1
|
Wei Y, Zhang T, Li Z, Hua Q, Yin L, Lei M, Zhao S, Gu S, Zhang X, He H, Lu X. Evolutionary divergence on the Qinghai-Tibet Plateau: How life-history traits shape the diversity of plateau zokor and pika populations. J Genet Genomics 2025:S1673-8527(25)00128-6. [PMID: 40334979 DOI: 10.1016/j.jgg.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Understanding how species diverge and adapt is fundamental to unraveling biodiversity. While environmental impacts on species evolution are well-documented, the roles of intrinsic life-history traits remain underexplored. The Qinghai-Tibet Plateau, with its harsh conditions and unique biodiversity, offers a natural laboratory for such investigations. Here, we examined two sympatric small mammals-the solitary, low-dispersal plateau zokor (Eospalax baileyi) and the social, high-dispersal plateau pika (Ochotona curzoniae)-to elucidate how life-history traits shape population structures and adaptive strategies. Through whole-genome sequencing and cardiac-blood phenotype analyses, we reveal striking differences in their evolutionary trajectories. Despite enduring similar environmental pressures, plateau zokor populations exhibit pronounced genetic subdivisions, high inbreeding, and distinct local adaptations. In contrast, plateau pika populations display genetic panmixia, widespread diversity, and adaptive uniformity. Demographic inference highlights plateau zokors experienced severe population bottlenecks and restricted gene flow during glacial periods, underscoring the impact of dispersal capacity on evolutionary outcomes. Our findings demonstrate that intrinsic biological traits, particularly dispersal ability, fundamentally influence genetic architecture, population connectivity, and local adaptation. This study not only provides empirical evidence of how life-history traits shape evolutionary dynamics but offers a framework for integrating intrinsic and extrinsic factors in understanding biodiversity formation.
Collapse
Affiliation(s)
- Yunyang Wei
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Zifeng Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinyang Hua
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liduo Yin
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Menglong Lei
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilei Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Shanshan Gu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao He
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
2
|
Cai W, Yao X, Liu G, Liu X, Zhao B, Shi P. RetSat stabilizes mitotic chromosome segregation in pluripotent stem cells. Cell Mol Life Sci 2024; 81:366. [PMID: 39172275 PMCID: PMC11342912 DOI: 10.1007/s00018-024-05413-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Chromosome stability is crucial for homeostasis of pluripotent stem cells (PSCs) and early-stage embryonic development. Chromosomal defects may raise carcinogenic risks in regenerative medicine when using PSCs as original materials. However, the detailed mechanism regarding PSCs chromosome stability maintenance is not fully understood. METHODS Mouse embryonic stem cells (line D3) and human embryonic stem cells (line H9) were cultured under standard conditions. To confirm the loading of RetSat protein on mitotic chromosomes of PSCs, immunostaining was performed in PSCs spontaneous differentiation assay and iPSC reprogramming assay from mouse embryonic fibroblasts (MEFs), respectively. In addition, qPCR, immunoprecipitation, LC-MS/MS and immunoblotting were used to study the expression of RetSat, and interactions of RetSat with cohesin/condensin components. RNA sequencing and teratoma formation assay was conducted to evaluate the carcinogenic risk of mouse embryonic stem cells with RetSat deletion. RESULTS We reported a PSC high-expressing gene, RetSat, plays key roles in chromosome stabilization. We identified RetSat protein localizing onto mitotic chromosomes specifically in stemness positive cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We found dramatic chromosome instability, e.g. chromosome bridging, lagging and interphase micronuclei in mouse and human ESCs when down regulating RetSat. RetSat knock-out mouse ESCs upregulated cancer associated gene pathways, and displayed higher tumorigenic capacities in teratoma formation assay. Mechanistically, we confirmed that RetSat interacts with cohesin/condensin components Smc1a and Nudcd2. RetSat deletion impaired the chromosome loading dosage of Smc1a, Smc3 and Nudcd2. CONCLUSIONS In summary, we reported RetSat to be a key stabilizer of chromosome condensation in pluripotent stem cells. This highlights the crucial roles of RetSat in early-stage embryonic development, and potential value of RetSat as an effective biomarker for assessing the quality of pluripotent stem cells.
