1
|
Qiu B, Boudker O. Structural basis of excitatory amino acid transporter 3 substrate recognition. Proc Natl Acad Sci U S A 2025; 122:e2501627122. [PMID: 40249774 PMCID: PMC12036983 DOI: 10.1073/pnas.2501627122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/28/2025] [Indexed: 04/20/2025] Open
Abstract
Excitatory amino acid transporters (EAATs) reside on cell surfaces and uptake substrates, including L-glutamate, L-aspartate, and D-aspartate, using ion gradients. Among five EAATs, EAAT3 is the only isoform that can efficiently transport L-cysteine, a substrate for glutathione synthesis. Recent studies suggest that EAAT3 also transports the oncometabolite R-2-hydroxyglutarate (R-2HG). Here, we examined the structural basis of substrate recognition by determining the cryogenic electron microscopy (cryo-EM) structures of EAAT3 bound to different substrates. We found that L-cysteine binds to EAAT3 in thiolate form, and EAAT3 recognizes different substrates by fine-tuning local conformations of the coordinating residues. However, using purified human EAAT3, we could not observe R-2HG binding or transport. Imaging of EAAT3 bound to L-cysteine revealed several conformational states, including an outward-facing state with a semi-open gate and a disrupted sodium-binding site. These structures demonstrate that the full gate closure, coupled with the binding of the last sodium ion, occurs after substrate binding. Furthermore, we observed that different substrates affect how the transporter distributes between a fully outward-facing conformation and intermediate occluded states on a path to the inward-facing conformation, suggesting that translocation rates are substrate-dependent.
Collapse
Affiliation(s)
- Biao Qiu
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY10021
- HHMI, Weill Cornell Medicine, New York, NY10021
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY10021
- HHMI, Weill Cornell Medicine, New York, NY10021
| |
Collapse
|
2
|
Xie X, Liu W, Yuan Z, Chen H, Mao W. Bridging epigenomics and tumor immunometabolism: molecular mechanisms and therapeutic implications. Mol Cancer 2025; 24:71. [PMID: 40057791 PMCID: PMC11889836 DOI: 10.1186/s12943-025-02269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/11/2025] [Indexed: 04/02/2025] Open
Abstract
Epigenomic modifications-such as DNA methylation, histone acetylation, and histone methylation-and their implications in tumorigenesis, progression, and treatment have emerged as a pivotal field in cancer research. Tumors undergo metabolic reprogramming to sustain proliferation and metastasis in nutrient-deficient conditions, while suppressing anti-tumor immunity in the tumor microenvironment (TME). Concurrently, immune cells within the immunosuppressive TME undergo metabolic adaptations, leading to alterations in their immune function. The complicated interplay between metabolites and epigenomic modulation has spotlighted the significance of epigenomic regulation in tumor immunometabolism. In this review, characteristics of the epigenomic modification associated with tumors are systematically summarized alongside with their regulatory roles in tumor metabolic reprogramming and immunometabolism. Classical and emerging approaches are delineated to broaden the boundaries of research on the crosstalk research on the crosstalk between tumor immunometabolism and epigenomics. Furthermore, we discuss potential therapeutic strategies that target tumor immunometabolism to modulate epigenomic modifications, highlighting the burgeoning synergy between metabolic therapies and immunotherapy as a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Xiaowen Xie
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Weici Liu
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
- Center of Clinical Research, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| | - Hanqing Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Wenjun Mao
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
3
|
Guo T, Wang Y, Wang D, Ge R, Du Z, Zhang Z, Qin Y, Liu X, Deng Y, Song Y. Sialic acid-modified docetaxel cationic liposomes: double targeting of tumor-associated macrophages and tumor endothelial cells. J Liposome Res 2025; 35:29-43. [PMID: 39138909 DOI: 10.1080/08982104.2024.2388140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Taxane drugs are clinically used for the treatment of many types of cancers due to their excellent antitumor effects. However, the surfactants contained in the injections currently used in the clinic may have serious toxic side effects on the organism, making it necessary to develop new dosage forms. Cationic liposomes have been widely used in antitumor research because of their advantage of preferentially targeting tumor neovascularization, but antitumor by targeting tumor vasculature alone does not necessarily provide good results. Malignant tumors represent complex ecosystems, tumor-associated macrophages (TAMs) and tumor endothelial cells (TECs) in the tumor microenvironment play crucial roles in tumor growth. Therefore, given the ability to achieve active targeting of TAMs and TECs by using sialic acid (SA) as a targeting material, the potential of cationic nanoformulations to preferentially target neovascularization at the tumor site, and the excellent antitumor effects of the taxane drugs docetaxel (DOC), in the present study, sialic acid-cholesterol coupling (SA-CH) was selected as a targeting material to prepare a DOC cationic liposome (DOC-SAL) for tumor therapy. The results of the study showed that DOC-SAL had the strongest drug accumulation in tumor tissues compared with the common DOC formulations, and was able to effectively reduce the colonization of TAMs, inhibit the proliferation of tumor cells, and have the best tumor-suppressing effect. In addition, DOC-SAL was able to improve the internal microenvironment of tumors by modulating cytokines. In summary, this drug delivery system has good anti-tumor effects and provides a new option for tumor therapy.
