1
|
Firdos F, Pramanik T, Mittal A. Temporal Effects of a Viral Peptide on Glucose-Stimulated Insulin Secretion. ACS Infect Dis 2025. [PMID: 40272277 DOI: 10.1021/acsinfecdis.4c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Impaired glucose homeostasis, often attributed to the destruction of insulin-secreting pancreatic β-cells, results in Type 1 diabetes (T1D). While both genetic and environmental factors have been implicated in the onset of T1D, there is an increase in clinical observations of T1D resulting from or triggered by viral infections. Despite the increase mentioned above, mechanistic insights into viral-induced T1D onset remain scarce. The key question of how viral infections may impact insulin secretion, thereby affecting glucose-stimulated insulin secretion (GSIS), is still unanswered. In this work, we correlate GSIS and viral peptides for the first time. Using the Mouse Insulinoma 6 (MIN6) cell line as a model system for β cells, we studied pituitary adenylate cyclase-activating polypeptide (PACAP) potentiated GSIS. Specifically, we noted that two forms of PACAP, namely, PACAP38 (P38) and PACAP27 (P27) are important in GSIS. From proteomes of chikungunya and dengue viruses (CHIKV and DV, respectively) implicated in triggering T1D, we identified viral peptides that were similar (but not identical) to PACAP. We report that a peptide from CHIKV, termed as CV1, enhances insulin secretion in MIN6 cells along with P38; however, independent treatments with CV1 yield variable outcomes based on duration of incubation. While short-term treatment shows viral peptides outcompeting P38, leading to increased insulin secretion without cytotoxicity, there is a decrease in cell viability with longer incubations under some conditions. Remarkably, long-term CV1 incubation significantly reduces glucose sensitivity of and GSIS by MIN6 cells. We report the first experimental evidence linking viral peptides to GSIS (specifically PACAP-stimulated).
Collapse
Affiliation(s)
- Firdos Firdos
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Tapabrata Pramanik
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Aditya Mittal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Bukovics P, Lőrinczy D. Deconvolution Analysis of G and F-Actin Unfolding: Insights into the Thermal Stability and Structural Modifications Induced by PACAP. Int J Mol Sci 2025; 26:3336. [PMID: 40244223 PMCID: PMC11989792 DOI: 10.3390/ijms26073336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Actin, a key component of the cytoskeleton, undergoes significant structural and thermal changes in response to various regulatory factors, including the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). In this study, we applied deconvolution analysis to previously obtained differential scanning calorimetry (DSC) data to resolve overlapping thermal transitions in G- and F-actin unfolding. Our findings reveal that PACAP38 and PACAP6-38 significantly alter actin stability, increasing structural cooperativity in G-actin while reducing monomer-monomer interactions in F-actin. These thermodynamic changes suggest a potential role for PACAP in modulating actin polymerization and depolymerization dynamics, contributing to cytoskeletal remodeling.
Collapse
Affiliation(s)
- Péter Bukovics
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary;
| | | |
Collapse
|
3
|
Wang Z, He J, Yang Y, He Y, Qian H. Structural basis for cholesterol sensing of LYCHOS and its interaction with indoxyl sulfate. Nat Commun 2025; 16:2815. [PMID: 40118871 PMCID: PMC11928621 DOI: 10.1038/s41467-025-58087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
The lysosome serves as an essential nutrient-sensing hub within the cell, where the mechanistic target of rapamycin complex 1 (mTORC1) is activated. Lysosomal cholesterol signaling (LYCHOS), a lysosome membrane protein, has been identified as a cholesterol sensor that couples cholesterol concentration to mTORC1 activation. However, the molecular basis is unknown. Here, we determine the cryo-electron microscopy (cryo-EM) structure of human LYCHOS at a resolution of 3.1 Å, revealing a cholesterol-like density at the interface between the permease and G-protein coupled receptor (GPCR) domains. Advanced 3D classification reveals two distinct states of LYCHOS. Comparative structural analysis between these two states demonstrated a cholesterol-related movement of GPCR domain relative to permease domain, providing structural insights into how LYCHOS senses lysosomal cholesterol levels. Additionally, we identify indoxyl sulfate (IS) as a binding ligand to the permease domain, confirmed by the LYCHOS-IS complex structure. Overall, our study provides a foundation and indicates additional directions for further investigation of the essential role of LYCHOS in the mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Zhenhua Wang
- Department of Cardiology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jingjing He
- Department of Cardiology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yufan Yang
- Department of Cardiology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yonglin He
- Department of Cardiology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwu Qian
- Department of Cardiology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Shan W, Sun J, Liu R, Wang J, Shao B. Establishing Detection Methods for Okadaic Acid Aptamer-Target Interactions: Insights from Computational and Experimental Approaches. Foods 2025; 14:854. [PMID: 40077556 PMCID: PMC11898563 DOI: 10.3390/foods14050854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The binding interactions between okadaic acid (OA) aptamers and OA molecules are crucial for developing effective detection methods. This study aims to identify the recognition site and establish a reliable detection protocol through computational simulations and experimental validations. After determining the target sequence (OA-2), molecular docking simulations using Sybyl-X and H-dock were conducted to predict the binding affinity and interaction sites of OA aptamers with their targets. These predictions were subsequently validated through experiments based on the Förster resonance energy transfer (FRET) principle. The combined approach not only confirmed the computational predictions, identifying the "major region" as the recognition basis of OA-2, but also provided deeper insights into the binding mechanisms. Subsequently, a classical AuNPs-aptamer colorimetric detection method was established based on the OA-2 sequence and applied to the detection of real shellfish samples, achieving a limit of quantification (LOQ) of 5.0 μg kg-1. The recoveries of OA in spiked samples ranged from 79.0% to 122.9%, with a relative standard deviation (RSD) of less than 14.7%. The results of this study contribute to the development of robust detection methods for OA aptamer-target interactions, enhancing the potential for practical applications in toxin detection and monitoring.
Collapse
Affiliation(s)
- Wenchong Shan
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Agri-Food Safety and Quality, Ministry of Agriculture of China, Beijing 100081, China
| | - Jiefang Sun
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; (J.S.); (R.L.)
| | - Runqing Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; (J.S.); (R.L.)
| | - Jing Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Agri-Food Safety and Quality, Ministry of Agriculture of China, Beijing 100081, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; (J.S.); (R.L.)
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
5
|
Hamilton NB, Yang B, Xiang C, Li T, Schneebeli ST, Li J. Molecular Basis of PAC1R Allosteric Modulation with Lipids in Membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635027. [PMID: 39974954 PMCID: PMC11838235 DOI: 10.1101/2025.01.27.635027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The pituitary adenylate cyclase-activating polypeptide receptor I (PAC1R) represents a highly sought-after therapeutic target for chronic pain, migraine, and post-traumatic stress. As a class B G protein-coupled receptor (GPCR), the PAC1R is highly expressed throughout the neuronal and central nervous system membranes, with the receptor subject to hormone activation and subsequent signal transduction. Despite its desirable indication, small molecule agonists for PAC1R have been notoriously difficult to develop due to competition with PACAP. For this reason, allosteric activation of the receptor has emerged as a promising pathway. To probe potential allosteric sites, herein, we present a study of the receptor in biomimetic concentrations of lipid membranes. Our results reveal that cholesterol recognizes two canonical and two non-canonical binding sites at PAC1R, which may influence critical residues in the transmembrane domain and PAC1R activation. Also, our simulations suggest the glycolipid GM3 interacts with PAC1R in both the extracellular and transmembrane domains. These lipid binding hotspots may hold high potential for advancing our understanding of class B GPCR signaling and the discovery of new molecules targeting PAC1R.