Collapse
Affiliation(s)
- Wanzhi Cai
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Yao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gaojing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuyun Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Peng Shi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
3
|
Kiefer MF, Meng Y, Yang N, Vahrenbrink M, Wulff S, Li C, Wowro SJ, Petricek KM, Sommerfeld M, Flores RE, Obermayer B, Piepelow K, Klaus S, Hartl K, Guillot A, Tacke F, Sigal M, Schupp M. Intestinal retinol saturase is implicated in the development of obesity and epithelial homeostasis upon injury. Am J Physiol Endocrinol Metab 2024; 327:E203-E216. [PMID: 38895981 DOI: 10.1152/ajpendo.00035.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Retinol saturase (RetSat) is an oxidoreductase involved in lipid metabolism and the cellular sensitivity to peroxides. RetSat is highly expressed in metabolic organs like the liver and adipose tissue and its global loss in mice increases body weight and adiposity. The regulation of RetSat expression and its function in the intestine are unexplored. Here, we show that RetSat is present in different segments of the digestive system, localizes to intestinal epithelial cells, and is upregulated by feeding mice high-fat diet (HFD). Intestine-specific RetSat deletion in adult mice did not affect nutrient absorption and energy homeostasis basally, but lowered body weight gain and fat mass of HFD-fed mice, potentially via increasing locomotor activity. Moreover, jejunal expression of genes related to β-oxidation and cholesterol efflux was decreased, and colonic cholesterol content was reduced upon RetSat deletion. In colitis, which we show to downregulate intestinal RetSat expression in humans and mice, RetSat ablation improved epithelial architecture of the murine colon. Thus, intestinal RetSat expression is regulated by dietary interventions and inflammation, and its loss reduces weight gain upon HFD feeding and alleviates epithelial damage upon injury.NEW & NOTEWORTHY Retinol saturase (RetSat) is an oxidoreductase with unknown function in the intestine. We found that RetSat localizes in intestinal epithelial cells and that its deletion reduced weight gain and fat mass in obese mice. In colitis, which decreased intestinal RetSat expression in humans and mice, RetSat ablation improved the epithelial architecture of the murine colon, presumably by decreasing ROS production, thus rendering RetSat a novel target for metabolic and inflammatory bowel disease.
Collapse
Affiliation(s)
- Marie F Kiefer
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Yueming Meng
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Na Yang
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Madita Vahrenbrink
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sascha Wulff
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chen Li
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sylvia J Wowro
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstantin M Petricek
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Manuela Sommerfeld
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roberto E Flores
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karolin Piepelow
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Nuthetal, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Kimberly Hartl
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Michael Schupp
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Dong Z, Wang C, Qu Q. WGCCRR: a web-based tool for genome-wide screening of convergent indels and substitutions of amino acids. BIOINFORMATICS ADVANCES 2024; 4:vbae070. [PMID: 38808070 PMCID: PMC11132816 DOI: 10.1093/bioadv/vbae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/05/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Summary Genome-wide analyses of proteincoding gene sequences are being employed to examine the genetic basis of adaptive evolution in many organismal groups. Previous studies have revealed that convergent/parallel adaptive evolution may be caused by convergent/parallel amino acid changes. Similarly, detailed analysis of lineage-specific amino acid changes has shown correlations with certain lineage-specific traits. However, experimental validation remains the ultimate measure of causality. With the increasing availability of genomic data, a streamlined tool for such analyses would facilitate and expedite the screening of genetic loci that hold potential for adaptive evolution, while alleviating the bioinformatic burden for experimental biologists. In this study, we present a user-friendly web-based tool called WGCCRR (Whole Genome Comparative Coding Region Read) designed to screen both convergent/parallel and lineage-specific amino acid changes on a genome-wide scale. Our tool allows users to replicate previous analyses with just a few clicks, and the exported results are straightforward to interpret. In addition, we have also included amino acid indels that are usually neglected in previous work. Our website provides an efficient platform for screening candidate loci for downstream experimental tests. Availability and Implementation The tool is available at: https://fishevo.xmu.edu.cn/.