Collapse
Affiliation(s)
- Tiantian Guo
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dazhi Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruirui Ge
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhouchunxiao Du
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhirong Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yushi Qin
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
4
|
Wen D, Li W, Song X, Hu M, Liao Y, Xu D, Deng J, Guo W. NF-κB-mediated EAAT3 upregulation in antioxidant defense and ferroptosis sensitivity in lung cancer. Cell Death Dis 2025; 16:124. [PMID: 39987248 PMCID: PMC11847022 DOI: 10.1038/s41419-025-07453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
Cellular glutathione (GSH) in lung cancer cells represents the most abundant antioxidant. GSH production is regulated not only by upregulated cystine/glutamate exchanger (xCT) but also by the involvement of glutamate transporters, specifically excitatory amino acid transporter 3 (EAAT3). Our prior research established that the uptake of glutamate via EAAT3 plays a pivotal role in driving cystine uptake through xCT, contributing to GSH biosynthesis during lung tumorigenesis. Nevertheless, the underlying mechanism governing the upregulation of EAAT3 remains enigmatic. In this study, we conducted a comprehensive reanalysis of publicly available data and employed the Gprc5a-/-/SR-IκB mouse model alongside in vitro cell experiments to elucidate the correlations between NF-κB and EAAT3 in lung cancer. We observed that EAAT3 knockdown, similar to NF-κB inhibition, led to the accumulation of reactive oxygen species (ROS) and increased sensitivity to ferroptosis induction by RAS-selective lethal 3 (RSL3). Mechanistic insights were obtained through chromatin immunoprecipitation and luciferase reporter assays, revealing that NF-κB induces EAAT3 expression via two putative cis-elements within its promoter. Furthermore, our investigation unveiled the upregulation of EAAT3 in a subset of clinical non-small cell lung cancer (NSCLC) tissues, exhibiting a positive correlation with the P65 protein. In addition, the inflammatory factor of smoking was found to augment EAAT3 expression in both human and murine experimental models. These findings collectively emphasize the pivotal role of the NF-κB/EAAT3 axis in managing antioxidant stress and influencing lung cancer development. Moreover, this research offers insights into the potential for a combined ferroptosis therapy strategy in lung cancer treatment.
Collapse
Affiliation(s)
- Donghua Wen
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Wenjing Li
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xiang Song
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Min Hu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yueling Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Dongliang Xu
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiong Deng
- Medical Research Center, Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, China.