Collapse
Affiliation(s)
| | - Bo Yang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Chijian Xiang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Tongtong Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Severin T. Schneebeli
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN 47907
| | - Jianing Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
6
|
Vékony RG, Tamás A, Lukács A, Ujfalusi Z, Lőrinczy D, Takács-Kollár V, Bukovics P. Exploring the Role of Neuropeptide PACAP in Cytoskeletal Function Using Spectroscopic Methods. Int J Mol Sci 2024; 25:8063. [PMID: 39125632 PMCID: PMC11311697 DOI: 10.3390/ijms25158063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The behavior and presence of actin-regulating proteins are characteristic of various clinical diseases. Changes in these proteins significantly impact the cytoskeletal and regenerative processes underlying pathological changes. Pituitary adenylate cyclase-activating polypeptide (PACAP), a cytoprotective neuropeptide abundant in the nervous system and endocrine organs, plays a key role in neuron differentiation and migration by influencing actin. This study aims to elucidate the role of PACAP as an actin-regulating polypeptide, its effect on actin filament formation, and the underlying regulatory mechanisms. We examined PACAP27, PACAP38, and PACAP6-38, measuring their binding to actin monomers via fluorescence spectroscopy and steady-state anisotropy. Functional polymerization tests were used to track changes in fluorescent intensity over time. Unlike PACAP27, PACAP38 and PACAP6-38 significantly reduced the fluorescence emission of Alexa488-labeled actin monomers and increased their anisotropy, showing nearly identical dissociation equilibrium constants. PACAP27 showed weak binding to globular actin (G-actin), while PACAP38 and PACAP6-38 exhibited robust interactions. PACAP27 did not affect actin polymerization, but PACAP38 and PACAP6-38 accelerated actin incorporation kinetics. Fluorescence quenching experiments confirmed structural changes upon PACAP binding; however, all studied PACAP fragments exhibited the same effect. Our findings indicate that PACAP38 and PACAP6-38 strongly bind to G-actin and significantly influence actin polymerization. Further studies are needed to fully understand the biological significance of these interactions.
Collapse
Affiliation(s)
- Roland Gábor Vékony
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Andrea Tamás
- Department of Anatomy, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - András Lukács
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Zoltán Ujfalusi
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Dénes Lőrinczy
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Veronika Takács-Kollár
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Péter Bukovics
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| |
Collapse
|
7
|
Meireles FATP, Antunes D, Temerozo JR, Bou-Habib DC, Caffarena ER. PACAP key interactions with PAC1, VPAC1, and VPAC2 identified by molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:3128-3144. [PMID: 37216328 DOI: 10.1080/07391102.2023.2213349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) belongs to the glucagon/secretin family. PACAP interacts with the pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) and vasoactive intestinal peptide receptors 1 and 2 (VPAC1 and VPAC2), exhibiting functions in the immune, endocrine, and nervous systems. This peptide is upregulated in numerous instances of brain injury, acting as a neuroprotective agent. It can also suppress HIV-1 and SARS-CoV-2 viral replication in vitro. This work aimed to identify, in each peptide-receptor system, the most relevant residues for complex stability and interaction energy communication via Molecular Dynamics (MD), Free Energy calculations, and Protein-energy networks, thus revealing in detail the underlying mechanisms of activation of these receptors. Hydrogen bond formation, interaction energies, and computational alanine scanning between PACAP and its receptors showed that His1, Asp3, Arg12, Arg14, and Lys15 are crucial to the peptide's stability. Furthermore, several PACAP interactions with structurally conserved positions deemed necessary in GPCR B1 activation, including Arg2.60, Lys2.67, and Glu7.42, were significant for the peptide's stability within the receptors. According to the protein-energy network, the connection between Asp3 of PACAP and the receptors' conserved Arg2.60 represents a critical energy communication hub in all complexes. Additionally, the ECDs of the receptors were also found to function as energy communication hubs for PACAP. Although the overall binding mode of PACAP in the three receptors was found to be highly conserved, Arg12 and Tyr13 of PACAP were more prominent in complex with PAC1, while Ser2 of PACAP was with VPAC2. The detailed analyses performed in this work pave the way for using PACAP and its receptors as therapeutic targets.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Deborah Antunes
- Laboratory of Applied Genomics and Bioinnovations, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Ernesto Raul Caffarena
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Program/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Satapathy T, Singh G, Pandey RK, Shukla SS, Bhardwaj SK, Gidwani B. Novel Targets and Drug Delivery System in the Treatment of Postoperative Pain: Recent Studies and Clinical Advancement. Curr Drug Targets 2024; 25:25-45. [PMID: 38037995 DOI: 10.2174/0113894501271207231127063431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Pain is generated by a small number of peripheral targets. These can be made more sensitive by inflammatory mediators. The number of opioids prescribed to the patients can be reduced dramatically with better pain management. Any therapy that safely and reliably provides extended analgesia and is flexible enough to facilitate a diverse array of release profiles would be useful for improving patient comfort, quality of care, and compliance after surgical procedures. Comparisons are made between new and traditional methods, and the current state of development has been discussed; taking into account the availability of molecular and cellular level data, preclinical and clinical data, and early post-market data. There are a number of benefits associated with the use of nanotechnology in the delivery of analgesics to specific areas of the body. Nanoparticles are able to transport drugs to inaccessible bodily areas because of their small molecular size. This review focuses on targets that act specifically or primarily on sensory neurons, as well as inflammatory mediators that have been shown to have an analgesic effect as a side effect of their anti- inflammatory properties. New, regulated post-operative pain management devices that use existing polymeric systems were presented in this article, along with the areas for potential development. Analgesic treatments, both pharmacological and non-pharmacological, have also been discussed.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Gulab Singh
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Ravindra Kumar Pandey
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Shankar Shukla
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Kumar Bhardwaj
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Beena Gidwani
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| |
Collapse
|
9
|
Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X, Qin H, Yan W, Shao Z. Structure, function and drug discovery of GPCR signaling. MOLECULAR BIOMEDICINE 2023; 4:46. [PMID: 38047990 PMCID: PMC10695916 DOI: 10.1186/s43556-023-00156-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile and vital proteins involved in a wide array of physiological processes and responses, such as sensory perception (e.g., vision, taste, and smell), immune response, hormone regulation, and neurotransmission. Their diverse and essential roles in the body make them a significant focus for pharmaceutical research and drug development. Currently, approximately 35% of marketed drugs directly target GPCRs, underscoring their prominence as therapeutic targets. Recent advances in structural biology have substantially deepened our understanding of GPCR activation mechanisms and interactions with G-protein and arrestin signaling pathways. This review offers an in-depth exploration of both traditional and recent methods in GPCR structure analysis. It presents structure-based insights into ligand recognition and receptor activation mechanisms and delves deeper into the mechanisms of canonical and noncanonical signaling pathways downstream of GPCRs. Furthermore, it highlights recent advancements in GPCR-related drug discovery and development. Particular emphasis is placed on GPCR selective drugs, allosteric and biased signaling, polyphamarcology, and antibody drugs. Our goal is to provide researchers with a thorough and updated understanding of GPCR structure determination, signaling pathway investigation, and drug development. This foundation aims to propel forward-thinking therapeutic approaches that target GPCRs, drawing upon the latest insights into GPCR ligand selectivity, activation, and biased signaling mechanisms.