Collapse
Affiliation(s)
- Zheng Dong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xià-Mén, Fú-Jiàn 361102, China
| | - Chen Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xià-Mén, Fú-Jiàn 361102, China
| | - Qingming Qu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xià-Mén, Fú-Jiàn 361102, China
| |
Collapse
|
5
|
Zhao Y, Zheng Z, Zhang Z, Xu Y, Hillpot E, Lin YS, Zakusilo FT, Lu JY, Ablaeva J, Biashad SA, Miller RA, Nevo E, Seluanov A, Gorbunova V. Evolution of high-molecular-mass hyaluronic acid is associated with subterranean lifestyle. Nat Commun 2023; 14:8054. [PMID: 38052795 PMCID: PMC10698142 DOI: 10.1038/s41467-023-43623-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Hyaluronic acid is a major component of extracellular matrix which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (Heterocephalus glaber) contains abundant high-molecular-mass hyaluronic acid in its tissues, which contributes to this species' cancer resistance and possibly to its longevity. Here we report that abundant high-molecular-mass hyaluronic acid is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These subterranean mammalian species accumulate abundant high-molecular-mass hyaluronic acid by regulating the expression of genes involved in hyaluronic acid degradation and synthesis and contain unique mutations in these genes. The abundant high-molecular-mass hyaluronic acid may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic conditions. Our work suggests that high-molecular-mass hyaluronic acid has evolved with subterranean lifestyle.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 301158, China
| | - Zhizhong Zheng
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Zhihui Zhang
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Yandong Xu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 301158, China
| | - Eric Hillpot
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Yifei S Lin
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Frances T Zakusilo
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - J Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Seyed Ali Biashad
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, 14627, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, 14627, USA.
| |
Collapse
|
6
|
Cao S, Li M, Li LM. RegCloser: a robust regression approach to closing genome gaps. BMC Bioinformatics 2023; 24:249. [PMID: 37312038 DOI: 10.1186/s12859-023-05367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Closing gaps in draft genomes leads to more complete and continuous genome assemblies. The ubiquitous genomic repeats are challenges to the existing gap-closing methods, based on either the k-mer representation by the de Bruijn graph or the overlap-layout-consensus paradigm. Besides, chimeric reads will cause erroneous k-mers in the former and false overlaps of reads in the latter. RESULTS We propose a novel local assembly approach to gap closing, called RegCloser. It represents read coordinates and their overlaps respectively by parameters and observations in a linear regression model. The optimal overlap is searched only in the restricted range consistent with insert sizes. Under this linear regression framework, the local DNA assembly becomes a robust parameter estimation problem. We solved the problem by a customized robust regression procedure that resists the influence of false overlaps by optimizing a convex global Huber loss function. The global optimum is obtained by iteratively solving the sparse system of linear equations. On both simulated and real datasets, RegCloser outperformed other popular methods in accurately resolving the copy number of tandem repeats, and achieved superior completeness and contiguity. Applying RegCloser to a plateau zokor draft genome that had been improved by long reads further increased contig N50 to 3-fold long. We also tested the robust regression approach on layout generation of long reads. CONCLUSIONS RegCloser is a competitive gap-closing tool. The software is available at https://github.com/csh3/RegCloser . The robust regression approach has a prospect to be incorporated into the layout module of long read assemblers.
