stress granule (SG) assembly. Moreover, DDX3X deficiency induces inflammatory responses and causes pronounced macrophage infiltration. The use of targeted DDX3X drug maybe promising for the treatment of DILI in human.
Collapse
Affiliation(s)
- Tingting Luo
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, 710069, China
| | - Suzhen Yang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Tianming Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210008, Jiangsu, China
| | - Hanlong Zhu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China
| | - Chunyan Chen
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China
| | - Xiaoxiao Shi
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China
| | - Di Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, the Air-Force Military Medical University, Shaanxi, Xi'an, 710032, China
| | - Kai Wang
- Department of Gastroenterology, 949th Hospital of Chinese People's Liberation Army, Xinjiang, Altay, 836500, China
| | - Kang Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China
| | - Dan Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Ming Cheng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Juan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Wenting Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Weijun Xu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China.
| | - Lin Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China.
| | - Mingzuo Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China.
| | - Bing Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, 710069, China.
| |
Collapse
|
9
|
Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F, Zhang L. Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 2022; 19:971-992. [PMID: 35970871 PMCID: PMC9376585 DOI: 10.1038/s41423-022-00905-x] [Citation(s) in RCA: 358] [Impact Index Per Article: 119.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Pyroptosis is a form of programmed cell death mediated by gasdermin and is a product of continuous cell expansion until the cytomembrane ruptures, resulting in the release of cellular contents that can activate strong inflammatory and immune responses. Pyroptosis, an innate immune response, can be triggered by the activation of inflammasomes by various influencing factors. Activation of these inflammasomes can induce the maturation of caspase-1 or caspase-4/5/11, both of which cleave gasdermin D to release its N-terminal domain, which can bind membrane lipids and perforate the cell membrane. Here, we review the latest advancements in research on the mechanisms of pyroptosis, newly discovered influencing factors, antitumoral properties, and applications in various diseases. Moreover, this review also provides updates on potential targeted therapies for inflammation and cancers, methods for clinical prevention, and finally challenges and future directions in the field.
Collapse
Affiliation(s)
- Xiang Wei
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Feng Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, PR China
| | - Xiaoxue Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Haiyan Yan
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, PR China
| | - Ting Liu
- Department of Cell Biology and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, PR China
| | - Jun Huang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang, 310030, PR China.
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Fangwei Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, PR China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
10
|
Gupta A, Galinski MR, Voit EO. Dynamic Control Balancing Cell Proliferation and Inflammation is Crucial for an Effective Immune Response to Malaria. Front Mol Biosci 2022; 8:800721. [PMID: 35242812 PMCID: PMC8886244 DOI: 10.3389/fmolb.2021.800721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria has a complex pathology with varying manifestations and symptoms, effects on host tissues, and different degrees of severity and ultimate outcome, depending on the causative Plasmodium pathogen and host species. Previously, we compared the peripheral blood transcriptomes of two macaque species (Macaca mulatta and Macaca fascicularis) in response to acute primary infection by Plasmodium knowlesi. Although these two species are very closely related, the infection in M. mulatta is fatal, unless aggressively treated, whereas M. fascicularis develops a chronic, but tolerable infection in the blood. As a reason for this stark difference, our analysis suggests delayed pathogen detection in M. mulatta followed by extended inflammation that eventually overwhelms this monkey’s immune response. By contrast, the natural host M. fascicularis detects the pathogen earlier and controls the inflammation. Additionally, M. fascicularis limits cell proliferation pathways during the log phase of infection, presumably in an attempt to control inflammation. Subsequent cell proliferation suggests a cell-mediated adaptive immune response. Here, we focus on molecular mechanisms underlying the key differences in the host and parasite responses and their coordination. SICAvar Type 1 surface antigens are highly correlated with pattern recognition receptor signaling and important inflammatory genes for both hosts. Analysis of pathogen detection pathways reveals a similar signaling mechanism, but with important differences in the glutamate G-protein coupled receptor (GPCR) signaling pathway. Furthermore, differences in inflammasome assembly processes suggests an important role of S100 proteins in balancing inflammation and cell proliferation. Both differences point to the importance of Ca2+ homeostasis in inflammation. Additionally, the kynurenine-to-tryptophan ratio, a known inflammatory biomarker, emphasizes higher inflammation in M. mulatta during log phase. Transcriptomics-aided metabolic modeling provides a functional method for evaluating these changes and understanding downstream changes in NAD metabolism and aryl hydrocarbon receptor (AhR) signaling, with enhanced NAD metabolism in M. fascicularis and stronger AhR signaling in M. mulatta. AhR signaling controls important immune genes like IL6, IFNγ and IDO1. However, direct changes due to AhR signaling could not be established due to complicated regulatory feedback mechanisms associated with the AhR repressor (AhRR). A complete understanding of the exact dynamics of the immune response is difficult to achieve. Nonetheless, our comparative analysis provides clear suggestions of processes that underlie an effective immune response. Thus, our study identifies multiple points of intervention that are apparently responsible for a balanced and effective immune response and thereby paves the way toward future immune strategies for treating malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, United States