Collapse
Affiliation(s)
- Lin Cheng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxi Qin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, 610212, China.
| |
Collapse
|
10
|
Langer G, Scott J, Lind C, Otto C, Bothe U, Laux-Biehlmann A, Müller J, le Roy B, Irlbacher H, Nowak-Reppel K, Schlüter A, Davenport AJ, Slack M, Bäurle S. Discovery and In Vitro Characterization of BAY 2686013, an Allosteric Small Molecule Antagonist of the Human Pituitary Adenylate Cyclase-Activating Polypeptide Receptor. Mol Pharmacol 2023; 104:105-114. [PMID: 37348913 DOI: 10.1124/molpharm.122.000662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
The human pituitary adenylate cyclase-activating polypeptide receptor (hPAC1-R), a class B G-protein-coupled receptor (GPCR) identified almost 30 years ago, represents an important pharmacological target in the areas of neuroscience, oncology, and immunology. Despite interest in this target, only a very limited number of small molecule modulators have been reported for this receptor. We herein describe the results of a drug discovery program aiming for the identification of a potent and selective hPAC1-R antagonist. An initial high-throughput screening (HTS) screen of 3.05 million compounds originating from the Bayer screening library failed to identify any tractable hits. A second, completely revised screen using native human embryonic kidney (HEK)293 cells yielded a small number of hits exhibiting antagonistic properties (4.2 million compounds screened). BAY 2686013 (1) emerged as a promising compound showing selective antagonistic activity in the submicromolar potency range. In-depth characterization supported the hypothesis that BAY 2686013 blocks receptor activity in a noncompetitive manner. Preclinical, pharmacokinetic profiling indicates that BAY 2686013 is a valuable tool compound for better understanding the signaling and function of hPAC1-R. SIGNIFICANCE STATEMENT: Although the human pituitary adenylate cyclase-activating polypeptide receptor (hPAC1-R) is of major significance as a therapeutic target with a well documented role in pain signaling, only a very limited number of small-molecule (SMOL) compounds are known to modulate its activity. We identified and thoroughly characterized a novel, potent, and selective SMOL antagonist of hPAC1-R (acting in an allosteric manner). These characteristics make BAY 2686013 an ideal tool for further studies.
Collapse
Affiliation(s)
- Gernot Langer
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - John Scott
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Christoffer Lind
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Christiane Otto
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Ulrich Bothe
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Alexis Laux-Biehlmann
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Jörg Müller
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Beau le Roy
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Horst Irlbacher
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Katrin Nowak-Reppel
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Anne Schlüter
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Adam J Davenport
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Mark Slack
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| | - Stefan Bäurle
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany (G.L., U.B., J.M., B.l.R., S.B.); Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany (C.O., A.L.-B.); Innovation Campus Berlin, a Nuvisan Company, Berlin, Germany (H.I., K.N.-R.); Evotec SE, Hamburg, Germany (A.S., M.S.); and Evotec (UK) Ltd, Abingdon, Oxfordshire, United Kingdom (J.S., C.L., A.J.D.)
| |
Collapse
|
11
|
Rajbhandari AK, Barson JR, Gilmartin MR, Hammack SE, Chen BK. The functional heterogeneity of PACAP: Stress, learning, and pathology. Neurobiol Learn Mem 2023; 203:107792. [PMID: 37369343 PMCID: PMC10527199 DOI: 10.1016/j.nlm.2023.107792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a highly conserved and widely expressed neuropeptide that has emerged as a key regulator of multiple neural and behavioral processes. PACAP systems, including the various PACAP receptor subtypes, have been implicated in neural circuits of learning and memory, stress, emotion, feeding, and pain. Dysregulation within these PACAP systems may play key roles in the etiology of pathological states associated with these circuits, and PACAP function has been implicated in stress-related psychopathology, feeding and metabolic disorders, and migraine. Accordingly, central PACAP systems may represent important therapeutic targets; however, substantial heterogeneity in PACAP systems related to the distribution of multiple PACAP isoforms across multiple brain regions, as well as multiple receptor subtypes with several isoforms, signaling pathways, and brain distributions, provides both challenges and opportunities for the development of new clinically-relevant strategies to target the PACAP system in health and disease. Here we review the heterogeneity of central PACAP systems, as well as the data implicating PACAP systems in clinically-relevant behavioral processes, with a particular focus on the considerable evidence implicating a role of PACAP in stress responding and learning and memory. We also review data suggesting that there are sex differences in PACAP function and its interactions with sex hormones. Finally, we discuss both the challenges and promise of harnessing the PACAP system in the development of new therapeutic avenues and highlight PACAP systems for their critical role in health and disease.
Collapse
Affiliation(s)
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Marieke R Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, United States
| | - Briana K Chen
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, United States; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, United States.
| |
Collapse
|
12
|
Asadollahi K, Scott DJ, Gooley PR. NMR applications to GPCR recognition by peptide ligands. Curr Opin Pharmacol 2023; 70:102366. [PMID: 37003111 DOI: 10.1016/j.coph.2023.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 04/03/2023]
Abstract
Peptides form the largest group of ligands that modulate the activity of more than 120 different GPCRs. Among which linear disordered peptide ligands usually undergo significant conformational changes upon binding that is essential for receptor recognition and activation. Conformational selection and induced fit are the extreme mechanisms of coupled folding and binding that can be distinguished by analysis of binding pathways by methods that include NMR. However, the large size of GPCRs in membrane-mimetic environments limits NMR applications. In this review, we highlight advances in the field that can be adopted to address coupled folding and binding of peptide ligands to their cognate receptors.
Collapse
Affiliation(s)
- Kazem Asadollahi
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| | - Daniel J Scott
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
13
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
14
|
Alexander TI, Tasma Z, Siow A, Rees TA, Brimble MA, Harris PWR, Hay DL, Walker CS. Novel Fluorescently Labeled PACAP and VIP Highlight Differences between Peptide Internalization and Receptor Pharmacology. ACS Pharmacol Transl Sci 2022; 6:52-64. [PMID: 36654758 PMCID: PMC9841777 DOI: 10.1021/acsptsci.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 12/13/2022]
Abstract
The related peptides pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) have diverse biological functions in peripheral tissues and the central nervous system. Therefore, these peptides and their three receptors represent potential drug targets for several conditions, including neurological and pain-related disorders. However, very little is known about how these peptides regulate their receptors through processes such as internalization. Therefore, we developed tools to study receptor regulation through the synthesis of fluorescently labeled analogues of PACAP-38, PACAP-27, and VIP using copper-mediated 1,3-dipolar cycloaddition of the Cy5 fluorophore. The functionality of Cy5-labeled peptides at their receptors was confirmed in cAMP accumulation assays. Internalization of the Cy5-labeled peptides was then examined and quantified at two distinct PAC1 receptor splice variants, VPAC1 and VPAC2 receptors in transfected cells. All labeled peptides were functional, exhibiting comparable cAMP pharmacology to their unlabeled counterparts and underwent internalization in a time-dependent manner. Temporal differences in the internalization profiles were observed between Cy5-labeled peptides at the PAC1n, PAC1s, VPAC1, and VPAC2 receptors. Interestingly, the pattern of Cy5-labeled peptide activity differed for cAMP accumulation and internalization, indicating that these peptides differentially stimulate cAMP accumulation and internalization and therefore display biased agonism. This novel insight into PACAP-responsive receptor signaling and internalization may provide a unique avenue for future therapeutic development. The fluorescently labeled PACAP and VIP peptides described herein, which we validated as tools to study receptor internalization, will have utility across a broad range of applications and provide greater insight into this receptor family.