Collapse
Affiliation(s)
- Shenghao Cao
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengtian Li
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei M Li
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
8
|
Hu B, Wang J, Li Y, Ge J, Pan J, Li G, He Y, Zhong H, Wang B, Huang Y, Han S, Xing Y, He H. Gut microbiota facilitates adaptation of the plateau zokor ( Myospalax baileyi) to the plateau living environment. Front Microbiol 2023; 14:1136845. [PMID: 36910168 PMCID: PMC9998695 DOI: 10.3389/fmicb.2023.1136845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Gut microbiota not only helps the hosts to perform many key physiological functions such as food digestion, energy harvesting and immune regulation, but also influences host ecology and facilitates adaptation of the host to extreme environments. Plateau zokors epitomize successful physiological adaptation to their living environment in the face of the harsh environment characterized by low temperature, low pressure and hypoxia in the Tibetan plateau region and high concentrations of CO2 in their burrows. Therefore, here we used a metagenomic sequencing approach to explore how gut microbiota contributed to the adaptive evolution of the plateau zokor on the Qinghai-Tibet Plateau. Our metagenomic results show that the gut microbiota of plateau zokors on the Tibetan plateau is not only enriched in a large number of species related to energy metabolism and production of short-chain fatty acids (SCFAs), but also significantly enriched the KO terms that involve carbohydrate uptake pathways, which well address energy uptake in plateau zokors while also reducing inflammatory responses due to low pressure, hypoxia and high CO2 concentrations. There was also a significant enrichment of tripeptidyl-peptidase II (TPPII) associated with antigen processing, apoptosis, DNA damage repair and cell division, which may facilitate the immune response and tissue damage repair in plateau zokors under extreme conditions. These results suggest that these gut microbiota and their metabolites together contribute to the physiological adaptation of plateau zokors, providing new insights into the contribution of the microbiome to the evolution of mammalian adaptation.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiamin Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Jin Ge
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jinchao Pan
- College of Animal Sciences, Anhui University of Science and Technology, Huainan, China
| | - Gaojian Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yongcai He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Haishun Zhong
- Animal Husbandry and Veterinary Station of Xunhua, Xining, Qinghai, China
| | - Bo Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Huang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xing
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Lyu T, Zhou S, Fang J, Wang L, Shi L, Dong Y, Zhang H. Convergent Genomic Signatures of High-Altitude Adaptation among Six Independently Evolved Mammals. Animals (Basel) 2022; 12:ani12243572. [PMID: 36552492 PMCID: PMC9774524 DOI: 10.3390/ani12243572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The species living in the Qinghai-Tibet Plateau provide an excellent model system for studying the relationship between molecular convergent evolution and adaptation. Distant species experiencing the same selection pressure (i.e., hypoxia, low temperature and strong ultraviolet radiation) are likely to evolve similar genetic adaptations independently. Here, we performed comparative genomics studies on six independently evolved high-altitude species. The results also showed that the convergent evolution of the six species was mainly reflected at the level of rapidly evolving genes, and the functions of these rapidly evolving genes were mainly related to hypoxia response and DNA damage repair. In addition, we found that high-altitude species had more gene family changes than their low-altitude relatives, except for the order Lagomorpha. The results also show that the convergence of the gene family contraction of high-altitude species is much greater than that of expansion, revealing a possible pattern of species in adapting to high-altitude. Furthermore, we detected a positive selection signature in four genes related to hypoxia response and ultraviolet radiation damage in these six species (FYCO1, ERBIN, SCAMP1 and CXCL10). Our study reveals that hypoxia response might play an important role in the adaptation of independently evolved species to a high-altitude environment, providing a basic perspective for further exploring the high-altitude adaptation mechanism of different related species in the future.