| | - Wenzheng Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
5
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
6
|
Jiang H, Gao B, Meng Z, Wang Y, Jiao T, Li J, Li X, Cao Y, Zhang X, Li C, Lu S. Integrative multi-omics analysis reveals the role of tumor-associated endothelial cells and their signature in prognosis of intrahepatic cholangiocarcinoma. J Transl Med 2024; 22:948. [PMID: 39427165 PMCID: PMC11490089 DOI: 10.1186/s12967-024-05750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
This study aims to investigate the interplay between tumor-associated endothelial cells (TECs) and immune cells within the tumor microenvironment (TME) and its impact on tumor prognosis. We conducted single-cell RNA sequencing (scRNA-seq) of tumor, normal, and lymph node tissues obtained from intrahepatic cholangiocarcinoma (ICC) patients to reveal the role of TECs in tumor angiogenesis and their significant heterogeneity. Meanwhile, we identified genes highly expressed in TECs and constructed TEC signatures (TEC.Sig). Next, we calculated TEC scores of samples based on TEC.Sig. Patients with higher TEC scores exhibited a higher frequency of KRAS mutations, which was associated with increased infiltration of neutrophils and immature dendritic cells (iDCs), and decreased numbers of natural killer (NK), CD4 + T, and CD8 + T effector memory (Tem) cells, indicating an inflammation-dominated immunosuppressive phenotype. In contrast, BAP1 mutations and CXCL12 overexpression showed a contrasting trend. Spatial transcriptomics analysis and histological experiments further confirmed that TECs interacted with various tumor-killing immune cells through the CXCL12/CXCR4 axis. Multiple tumor immunotherapy datasets confirmed that the TEC.Sig could predict patient responses to immunotherapy. The TEC score is a promising and reliable biomarker for predicting genetic mutations and prognosis in ICC patients. Enhancing the regulation of the CXCL12/CXCR4 signaling pathway may represent a potential novel therapeutic target for ICC treatment.
Collapse
Affiliation(s)
- Hao Jiang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Biao Gao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zihe Meng
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
- College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yafei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Tianyu Jiao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Junfeng Li
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Xuerui Li
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yinbiao Cao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Xianzhou Zhang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Chonghui Li
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China.
| | - Shichun Lu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China.
| |
Collapse
|
7
|
Qiu B, Boudker O. Structural basis of the excitatory amino acid transporter 3 substrate recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611541. [PMID: 39282329 PMCID: PMC11398500 DOI: 10.1101/2024.09.05.611541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Excitatory amino acid transporters (EAATs) reside on cell surfaces and uptake substrates, including L-glutamate, L-aspartate, and D-aspartate, using ion gradients. Among five EAATs, EAAT3 is the only isoform that can efficiently transport L-cysteine, a substrate for glutathione synthesis. Recent work suggests that EAAT3 also transports the oncometabolite R-2-hydroxyglutarate (R-2HG). Here, we examined the structural basis of substrate promiscuity by determining the cryo-EM structures of EAAT3 bound to different substrates. We found that L-cysteine binds to EAAT3 in thiolate form, and EAAT3 recognizes different substrates by fine-tuning local conformations of the coordinating residues. However, using purified human EAAT3, we could not observe R-2HG binding or transport. Imaging of EAAT3 bound to L-cysteine revealed several conformational states, including an outward-facing state with a semi-open gate and a disrupted sodium-binding site. These structures illustrate that the full gate closure, coupled with the binding of the last sodium ion, occurs after substrate binding. Furthermore, we observed that different substrates affect how the transporter distributes between a fully outward-facing conformation and intermediate occluded states on a path to the inward-facing conformation, suggesting that translocation rates are substrate-dependent.
Collapse
Affiliation(s)
- Biao Qiu
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| |
Collapse
|
8
|
Kang Z, Hou S, Gao K, Liu Y, Zhang N, Fang Z, Zhang W, Xu X, Xu R, Lü C, Ma C, Xu P, Gao C. An Ultrasensitive Biosensor for Probing Subcellular Distribution and Mitochondrial Transport of l-2-Hydroxyglutarate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404119. [PMID: 39005231 PMCID: PMC11425224 DOI: 10.1002/advs.202404119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Indexed: 07/16/2024]
Abstract
l-2-Hydroxyglutarate (l-2-HG) is a functionally compartmentalized metabolite involved in various physiological processes. However, its subcellular distribution and mitochondrial transport remain unclear owing to technical limitations. In the present study, an ultrasensitive l-2-HG biosensor, sfLHGFRH, composed of circularly permuted yellow fluorescent protein and l-2-HG-specific transcriptional regulator, is developed. The ability of sfLHGFRH to be used for analyzing l-2-HG metabolism is first determined in human embryonic kidney cells (HEK293FT) and macrophages. Then, the subcellular distribution of l-2-HG in HEK293FT cells and the lower abundance of mitochondrial l-2-HG are identified by the sfLHGFRH-supported spatiotemporal l-2-HG monitoring. Finally, the role of the l-glutamate transporter SLC1A1 in mitochondrial l-2-HG uptake is elucidated using sfLHGFRH. Based on the design of sfLHGFRH, another highly sensitive biosensor with a low limit of detection, sfLHGFRL, is developed for the point-of-care diagnosis of l-2-HG-related diseases. The accumulation of l-2-HG in the urine of patients with kidney cancer is determined using the sfLHGFRL biosensor.