Collapse
Affiliation(s)
- Tyla I. Alexander
- Department
of Pharmacology and Toxicology, The University
of Otago, Dunedin 9054, New Zealand,Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Zoe Tasma
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand,School
of Biological Sciences, The University of
Auckland, Auckland 1010, New Zealand
| | - Andrew Siow
- School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
| | - Tayla A. Rees
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand,School
of Biological Sciences, The University of
Auckland, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand,School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
| | - Paul W. R. Harris
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand,School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
| | - Debbie L. Hay
- Department
of Pharmacology and Toxicology, The University
of Otago, Dunedin 9054, New Zealand,Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Christopher S. Walker
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand,School
of Biological Sciences, The University of
Auckland, Auckland 1010, New Zealand,
| |
Collapse
|
15
|
Piper SJ, Deganutti G, Lu J, Zhao P, Liang YL, Lu Y, Fletcher MM, Hossain MA, Christopoulos A, Reynolds CA, Danev R, Sexton PM, Wootten D. Understanding VPAC receptor family peptide binding and selectivity. Nat Commun 2022; 13:7013. [PMID: 36385145 PMCID: PMC9668914 DOI: 10.1038/s41467-022-34629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
The vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) receptors are key regulators of neurological processes. Despite recent structural data, a comprehensive understanding of peptide binding and selectivity among different subfamily receptors is lacking. Here, we determine structures of active, Gs-coupled, VIP-VPAC1R, PACAP27-VPAC1R, and PACAP27-PAC1R complexes. Cryo-EM structural analyses and molecular dynamics simulations (MDSs) reveal fewer stable interactions between VPAC1R and VIP than for PACAP27, more extensive dynamics of VIP interaction with extracellular loop 3, and receptor-dependent differences in interactions of conserved N-terminal peptide residues with the receptor core. MD of VIP modelled into PAC1R predicts more transient VIP-PAC1R interactions in the receptor core, compared to VIP-VPAC1R, which may underlie the selectivity of VIP for VPAC1R over PAC1R. Collectively, our work improves molecular understanding of peptide engagement with the PAC1R and VPAC1R that may benefit the development of novel selective agonists.
Collapse
Affiliation(s)
- Sarah J. Piper
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Giuseppe Deganutti
- grid.8096.70000000106754565Centre for Sport, Exercise and Life Sciences, Coventry University, CV1 5FB Coventry, UK
| | - Jessica Lu
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Peishen Zhao
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Yi-Lynn Liang
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,Present Address: Confo TherapeuticsTechnologiepark 94, Ghent (Zwijnaarde), 9052 Belgium
| | - Yao Lu
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Madeleine M. Fletcher
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.454018.c0000 0004 0632 8971Present Address: GlaxoSmithKline, Abbotsford, 3067 VIC Australia
| | - Mohammed Akhter Hossain
- grid.1008.90000 0001 2179 088XFlorey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Arthur Christopoulos
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Christopher A. Reynolds
- grid.8096.70000000106754565Centre for Sport, Exercise and Life Sciences, Coventry University, CV1 5FB Coventry, UK ,grid.8356.80000 0001 0942 6946School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK
| | - Radostin Danev
- grid.26999.3d0000 0001 2151 536XGraduate School of Medicine, University of Tokyo, S402, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Patrick M. Sexton
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| | - Denise Wootten
- grid.1002.30000 0004 1936 7857Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia ,grid.1002.30000 0004 1936 7857ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC Australia
| |
Collapse
|
16
|
Lu J, Piper SJ, Zhao P, Miller LJ, Wootten D, Sexton PM. Targeting VIP and PACAP Receptor Signaling: New Insights into Designing Drugs for the PACAP Subfamily of Receptors. Int J Mol Sci 2022; 23:8069. [PMID: 35897648 PMCID: PMC9331257 DOI: 10.3390/ijms23158069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.
Collapse
Affiliation(s)
- Jessica Lu
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Sarah J. Piper
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Peishen Zhao
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Denise Wootten
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Patrick M. Sexton
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| |
Collapse
|
17
|
Li J, Remington JM, Liao C, Parsons RL, Schneebeli S, Braas KM, May V, Brewer M. GPCR Intracellular Loop Regulation of Beta-Arrestin-Mediated Endosomal Signaling Dynamics. J Mol Neurosci 2022; 72:1358-1373. [PMID: 35538393 PMCID: PMC9311399 DOI: 10.1007/s12031-022-02016-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/22/2022] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are currently appreciated to be routed to diverse cellular platforms to generate both G protein-dependent and -independent signals. The latter has been best studied with respect to β-arrestin-associated receptor internalization and trafficking to signaling endosomes for extracellular signal-regulated kinase (ERK) activation. However, how GPCR structural and conformational variants regulate endosomal ERK signaling dynamics, which can be central in neural development, plasticity, and disease processes, is not well understood. Among class B GPCRs, the PACAP-selective PAC1 receptor is unique in the expression of variants that can contain intracellular loop 3 (ICL3) cassette inserts. The nervous system expresses preferentially the PAC1Null (no insert) and PAC1Hop (28-amino acid Hop insert) receptor variants. Our molecular modeling and signaling studies revealed that the PAC1Null and PAC1Hop receptor variants can associate with β-arrestin differentially, resulting in enhanced receptor internalization and ERK activation for the PAC1Hop variant. The study amplifies our understandings of GPCR intracellular loop structure/function relationships with the first example of how the duration of endosomal ERK activation can be guided by ICL3. The results provide a framework for how changes in GPCR variant expression can impact developmental and homeostatic processes and may be contributory to maladaptive neuroplasticity underlying chronic pain and stress-related disorders.