Collapse
Affiliation(s)
- Tianshu Lyu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150000, China
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shengyang Zhou
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Jiaohui Fang
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Lidong Wang
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Lupeng Shi
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Yuehuan Dong
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu 273165, China
- Correspondence:
| |
Collapse
|
10
|
A homotetrameric hemoglobin expressed in alveolar epithelial cells increases blood oxygenation in high-altitude plateau pika (Ochotona curzoniae). Cell Rep 2022; 41:111446. [DOI: 10.1016/j.celrep.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
|
11
|
Tu Q, Liu X, Yao X, Li R, Liu G, Jiang H, Li K, Chen Q, Huang X, Chang Q, Xu G, Zhu H, Shi P, Zhao B. RETSAT associates with DDX39B to promote fork restarting and resistance to gemcitabine based chemotherapy in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2022; 41:274. [PMID: 36109793 PMCID: PMC9476698 DOI: 10.1186/s13046-022-02490-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Severe hypoxia is a prominent character of pancreatic ductal adenocarcinoma (PDAC) microenvironment. In the process of gemcitabine based chemotherapy, PDAC cells are insulted from replication stresses co-induced by hypoxia and gemcitabine. However, PDAC cells get outstanding abilities to resist to such harsh conditions and keep proliferating, causing a major obstacle for current therapy. RETSAT (Retinol Saturase) is defined as a hypoxia convergent gene recently, with high expression in PDAC hypoxic sectors. This study aimed to explore the roles of RETSAT in replication stress resistance and hypoxia adaptation in PDAC cells, and decipher the underlying mechanism.
Methods
The expression of RETSAT was examined in TCGA (The Cancer Genome Atlas), human pancreatic cancer microarray, clinical specimens and cell lines. Functions of RETSAT were studied by means of DNA fiber assay and comet assay in monolayer cultured PDAC cell lines, three dimensional spheroids, patient derived organoids and cell derived xenograft mouse models. Mechanism was investigated by using iPOND (isolate proteins on nascent DNA) combined with mass spectrometry, immunoprecipitation and immunoblotting.
Results
First, we found the converse relationship of RETSAT expression and PDAC chemotherapy. That is, PDAC patients with high RETSAT expression correlated with poor survival, while ones holding low RETSAT expression were benefitted more in Gemcitabine based chemotherapy. Second, we identified RETSAT as a novel replication fork associated protein. HIF-1α signaling promotes RETSAT expression under hypoxia. Functionally, RETSAT promoted fork restarting under replication stress and maintained genomic stability. Third, we uncovered the interaction of RETSAT and R-loop unwinding helicase DDX39B. RETSAT detained DDX39B on forks to resolve R-loops, through which avoided fork damage and CHK1 initiated apoptosis. Targeting DDX39B using chemical CCT018159 sensitized PDAC cells and organoids to gemcitabine induced apoptosis, highlighting the synergetic application of CCT018159 and gemcitabine in PDAC chemotherapy.
Conclusions
This study identified RETSAT as a novel replication fork protein, which functions through interacting with DDX39B mediated R-loop clearance to promote fork restarting, leading to cellular resistance to replication stresses co-induced by tumor environmental hypoxia and gemcitabine in pancreatic ductal adenocarcinoma.
Collapse
|
12
|
Abstract
SignificancePhylogenies are the basis of many ecological and evolutionary studies. However, zokor phylogeny and speciation patterns are heavily debated. This study disentangled the phylogeny and speciation of zokors genomically. Six species of the Eospalax were separated into high-altitude E. baileyi and E. smithi and the rest four low-altitude species by recent Qinghai-Tibet Plateau uplift 3.6 million y ago. E. rothschildi and E. smithi speciated south of the Qinling-Huaihe Line, where refuges were supplied during glaciation. Introgression and incomplete lineage sorting led to the complex phylogeny of zokors. Genomic islands were formed due to ancient polymorphisms and divergence hitchhiking. This study concluded that climatic, geological, and tectonic events shaped the phylogeny and speciation of zokors in China.