| | - Eberhard O. Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- *Correspondence: Eberhard O. Voit,
| |
Collapse
|
11
|
Hao W, Hao C, Wu C, Xu Y, Wu S, Lu X, Yang J, Jin C. Aluminum impairs cognitive function by activating DDX3X-NLRP3-mediated pyroptosis signaling pathway. Food Chem Toxicol 2021; 157:112591. [PMID: 34614429 DOI: 10.1016/j.fct.2021.112591] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Aluminum is a kind of chemical contaminants in food which can induce neurotoxicity. Aluminum exposure is closely related to neurodegenerative diseases (ND), in which neuroinflammation might involve. However, the molecular mechanism of aluminum-induced neuroinflammation through pyroptosis is not fully clarified yet. MATERIAL AND METHODS The mice model of subacute exposure to aluminum chloride (AlCl3) was established. BV2 microglia cells was treated with AlCl3 in vitro. Resveratrol (Rsv) was adopted as intervention agent. RESULTS Our results showed that aluminum induced cognitive impairment, destroying blood brain barrier (BBB), and causing nerve injury in mice. Meanwhile, aluminum could stimulate nucleotide oligomerization domain-like receptor family pyrin domain containing protein 3 (NLRP3) inflammasome assembly and activate caspase-1 (CASP1), inducing gasdermin D (GSDMD)-mediated pyroptosis signaling, releasing cytokines IL-1β and IL-18, further promoting the activation of glial cells to magnify neuroinflammatory response. Moreover, DEAD-box helicase 3 X-linked (DDX3X) and stress granule RasGAP SH3-domain-binding protein 1 (G3BP1) both participated in neuroinflammation induced by aluminum. When co-treated with Rsv, these injuries were alleviated to some extent. CONCLUSION Aluminum exposure could induce nerve cell pyroptosis and neuroinflammation by DDX3X-NLRP3 inflammasome signaling pathway, which could be rescued via Rsv activating sirtuin 1 (SIRT1).
Collapse
Affiliation(s)
- Wudi Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Chenyu Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Chengrong Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Yuqing Xu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
12
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
13
|
RNA Helicase DDX3: A Double-Edged Sword for Viral Replication and Immune Signaling. Microorganisms 2021; 9:microorganisms9061206. [PMID: 34204859 PMCID: PMC8227550 DOI: 10.3390/microorganisms9061206] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
DDX3 is a cellular ATP-dependent RNA helicase involved in different aspects of RNA metabolism ranging from transcription to translation and therefore, DDX3 participates in the regulation of key cellular processes including cell cycle progression, apoptosis, cancer and the antiviral immune response leading to type-I interferon production. DDX3 has also been described as an essential cellular factor for the replication of different viruses, including important human threats such HIV-1 or HCV, and different small molecules targeting DDX3 activity have been developed. Indeed, increasing evidence suggests that DDX3 can be considered not only a promising but also a viable target for anticancer and antiviral treatments. In this review, we summarize distinct functional aspects of DDX3 focusing on its participation as a double-edged sword in the host immune response and in the replication cycle of different viruses.
Collapse
|
14
|
Ge Q, Chen X, Zhao Y, Mu H, Zhang J. Modulatory mechanisms of NLRP3: Potential roles in inflammasome activation. Life Sci 2020; 267:118918. [PMID: 33352170 DOI: 10.1016/j.lfs.2020.118918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
The NLRP3 inflammasome regulates innate immune and inflammatory responses by promoting pro-inflammatory cytokines such as IL-18 and IL-1β. NLRP3 is one of the main factors restricting the activation of the inflammasome, which is closely related to the abundance and localization of NLRP3. A substantial number of studies have focused on specifically targeting NLRP3 to develop inhibitors against NLRP3 inflammasome. Here, we succinctly review the regulation of NLRP3 expression at DNA/chromosome, transcriptional, post-transcriptional, and translation levels. These are critical for the fine regulation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Qihui Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xinnong Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yixuan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Huaiyu Mu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
15
|
Advances in the molecular mechanisms of NLRP3 inflammasome activators and inactivators. Biochem Pharmacol 2020; 175:113863. [PMID: 32081791 DOI: 10.1016/j.bcp.2020.113863] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
NLRP3 inflammasome is an intracellular protein complex that initiates cellular injury via assembly of NLRP3, ASC and caspase-1 in response to microbial infection and sterile stressors. The importance of NLRP3 inflammasome in immunity and human diseases has been well documented. Up to now, targeted inhibition of the assembly of NLRP3 inflammasome complex and of its activation was thought to be therapeutic strategy for associated diseases. Recent studies show that a host of molecules such as NIMA-related kinase 7 (Nek7) and DEAD-box helicase 3 X-linked (DDX3X) and a large number of biological mediators including cytokines, microRNAs, nitric oxide, carbon monoxide, nuclear factor erythroid-2 related factor 2 (Nrf2) and cellular autophagy participate in the activation and inactivation of NLRP3 inflammasome. This review summarizes current understanding of the molecular basis of NLRP3 inflammasome activation and inactivation. This knowledge may lead to development of new therapies directed at NLRP3 inflammasome related diseases.
Collapse
|