Collapse
Affiliation(s)
- Jianing Li
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA.
| | - Jacob M Remington
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Chenyi Liao
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Rodney L Parsons
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Severin Schneebeli
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Victor May
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| | - Matthias Brewer
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| |
Collapse
|
18
|
A distinctive ligand recognition mechanism by the human vasoactive intestinal polypeptide receptor 2. Nat Commun 2022; 13:2272. [PMID: 35477937 PMCID: PMC9046186 DOI: 10.1038/s41467-022-30041-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Class B1 of G protein-coupled receptors (GPCRs) comprises 15 members activated by physiologically important peptide hormones. Among them, vasoactive intestinal polypeptide receptor 2 (VIP2R) is expressed in the central and peripheral nervous systems and involved in a number of pathophysiological conditions, including pulmonary arterial hypertension, autoimmune and psychiatric disorders, in which it is thus a valuable drug target. Here, we report the cryo-electron microscopy structure of the human VIP2R bound to its endogenous ligand PACAP27 and the stimulatory G protein. Different from all reported peptide-bound class B1 GPCR structures, the N-terminal α-helix of VIP2R adopts a unique conformation that deeply inserts into a cleft between PACAP27 and the extracellular loop 1, thereby stabilizing the peptide-receptor interface. Its truncation or extension significantly decreased VIP2R-mediated cAMP accumulation. Our results provide additional information on peptide recognition and receptor activation among class B1 GPCRs and may facilitate the design of better therapeutics. Vasoactive intestinal polypeptide receptor 2 (VIP2R) is involved in immunity. Here, the authors report two cryo-EM structures of the VIP2R–Gs in complex with the endogenous peptide ligand PACAP27, revealing a unique interaction mode between PACAP27 and the receptor, stabilized by the N-terminal α-helix of VIP2R.
Collapse
|
19
|
Cai M, Liu Y, Tian Y, Liang Y, Xu Z, Liu F, Lai R, Zhou Z, Liu M, Dai J, Liu X. Osteogenic peptides in periodontal ligament stem cell-containing three-dimensional bioscaffolds promote bone healing. Biomater Sci 2022; 10:1765-1775. [PMID: 35212326 DOI: 10.1039/d1bm01673c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone tissue engineering shows great potential in bone regeneration; however, the lack of bone growth factors with high biocompatibility and efficiency is a major concern. Oligopeptides have drawn great attention due to their high biological efficacy, low toxicity, and low molecular weight. The oligopeptide SDSSD promotes the osteogenesis of human periodontal ligament stem cells (hPDLSCs) in vitro. The SDSSD-modified three-dimensional (3D) bioscaffolds promote osteogenesis and bone formation in the subcutaneous pockets of BALB/c nude mice and facilitate bone healing in vivo. Mechanistically, SDSSD promoted bone formation by binding to G protein-coupled receptors and regulating the AKT signaling pathway. 3D-printing bioscaffolds with SDSSD may be potential bone tissue engineering materials for treating bone defects.
Collapse
Affiliation(s)
- Mingxiang Cai
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Yaoyao Liu
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Yinping Tian
- Department of Stomatology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445099, China
| | - Yan Liang
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Zinan Xu
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Fangchen Liu
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Renfa Lai
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Zhiying Zhou
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Minyi Liu
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Jian Dai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Xiangning Liu
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
20
|
Langer I, Jeandriens J, Couvineau A, Sanmukh S, Latek D. Signal Transduction by VIP and PACAP Receptors. Biomedicines 2022; 10:406. [PMID: 35203615 PMCID: PMC8962308 DOI: 10.3390/biomedicines10020406] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Homeostasis of the human immune system is regulated by many cellular components, including two neuropeptides, VIP and PACAP, primary stimuli for three class B G protein-coupled receptors, VPAC1, VPAC2, and PAC1. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) regulate intestinal motility and secretion and influence the functioning of the endocrine and immune systems. Inhibition of VIP and PACAP receptors is an emerging concept for new pharmacotherapies for chronic inflammation and cancer, while activation of their receptors provides neuroprotection. A small number of known active compounds for these receptors still impose limitations on their use in therapeutics. Recent cryo-EM structures of VPAC1 and PAC1 receptors in their agonist-bound active state have provided insights regarding their mechanism of activation. Here, we describe major molecular switches of VPAC1, VPAC2, and PAC1 that may act as triggers for receptor activation and compare them with similar non-covalent interactions changing upon activation that were observed for other GPCRs. Interhelical interactions in VIP and PACAP receptors that are important for agonist binding and/or activation provide a molecular basis for the design of novel selective drugs demonstrating anti-inflammatory, anti-cancer, and neuroprotective effects. The impact of genetic variants of VIP, PACAP, and their receptors on signalling mediated by endogenous agonists is also described. This sequence diversity resulting from gene splicing has a significant impact on agonist selectivity and potency as well as on the signalling properties of VIP and PACAP receptors.
Collapse
Affiliation(s)
- Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, B-1070 Brussels, Belgium; (I.L.); (J.J.)
| | - Jérôme Jeandriens
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, B-1070 Brussels, Belgium; (I.L.); (J.J.)
| | - Alain Couvineau
- UMR 1149 Inserm, Centre de Recherche sur l’Inflammation (CRI), Université de Paris, 75018 Paris, France;
| | - Swapnil Sanmukh
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland;
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland;
| |
Collapse
|
21
|
Cong Z, Liang YL, Zhou Q, Darbalaei S, Zhao F, Feng W, Zhao L, Xu HE, Yang D, Wang MW. Structural perspective of class B1 GPCR signaling. Trends Pharmacol Sci 2022; 43:321-334. [DOI: 10.1016/j.tips.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
|
22
|
Shu Z, Wu M, Liao J, Chen C. FSATOOL 2.0: An integrated molecular dynamics simulation and trajectory data analysis program. J Comput Chem 2021; 43:215-224. [PMID: 34751974 DOI: 10.1002/jcc.26772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Molecular dynamics simulation is important in the computational study of the biomolecules. In this paper, we upgrade our previous FSATOOL to version 2.0. It is no longer a plugin as before. Besides the existed enhanced sampling and Markov state model analysis module, FSATOOL 2.0 has three new features now. First, it contains a molecular dynamics simulation engine on both CPU and GPU device. The engine works with an embedded enhanced sampling module. Second, it can do the free energy calculation by various practical methods, including the weighted histogram analysis method and Gaussian mixture model. Third, it has many subroutines to process the trajectory data, such as principal component analysis, time-structure based independent component analysis, contact analysis, and Φ-value analysis. Most importantly, all these calculations are integrated into one package. The trajectory data format is compatible with all the modules. With a proper input parameter file, users can do the molecular dynamics simulation and data analysis work by only a few simplified commands. The capabilities and theoretical backgrounds of FSATOOL 2.0 are introduced in the paper.