Collapse
|
13
|
Shen Q, Han Y, Wu K, He Y, Jiang X, Liu P, Xia C, Xiong Q, Liu R, Chen Q, Zhang Y, Zhao S, Yang C, Chen Y. MrgprF acts as a tumor suppressor in cutaneous melanoma by restraining PI3K/Akt signaling. Signal Transduct Target Ther 2022; 7:147. [PMID: 35504869 PMCID: PMC9065076 DOI: 10.1038/s41392-022-00945-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
The incidence of cutaneous melanoma (CM) has been increasing annually worldwide. In this study, we identify that MrgprF, a MAS related GPR family member, is decreased in cutaneous melanoma tissues and cell lines due to hypermethylation of its promoter region, and show that patients with CM expressing high levels of MrgprF exhibit an improved clinical outcome. We demonstrate that MrgprF forced expression inhibits tumor cell proliferation, migration, xenograft tumor growth, and metastasis. On the contrary, MrgprF knockdown promotes tumor cell proliferation and transformation of immortalized human keratinocyte-HaCaT cells, supporting the inhibitory role of MrgprF during tumor progression. Mechanistic studies reveal that MrgprF reduces the phosphoinositol‑3‑kinase (PI3K) complex formation between p101 and p110γ subunits, the critical step for phosphatidylinositol-(3, 4)-P2 (PIP2) conversion to phosphatidylinositol-(3, 4, 5)-P3 (PIP3), and then reduces the activation of PI3K/Akt signaling. This effect can be reversed by Akt specific agonist SC79. In addition, AMG 706, a previously documented inhibitor for endothelial cell proliferation, is identified as a potential agonist for MrgprF, and can impede tumor growth both in vitro and in vivo. Taken together, our findings suggest that MrgprF, a novel tumor suppressor in cutaneous melanoma, may be useful as a therapeutic target in the future.
Collapse
Affiliation(s)
- Qiushuo Shen
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Yanfei Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Kai Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yaomei He
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Peishen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Cuifeng Xia
- Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Qiuxia Xiong
- Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Shenyang, Liaoning, 110042, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Cuiping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Yongbin Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
| |
Collapse
|
14
|
Jiang X, He Y, Shen Q, Duan L, Yuan Y, Tang L, Shi Y, Liu B, Zhai H, Shi P, Yang C, Chen Y. RETSAT Mutation Selected for Hypoxia Adaptation Inhibits Tumor Growth. Front Cell Dev Biol 2021; 9:744992. [PMID: 34805153 PMCID: PMC8601408 DOI: 10.3389/fcell.2021.744992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia occurs not only in natural environments including high altitude, underground burrows and deep sea, but also in human pathological conditions, such as hypoxic solid tumors. It has been well documented that hypoxia related signaling pathway is associated with a poor clinical outcome. Our group has recently identified multiple novel genes critical for solid tumor growth comparing the genome-wide convergent/parallel sequence evolution of highland mammals. Among them, a single mutation on the retinol saturase gene (RETSAT) containing amino acid switch from glutamine (Q) to arginine (R) at the position 247 was identified. Here, we demonstrate that RETSAT is mostly downregulated in multiple types of human cancers, whose lower expression correlates with worse clinical outcome. We show that higher expression of RETSAT is positively associated with immune infiltration in different human cancers. Furthermore, we identify that the promoter region of RETSAT is highly methylated, which leads to its decreased expressions in tumor tissues comparing to normal tissues. Furthermore, we show that RETSAT knockdown promotes, while its overexpression inhibits, the cell proliferation ability of mouse embryonic fibroblasts (MEFs) and B16 in vitro. In addition, the mice carrying homozygous Q247R mutation (RETSATR/R) is more resistant to xenograft tumor formation, as well as DMBA/TPA induced cutaneous keratinocyte carcinoma formation, compared to littermate wild-type (RETSATQ/Q) mice. Mechanistic study uncovers that the oncogenic factor, the prolyl isomerase (PPIase) Pin1 and its related downstream signaling pathway, were both markedly repressed in the mutant mice compared to the wild-type mice. In summary, these results suggest that interdisciplinary study between evolution and tumor biology can facilitate identification of novel molecular events essential for hypoxic solid tumor growth in the future.
Collapse
Affiliation(s)
- Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yaomei He
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiushuo Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Lincan Duan
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixiao Yuan
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Tang
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yulin Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Baiyang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Haoqing Zhai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Cuiping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|