Collapse
Affiliation(s)
- Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Shuang Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Kaiyu Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Wen Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Xianzhi Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Rong Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
9
|
Zhang Z, Sun Y, Zhong X, Zhu J, Yang S, Gu Y, Yu X, Lu Y, Lu Z, Sun X, Wang M. Dietary crude protein and protein solubility manipulation enhances intestinal nitrogen absorption and mitigates reactive nitrogen emissions through gut microbiota and metabolome reprogramming in sheep. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:57-71. [PMID: 39035982 PMCID: PMC11260031 DOI: 10.1016/j.aninu.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/15/2024] [Accepted: 04/07/2024] [Indexed: 07/23/2024]
Abstract
Dietary nutrient manipulation (e.g. protein fractions) could lower the environmental footprints of ruminants, especially reactive nitrogen (N). This study investigated the impacts of dietary soluble protein (SP) levels with decreased crude protein (CP) on intestinal N absorption, hindgut N metabolism, fecal microbiota and metabolites, and their linkage with N metabolism phenotype. Thirty-two male Hu sheep, with an age of six months and an initial BW of 40.37 ± 1.18 kg, were randomly assigned to four dietary groups. The control diet (CON), aligning with NRC standards, maintained a CP content of 16.7% on a dry matter basis. Conversely, the experimental diets (LPA, LPB, and LPC) featured a 10% reduction in CP compared with CON, accompanied by SP adjustments to 21.2%, 25.9%, and 29.4% of CP, respectively. Our results showed that low-protein diets led to significant reductions in the concentrations of plasma creatinine, ammonia, urea N, and fecal total short-chain fatty acids (SCFA) (P < 0.05). Notably, LPB and LPC exhibited increased total SCFA and propionate concentrations compared with LPA (P < 0.05). The enrichment of the Prevotella genus in fecal microbiota associated with energy metabolism and amino acid (AA) biosynthesis pathways was evident with SP levels in low-protein diets of approximately 25% to 30%. Moreover, LPB and LPC diets demonstrated a decrease in fecalNH 4 + -N andNO 2 - -N contents as well as urease activity, compared with CON (P < 0.05). Concomitantly, reductions in fecal glutamic acid dehydrogenase gene (gdh), nitrite reductase gene (nirS), and nitric oxide reductase gene (norB) abundances were observed (P < 0.05), pointing towards a potential reduction in reactive N production at the source. Of significance, the up-regulation of mRNA abundance of AA and peptide transporters in the small intestine (duodenum, jejunum, and ileum) and the elevated concentration of plasma AA (e.g. arginine, methionine, aspartate, glutamate, etc.) underscored the enhancement of N absorption and N efficiency. In summary, a 10% reduction in CP, coupled with an SP level of approximately 25% to 30%, demonstrated the potential to curtail reactive N emissions through fecal Prevotella enrichment and improve intestinal energy and N utilization efficiency.