Collapse
Affiliation(s)
- Zirui Shu
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mincong Wu
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Liao
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Tasma Z, Siow A, Harris PWR, Brimble MA, Hay DL, Walker CS. Characterisation of agonist signalling profiles and agonist-dependent antagonism at PACAP-responsive receptors: Implications for drug discovery. Br J Pharmacol 2021; 179:435-453. [PMID: 34612509 DOI: 10.1111/bph.15700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE The pituitary adenylate cyclase-activating peptide (PACAP) family is of clinical interest for the treatment of migraine. These peptides activate three different PACAP-responsive class B G protein-coupled receptors: the PAC1 , VPAC1 and VPAC2 receptors. The PAC1 receptor may be alternatively spliced, generating variants that can differ in their pharmacological or signalling profiles. To inform drug discovery efforts targeting migraine, we need to better understand how the different PACAP-responsive receptors signal and how effectively these responses can be blocked by antagonists. EXPERIMENTAL APPROACH The signalling profiles of the human PAC1n , PAC1s , VPAC1 and VPAC2 receptors were examined in transfected Cos7 cells for cAMP, IP1 , pAkt, pERK and pCREB. Biased signalling was then quantified. The ability of antagonists to block PACAP-38, PACAP-27 or VIP stimulated cAMP accumulation at PACAP-responsive receptors was also determined. KEY RESULTS PACAP-responsive receptors exhibited varied pharmacological profiles but activated signalling in a similar manner. The PAC1n and PAC1s receptors displayed distinct pharmacology. At the PAC1s receptor, VIP and PHM were more potent than at the PAC1n receptor. PACAP-responsive receptors displayed agonist-dependent antagonism where PACAP-38 was less effectively antagonised compared to PACAP-27 and VIP. CONCLUSIONS AND IMPLICATIONS The distinct pharmacological profile displayed by the PAC1s receptor suggests that it can act as a dual receptor for VIP and PACAP. Furthermore, the effectiveness of blocking a signalling pathway can be influenced by which endogenous PACAP family agonist is present. These effects have potential implications for the development and effectiveness of drugs targeting the PACAP system.
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew Siow
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Zhao F, Zhang C, Zhou Q, Hang K, Zou X, Chen Y, Wu F, Rao Q, Dai A, Yin W, Shen DD, Zhang Y, Xia T, Stevens RC, Xu HE, Yang D, Zhao L, Wang MW. Structural insights into hormone recognition by the human glucose-dependent insulinotropic polypeptide receptor. eLife 2021; 10:e68719. [PMID: 34254582 PMCID: PMC8298097 DOI: 10.7554/elife.68719] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a peptide hormone that exerts crucial metabolic functions by binding and activating its cognate receptor, GIPR. As an important therapeutic target, GIPR has been subjected to intensive structural studies without success. Here, we report the cryo-EM structure of the human GIPR in complex with GIP and a Gs heterotrimer at a global resolution of 2.9 Å. GIP adopts a single straight helix with its N terminus dipped into the receptor transmembrane domain (TMD), while the C terminus is closely associated with the extracellular domain and extracellular loop 1. GIPR employs conserved residues in the lower half of the TMD pocket to recognize the common segments shared by GIP homologous peptides, while uses non-conserved residues in the upper half of the TMD pocket to interact with residues specific for GIP. These results provide a structural framework of hormone recognition and GIPR activation.
Collapse
Affiliation(s)
- Fenghui Zhao
- School of Pharmacy, Fudan UniversityShanghaiChina
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Chao Zhang
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan UniversityShanghaiChina
| | - Kaini Hang
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Xinyu Zou
- School of Artificial Intelligence and Automation, Huazhong University of Science and TechnologyWuhanChina
| | - Yan Chen
- School of Pharmacy, Fudan UniversityShanghaiChina
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- Department of Pharmacology, School of Basic Medical Sciences, Fudan UniversityShanghaiChina
| | - Fan Wu
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Qidi Rao
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Wanchao Yin
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Tian Xia
- School of Artificial Intelligence and Automation, Huazhong University of Science and TechnologyWuhanChina
| | - Raymond C Stevens
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Lihua Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ming-Wei Wang
- School of Pharmacy, Fudan UniversityShanghaiChina
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Department of Pharmacology, School of Basic Medical Sciences, Fudan UniversityShanghaiChina
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
25
|
Liao C, Remington JM, May V, Li J. Molecular Basis of Class B GPCR Selectivity for the Neuropeptides PACAP and VIP. Front Mol Biosci 2021; 8:644644. [PMID: 33842547 PMCID: PMC8027070 DOI: 10.3389/fmolb.2021.644644] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
The related neuropeptides PACAP and VIP, and their shared PAC1, VPAC1 and VPAC2 receptors, regulate a large array of physiological activities in the central and peripheral nervous systems. However, the lack of comparative and molecular mechanistic investigations hinder further understanding of their preferred binding selectivity and function. PACAP and VIP have comparable affinity at the VPAC1 and VPAC2 receptor, but PACAP is 400-1,000 fold more potent than VIP at the PAC1 receptor. A molecular understanding of the differing neuropeptide-receptor interactions and the details underlying the receptor transitions leading to receptor activation are much needed for the rational design of selective ligands. To these ends, we have combined structural information and advanced simulation techniques to study PACAP/VIP binding selectivity, full-length receptor conformation ensembles and transitions of the PACAP/VIP receptor variants and subtypes, and a few key interactions in the orthosteric-binding pocket. Our results reveal differential peptide-receptor interactions (at the atomistic detail) important for PAC1, VPAC1 and VPAC2 receptor ligand selectivity. Using microsecond-long molecular dynamics simulations and the Markov State Models, we have also identified diverse receptor conformational ensembles and microstate transition paths for each receptor, the potential mechanisms underlying receptor open and closed states, and the interactions and dynamics at the transmembrane orthosteric pocket for receptor activation. These analyses reveal important features in class B GPCR structure-dynamics-function relationships, which provide novel insights for structure-based drug discovery.
Collapse
Affiliation(s)
- Chenyi Liao
- Department of Chemistry, University of Vermont, Burlington, VT, United States.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, China
| | - Jacob M Remington
- Department of Chemistry, University of Vermont, Burlington, VT, United States
| | - Victor May
- Department of Neuroscience, University of Vermont, Burlington, VT, United States
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT, United States
| |
Collapse
|
26
|
Hu E, Hong FT, Aral J, Long J, Piper DE, Poppe L, Andrews KL, Hager T, Davis C, Li H, Wong P, Gavva N, Shi L, Zhu DXD, Lehto SG, Xu C, Miranda LP. Discovery of Selective Pituitary Adenylate Cyclase 1 Receptor (PAC1R) Antagonist Peptides Potent in a Maxadilan/PACAP38-Induced Increase in Blood Flow Pharmacodynamic Model. J Med Chem 2021; 64:3427-3438. [PMID: 33715378 DOI: 10.1021/acs.jmedchem.0c01396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of the pituitary adenylate cyclase 1 receptor (PAC1R) is a novel mechanism that could be used for abortive treatment of acute migraine. Our research began with comparative analysis of known PAC1R ligand scaffolds, PACAP38 and Maxadilan, which resulted in the selection of des(24-42) Maxadilan, 6, as a starting point. C-terminal modifications of 6 improved the peptide metabolic stability in vitro and in vivo. SAR investigations identified synergistic combinations of amino acid replacements that significantly increased the in vitro PAC1R inhibitory activity of the analogs to the pM IC90 range. Our modifications further enabled deletion of up to six residues without impacting potency, thus improving peptide ligand binding efficiency. Analogs 17 and 18 exhibited robust in vivo efficacy in the rat Maxadilan-induced increase in blood flow (MIIBF) pharmacodynamic model at 0.3 mg/kg subcutaneous dosing. The first cocrystal structure of a PAC1R antagonist peptide (18) with PAC1R extracellular domain is reported.
Collapse
Affiliation(s)
- Essa Hu
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Fang-Tsao Hong
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jennifer Aral
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jason Long
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Derek E Piper
- Therapeutic Discovery, Amgen Research, Amgen Inc., 1120 Veterans Blvd., South San Francisco, California 94080, United States
| | - Leszek Poppe
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Kristin L Andrews
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Todd Hager
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Carl Davis
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Hongyan Li
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Philip Wong
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Narender Gavva
- Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Licheng Shi
- Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Dawn X D Zhu
- Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Sonya G Lehto
- Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Cen Xu
- Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Les P Miranda
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
27
|
Waltenspühl Y, Ehrenmann J, Klenk C, Plückthun A. Engineering of Challenging G Protein-Coupled Receptors for Structure Determination and Biophysical Studies. Molecules 2021; 26:molecules26051465. [PMID: 33800379 PMCID: PMC7962830 DOI: 10.3390/molecules26051465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 01/14/2023] Open
Abstract
Membrane proteins such as G protein-coupled receptors (GPCRs) exert fundamental biological functions and are involved in a multitude of physiological responses, making these receptors ideal drug targets. Drug discovery programs targeting GPCRs have been greatly facilitated by the emergence of high-resolution structures and the resulting opportunities to identify new chemical entities through structure-based drug design. To enable the determination of high-resolution structures of GPCRs, most receptors have to be engineered to overcome intrinsic hurdles such as their poor stability and low expression levels. In recent years, multiple engineering approaches have been developed to specifically address the technical difficulties of working with GPCRs, which are now beginning to make more challenging receptors accessible to detailed studies. Importantly, successfully engineered GPCRs are not only valuable in X-ray crystallography, but further enable biophysical studies with nuclear magnetic resonance spectroscopy, surface plasmon resonance, native mass spectrometry, and fluorescence anisotropy measurements, all of which are important for the detailed mechanistic understanding, which is the prerequisite for successful drug design. Here, we summarize engineering strategies based on directed evolution to reduce workload and enable biophysical experiments of particularly challenging GPCRs.
Collapse
|
28
|
Langer I, Latek D. Drug Repositioning For Allosteric Modulation of VIP and PACAP Receptors. Front Endocrinol (Lausanne) 2021; 12:711906. [PMID: 34867774 PMCID: PMC8637020 DOI: 10.3389/fendo.2021.711906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two neuropeptides that contribute to the regulation of intestinal motility and secretion, exocrine and endocrine secretions, and homeostasis of the immune system. Their biological effects are mediated by three receptors named VPAC1, VPAC2 and PAC1 that belong to class B GPCRs. VIP and PACAP receptors have been identified as potential therapeutic targets for the treatment of chronic inflammation, neurodegenerative diseases and cancer. However, pharmacological use of endogenous ligands for these receptors is limited by their lack of specificity (PACAP binds with high affinity to VPAC1, VPAC2 and PAC1 receptors while VIP recognizes both VPAC1 and VPAC2 receptors), their poor oral bioavailability (VIP and PACAP are 27- to 38-amino acid peptides) and their short half-life. Therefore, the development of non-peptidic small molecules or specific stabilized peptidic ligands is of high interest. Structural similarities between VIP and PACAP receptors are major causes of difficulties in the design of efficient and selective compounds that could be used as therapeutics. In this study we performed structure-based virtual screening against the subset of the ZINC15 drug library. This drug repositioning screen provided new applications for a known drug: ticagrelor, a P2Y12 purinergic receptor antagonist. Ticagrelor inhibits both VPAC1 and VPAC2 receptors which was confirmed in VIP-binding and calcium mobilization assays. A following analysis of detailed ticagrelor binding modes to all three VIP and PACAP receptors with molecular dynamics revealed its allosteric mechanism of action. Using a validated homology model of inactive VPAC1 and a recently released cryo-EM structure of active VPAC1 we described how ticagrelor could block conformational changes in the region of 'tyrosine toggle switch' required for the receptor activation. We also discuss possible modifications of ticagrelor comparing other P2Y12 antagonist - cangrelor, closely related to ticagrelor but not active for VPAC1/VPAC2. This comparison with inactive cangrelor could lead to further improvement of the ticagrelor activity and selectivity for VIP and PACAP receptor sub-types.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Binding Sites
- Computer Simulation
- Drug Evaluation, Preclinical/methods
- Drug Repositioning/methods
- Molecular Structure
- Protein Conformation/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/chemistry
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/chemistry
- Receptors, Vasoactive Intestinal Peptide, Type II/drug effects
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/chemistry
- Receptors, Vasoactive Intestinal Polypeptide, Type I/drug effects
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Ticagrelor/chemistry
- Ticagrelor/pharmacology
Collapse
Affiliation(s)
- Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- *Correspondence: Dorota Latek,
| |
Collapse
|
29
|
Alpdagtas S, Ilhan E, Uysal E, Sengor M, Ustundag CB, Gunduz O. Evaluation of current diagnostic methods for COVID-19. APL Bioeng 2020; 4:041506. [PMID: 33305162 PMCID: PMC7710383 DOI: 10.1063/5.0021554] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent responsible for the coronavirus disease of 2019 (COVID-19), which triggers lung failure, pneumonia, and multi-organ dysfunction. This enveloped, positive sense and single-stranded RNA virus can be transmitted through aerosol droplets, direct and indirect contacts. Thus, SARS-CoV-2 is highly contagious and has reached a pandemic level in a few months. Since COVID-19 has caused numerous human casualties and severe economic loss posing a global threat, the development of readily available, accurate, fast, and cost-effective diagnostic techniques in hospitals and in any places where humans spread the virus is urgently required. COVID-19 can be diagnosed by clinical findings and several laboratory tests. These tests may include virus isolation, nucleic acid-based molecular assays like real-time polymerase chain reactions, antigen or antibody-based immunological assays such as rapid immunochromatographic tests, enzyme-linked immunosorbent assays, immunofluorescence techniques, and indirect fluorescent antibody techniques, electrochemical sensors, etc. However, current methods should be developed by novel approaches for sensitive, specific, and accurate diagnosis of COVID-19 cases to control and prevent this outbreak. Thus, this review will cover an overview and comparison of multiple reports and commercially available kits that include molecular tests, immunoassays, and sensor-based diagnostic methods for diagnosis of COVID-19. The pros and cons of these methods and future perspectives will be thoroughly evaluated and discussed.
Collapse
|
30
|
Structure of the human secretin receptor coupled to an engineered heterotrimeric G protein. Biochem Biophys Res Commun 2020; 533:861-866. [DOI: 10.1016/j.bbrc.2020.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/05/2023]
|
31
|
A unique hormonal recognition feature of the human glucagon-like peptide-2 receptor. Cell Res 2020; 30:1098-1108. [PMID: 33239759 PMCID: PMC7785020 DOI: 10.1038/s41422-020-00442-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Glucagon-like peptides (GLP-1 and GLP-2) are two proglucagon-derived intestinal hormones that mediate distinct physiological functions through two related receptors (GLP-1R and GLP-2R) which are important drug targets for metabolic disorders and Crohn's disease, respectively. Despite great progress in GLP-1R structure determination, our understanding on the differences of peptide binding and signal transduction between these two receptors remains elusive. Here we report the electron microscopy structure of the human GLP-2R in complex with GLP-2 and a Gs heterotrimer. To accommodate GLP-2 rather than GLP-1, GLP-2R fine-tunes the conformations of the extracellular parts of transmembrane helices (TMs) 1, 5, 7 and extracellular loop 1 (ECL1). In contrast to GLP-1, the N-terminal histidine of GLP-2 penetrates into the receptor core with a unique orientation. The middle region of GLP-2 engages with TM1 and TM7 more extensively than with ECL2, and the GLP-2 C-terminus closely attaches to ECL1, which is the most protruded among 9 class B G protein-coupled receptors (GPCRs). Functional studies revealed that the above three segments of GLP-2 are essential for GLP-2 recognition and receptor activation, especially the middle region. These results provide new insights into the molecular basis of ligand specificity in class B GPCRs and may facilitate the development of more specific therapeutics.