Collapse
Affiliation(s)
- Zhenbin Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, 832000, China
| | - Yiquan Sun
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xinhuang Zhong
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jun Zhu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Sihan Yang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yalan Gu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- Shanghai Frontan Animal Health Co., Ltd., Shanghai, 201502, China
| | - Xiang Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yue Lu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqi Lu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xuezhao Sun
- AgResearch (Grasslands Research Centre), Palmerston North, 4410, New Zealand
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, 832000, China
| |
Collapse
|
10
|
Yang J, Li J, Li S, Yang Y, Su H, Guo H, Lei J, Wang Y, Wen K, Li X, Zhang S, Wang Z. Effects of HOX family regulator-mediated modification patterns and immunity characteristics on tumor-associated cell type in endometrial cancer. MOLECULAR BIOMEDICINE 2024; 5:32. [PMID: 39138733 PMCID: PMC11322468 DOI: 10.1186/s43556-024-00196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Endometrial cancer (UCEC) is one of three major malignant tumors in women. The HOX gene regulates tumor development. However, the potential roles of HOX in the expression mechanism of multiple cell types and in the development and progression of tumor microenvironment (TME) cell infiltration in UCEC remain unknown. In this study, we utilized both the The Cancer Genome Atlas (TCGA) database and International Cancer Genome Consortium (ICGC) database to analyze transcriptome data of 529 patients with UCEC based on 39 HOX genes, combing clinical information, we discovered HOX gene were a pivotal factor in the development and progression of UCEC and in the formation of TME diversity and complexity. Here, a new scoring system was developed to quantify individual HOX patterns in UCEC. Our study found that patients in the low HOX score group had abundant anti-tumor immune cell infiltration, good tumor differentiation, and better prognoses. In contrast, a high HOX score was associated with blockade of immune checkpoints, which enhances the response to immunotherapy. The Real-Time quantitative PCR (RT-qPCR) and Immunohistochemistry (IHC) exhibited a higher expression of the HOX gene in the tumor patients. We revealed that the significant upregulation of the HOX gene in the epithelial cells can activate signaling pathway associated with tumour invasion and metastasis through single-cell RNA sequencing (scRNA-seq), such as nucleotide metabolic proce and so on. Finally, a risk prognostic model established by the positive relationship between HOX scores and cancer-associated fibroblasts (CAFs) can predict the prognosis of individual patients by scRNA-seq and transcriptome data sets. In sum, HOX gene may serve as a potential biomarker for the diagnosis and prediction of UCEC and to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- JiaoLin Yang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - JinPeng Li
- Shanxi Medical University, Taiyuan, 030001, China
| | - SuFen Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - YuTong Yang
- Shanxi Medical University, Taiyuan, 030001, China
| | - HuanCheng Su
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - HongRui Guo
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Lei
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - YaLin Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - KaiTing Wen
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xia Li
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - SanYuan Zhang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhe Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
11
|
Huang Z, Tang Y, Zhang J, Huang J, Cheng R, Guo Y, Kleer CG, Wang Y, Xue L. Hypoxia makes EZH2 inhibitor not easy-advances of crosstalk between HIF and EZH2. LIFE METABOLISM 2024; 3:loae017. [PMID: 38911968 PMCID: PMC11192520 DOI: 10.1093/lifemeta/loae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 06/25/2024]
Abstract
Histone methylation plays a crucial role in tumorigenesis. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that regulates chromatin structure and gene expression. EZH2 inhibitors (EZH2is) have been shown to be effective in treating hematologic malignancies, while their effectiveness in solid tumors remains limited. One of the major challenges in the treatment of solid tumors is their hypoxic tumor microenvironment. Hypoxia-inducible factor 1-alpha (HIF-1α) is a key hypoxia responder that interacts with EZH2 to promote tumor progression. Here we discuss the implications of the relationship between EZH2 and hypoxia for expanding the application of EZH2is in solid tumors.
Collapse
Affiliation(s)
- Zhanya Huang
- Cancer Center of Peking University Third Hospital, Beijing 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Yuanjun Tang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Jianlin Zhang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Jiaqi Huang
- Cancer Center of Peking University Third Hospital, Beijing 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Rui Cheng
- Cancer Center of Peking University Third Hospital, Beijing 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Yunyun Guo
- Cancer Center of Peking University Third Hospital, Beijing 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Yuqing Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Lixiang Xue
- Cancer Center of Peking University Third Hospital, Beijing 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
12
|
Yan Y, Li S, Su L, Tang X, Chen X, Gu X, Yang G, Chi H, Huang S. Mitochondrial inhibitors: a new horizon in breast cancer therapy. Front Pharmacol 2024; 15:1421905. [PMID: 39027328 PMCID: PMC11254633 DOI: 10.3389/fphar.2024.1421905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Breast cancer, due to resistance to standard therapies such as endocrine therapy, anti-HER2 therapy and chemotherapy, continues to pose a major health challenge. A growing body of research emphasizes the heterogeneity and plasticity of metabolism in breast cancer. Because differences in subtypes exhibit a bias toward metabolic pathways, targeting mitochondrial inhibitors shows great potential as stand-alone or adjuvant cancer therapies. Multiple therapeutic candidates are currently in various stages of preclinical studies and clinical openings. However, specific inhibitors have been shown to face multiple challenges (e.g., single metabolic therapies, mitochondrial structure and enzymes, etc.), and combining with standard therapies or targeting multiple metabolic pathways may be necessary. In this paper, we review the critical role of mitochondrial metabolic functions, including oxidative phosphorylation (OXPHOS), the tricarboxylic acid cycle, and fatty acid and amino acid metabolism, in metabolic reprogramming of breast cancer cells. In addition, we outline the impact of mitochondrial dysfunction on metabolic pathways in different subtypes of breast cancer and mitochondrial inhibitors targeting different metabolic pathways, aiming to provide additional ideas for the development of mitochondrial inhibitors and to improve the efficacy of existing therapies for breast cancer.