Collapse
|
32
|
Ke R, Lok SIS, Singh K, Chow BKC, Lee LTO. GIP receptor suppresses PAC1receptor-mediated neuronal differentiation via formation of a receptor heterocomplex. J Neurochem 2020; 157:1850-1860. [PMID: 33078390 DOI: 10.1111/jnc.15220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) receptor (PAC1R) is a class B Gprotein-coupled receptor (GPCR) that is widely expressed in the human body and is involved in neuronal differentiation. As class B GPCRs are known to form heterocomplexes with family members, we hypothesized that PAC1R mediates neuronal differentiation through interaction with a class B GPCR. We used the BRET assay to identify potential interactions between PAC1R and 11 class B GPCRs. Gastric inhibitory polypeptide receptor (GIPR) and secretin receptor were identified as putative binding partners of PAC1R. The effect of heterocomplex formation by PAC1R on receptor activation was evaluated with the cyclic (c)AMP, luciferase reporter, and calcium signaling assays; and the effects on receptor internalization and subcellular localization were examined by confocal microscopy. The results suggested he PAC1R/GIPR heterocomplex suppressed signaling events downstream of PAC1R, including cAMP production, serum response element and calcium signaling, and β-arrestin recruitment. Protein-protein interaction was analyzed in silico, and induction of neuronal differentiation by the PAC1R heterocomplex was assessed in SH-SY5Y neuronal cells by measure the morphological changes and marker genes expression by real-time quantitative PCR and western blot. Over-expression of GIPR suppressed PACAP/PAC1R-mediated neuronal differentiation and the differentiation markers expression in SH-SY5Y cells. GIPR regulates neuronal differentiation through heterocomplex formation with PAC1R.
Collapse
Affiliation(s)
- Ran Ke
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Samson I S Lok
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Leo T O Lee
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
33
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
34
|
Chang R, Zhang X, Qiao A, Dai A, Belousoff MJ, Tan Q, Shao L, Zhong L, Lin G, Liang YL, Ma L, Han S, Yang D, Danev R, Wang MW, Wootten D, Wu B, Sexton PM. Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide. J Biol Chem 2020; 295:9313-9325. [PMID: 32371397 DOI: 10.1074/jbc.ra120.013793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
Unimolecular dual agonists of the glucagon (GCG) receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) are a new class of drugs that are potentially superior to GLP-1R-specific agonists for the management of metabolic disease. The dual-agonist, peptide 15 (P15), is a glutamic acid 16 analog of GCG with GLP-1 peptide substitutions between amino acids 17 and 24 that has potency equivalent to those of the cognate peptide agonists at the GCGR and GLP-1R. Here, we have used cryo-EM to solve the structure of an active P15-GCGR-Gs complex and compared this structure to our recently published structure of the GCGR-Gs complex bound to GCG. This comparison revealed that P15 has a reduced interaction with the first extracellular loop (ECL1) and the top of transmembrane segment 1 (TM1) such that there is increased mobility of the GCGR extracellular domain and at the C terminus of the peptide compared with the GCG-bound receptor. We also observed a distinct conformation of ECL3 and could infer increased mobility of the far N-terminal His-1 residue in the P15-bound structure. These regions of conformational variance in the two peptide-bound GCGR structures were also regions that were distinct between GCGR structures and previously published peptide-bound structures of the GLP-1R, suggesting that greater conformational dynamics may contribute to the increased efficacy of P15 in activation of the GLP-1R compared with GCG. The variable domains in this receptor have previously been implicated in biased agonism at the GLP-1R and could result in altered signaling of P15 at the GCGR compared with GCG.
Collapse
Affiliation(s)
- Rulue Chang
- School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Zhang
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| | - Anna Qiao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Antao Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai, China
| | - Matthew J Belousoff
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| | - Qiuxiang Tan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Shao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Li Zhong
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangyao Lin
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi-Lynn Liang
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| | - Limin Ma
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shuo Han
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai, China
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ming-Wei Wang
- School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai, China .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,The National Center for Drug Screening, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Denise Wootten
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| | - Beili Wu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China .,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Patrick M Sexton
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
35
|
Eiden LE, Goosens KA, Jacobson KA, Leggio L, Zhang L. Peptide-Liganded G Protein-Coupled Receptors as Neurotherapeutics. ACS Pharmacol Transl Sci 2020; 3:190-202. [PMID: 32296762 DOI: 10.1021/acsptsci.0c00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 12/19/2022]
Abstract
Peptide-liganded G protein-coupled receptors (GPCRs) are a growing fraction of GPCR drug targets, concentrated in two of the five major GPCR structural classes. The basic physiology and pharmacology of some within the rhodopsin class, for example, the enkephalin (μ opioid receptor, MOR) and angiotensin (ATR) receptors, and most in class B, all the members of which are peptide receptors, are well-known, whereas others are less so. Furthermore, with the notable exception of opioid peptide receptors, the ability to translate from peptide to "drug-like" (i.e., low-molecular-weight nonpeptide) molecules, with desirable oral absorption, brain penetrance, and serum stability, has met with limited success. Yet, peripheral peptide administration in patients with metabolic disorders is clinically effective, suggesting that "drug-like" molecules for peptide receptor targets may not always be required for disease intervention. Here, we consider recent developments in GPCR structure analysis, intracellular signaling, and genetic analysis of peptide and peptide receptor knockout phenotypes in animal models. These lines of research converge on a better understanding of how peptides facilitate adaptive behaviors in mammals. They suggest pathways to translate this burgeoning information into identified drug targets for neurological and psychiatric illnesses such as obesity, addiction, anxiety disorders, and neurodegenerative diseases. Advances centered on the peptide ligands oxytocin, vasopressin, GLP-1, ghrelin, PACAP, NPY, and their GPCRs are considered here. These represent the spectrum of progress across the "virtual pipeline", of peptide receptors associated with many established drugs, those of long-standing interest for which clinical application is still under development, and those just coming into focus through basic research.
Collapse
Affiliation(s)
- Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892, United States
| | - Ki Ann Goosens
- Icahn School of Medicine, Mt. Sinai Hospital, New York, New York 10029, United States
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism/National Institute on Drug Abuse, Bethesda, Maryland 20892, United States
| | - Limei Zhang
- Department of Physiology, Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
36
|
The quest for high-resolution G protein-coupled receptor-G protein structures. Proc Natl Acad Sci U S A 2020; 117:6971-6973. [PMID: 32179692 DOI: 10.1073/pnas.2002665117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|