Collapse
Affiliation(s)
- Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Sijie Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xinrui Tang
- Paediatrics Department, Southwest Medical University, Luzhou, China
| | - Xiaoyan Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Gu
- Biology Department, Southern Methodist University, Dallas, TX, United States
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Muthukrishnan SD, Qi H, Wang D, Elahi L, Pham A, Alvarado AG, Li T, Gao F, Kawaguchi R, Lai A, Kornblum HI. Low- and High-Grade Glioma-Associated Vascular Cells Differentially Regulate Tumor Growth. Mol Cancer Res 2024; 22:656-667. [PMID: 38441553 PMCID: PMC11217726 DOI: 10.1158/1541-7786.mcr-23-1069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
A key feature distinguishing high-grade glioma (HG) from low-grade glioma (LG) is the extensive neovascularization and endothelial hyperproliferation. Prior work has shown that tumor-associated vasculature from HG is molecularly and functionally distinct from normal brain vasculature and expresses higher levels of protumorigenic factors that promote glioma growth and progression. However, it remains unclear whether vessels from LG also express protumorigenic factors, and to what extent they functionally contribute to glioma growth. Here, we profile the transcriptomes of glioma-associated vascular cells (GVC) from IDH-mutant (mIDH) LG and IDH-wild-type (wIDH) HG and show that they exhibit significant molecular and functional differences. LG-GVC show enrichment of extracellular matrix-related gene sets and sensitivity to antiangiogenic drugs, whereas HG-GVC display an increase in immune response-related gene sets and antiangiogenic resistance. Strikingly, conditioned media from LG-GVC inhibits the growth of wIDH glioblastoma cells, whereas HG-GVC promotes growth. In vivo cotransplantation of LG-GVC with tumor cells reduces growth, whereas HG-GVC enhances tumor growth in orthotopic xenografts. We identify ASPORIN (ASPN), a small leucine-rich repeat proteoglycan, highly enriched in LG-GVC as a growth suppressor of wIDH glioblastoma cells in vitro and in vivo. Together, these findings indicate that GVC from LG and HG are molecularly and functionally distinct and differentially regulate tumor growth. Implications: This study demonstrated that vascular cells from IDH-mutant LG and IDH-wild-type HG exhibit distinct molecular signatures and have differential effects on tumor growth via regulation of ASPN-TGFβ1-GPM6A signaling.
Collapse
Affiliation(s)
- Sree Deepthi Muthukrishnan
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma
| | - Haocheng Qi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - David Wang
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Lubayna Elahi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Amy Pham
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Alvaro G. Alvarado
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Tie Li
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Fuying Gao
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Riki Kawaguchi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Harley I. Kornblum
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
14
|
Cui L, Liu T, Huang C, Yang F, Luo L, Sun L, Zhao Y, Wang D, Wang M, Ji Y, Zhu W. Gastric Cancer Mesenchymal Stem Cells Trigger Endothelial Cell Functional Changes to Promote Cancer Progression. Stem Cell Rev Rep 2024; 20:1285-1298. [PMID: 38598065 DOI: 10.1007/s12015-024-10720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Our previous studies have highlighted the pivotal role of gastric cancer mesenchymal stem cells (GCMSCs) in tumor initiation, progression, and metastasis. In parallel, it is well-documented that endothelial cells (ECs) undergo functional alterations in response to challenging tumor microenvironment. This study aims to elucidate whether functional changes in ECs might be induced by GCMSCs and thus influence cancer progression. Cell proliferation was assessed through CCK-8 and colony formation assays, while cell migration and invasion capabilities were evaluated by wound-healing and Transwell assays. Immunohistochemistry was employed to examine protein distribution and expression levels. Additionally, quantitative analysis of protein and mRNA expression was carried out through Western blotting and qRT-PCR respectively, with gene knockdown achieved using siRNA. Our findings revealed that GCMSCs effectively stimulate cell proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs), both in vitro and in vivo. GCMSCs promote the migration and invasion of gastric cancer cells by inducing the expression of Slit2 in HUVECs. Notably, the inhibition of phosphorylated AKT partially mitigates the aforementioned effects. In conclusion, GCMSCs may exert regulatory control over Slit2 expression in ECs via the AKT signaling pathway, thereby inducing functional changes in ECs that promote tumor progression.
Collapse
Affiliation(s)
- Linjing Cui
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Ting Liu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Chao Huang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Fumeng Yang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Liqi Luo
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, China
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Deqiang Wang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mei Wang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Yong Ji
- Department of Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu Province, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
15
|
Feng S, Wang D, Jin Y, Huang S, Liang T, Sun W, Du X, Zhuo L, Shan C, Zhang W, Jing T, Zhao S, Hong R, You L, Liu G, Chen L, Ye D, Li X, Yang Y. Blockage of L2HGDH-mediated S-2HG catabolism orchestrates macrophage polarization to elicit antitumor immunity. Cell Rep 2024; 43:114300. [PMID: 38829739 DOI: 10.1016/j.celrep.2024.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/21/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
The high infiltration of tumor-associated macrophages (TAMs) in the immunosuppressive tumor microenvironment prominently attenuates the efficacy of immune checkpoint blockade (ICB) therapies, yet the underlying mechanisms are not fully understood. Here, we investigate the metabolic profile of TAMs and identify S-2-hydroxyglutarate (S-2HG) as a potential immunometabolite that shapes macrophages into an antitumoral phenotype. Blockage of L-2-hydroxyglutarate dehydrogenase (L2HGDH)-mediated S-2HG catabolism in macrophages promotes tumor regression. Mechanistically, based on its structural similarity to α-ketoglutarate (α-KG), S-2HG has the potential to block the enzymatic activity of 2-oxoglutarate-dependent dioxygenases (2-OGDDs), consequently reshaping chromatin accessibility. Moreover, S-2HG-treated macrophages enhance CD8+ T cell-mediated antitumor activity and sensitivity to anti-PD-1 therapy. Overall, our study uncovers the role of blockage of L2HGDH-mediated S-2HG catabolism in orchestrating macrophage antitumoral polarization and, further, provides the potential of repolarizing macrophages by S-2HG to overcome resistance to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Shuang Feng
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Duowei Wang
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Yanyan Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Shi Huang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Tong Liang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Wei Sun
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Xiuli Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Luoyi Zhuo
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Chun Shan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Wenbo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Tian Jing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Sen Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Ruisi Hong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Linjun You
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Guilai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Leilei Chen
- Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Dan Ye
- Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Xianjing Li
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China.
| | - Yong Yang
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P.R. China.
| |
Collapse
|
16
|
Han Y, Tong X, Zhou R, Wang Y, Chen Y, Chen L, Hong X, Wu L, Lin Z, Zhang Y, Zhang X, Hu C, Li B, Ping Y, Cao Z, Ye Z, Song Z, Li Y, Wen C, Zhou Y, Lin J, Huang S. Biodegradable Zn-5Dy Alloy with Enhanced Osteo/Angio-Genic Activity and Osteointegration Effect via Regulation of SIRT4-Dependent Mitochondrial Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307812. [PMID: 38243646 PMCID: PMC10987155 DOI: 10.1002/advs.202307812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Zinc (Zn)-dysprosium (Dy) binary alloys are promising biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for bone fracture healing, due to the lack of Zn-Dy alloys with tailored proper bio-mechanical and osteointegration properties for bone regeneration. A Zn-5Dy alloy with high strength and ductility and a degradation rate aligned with the bone remodeling cycle is developed. Here, mechanical stability is further confirmed, proving that Zn-5Dy alloy can resist aging in the degradation process, thus meeting the mechanical requirements of fracture fixation. In vitro cellular experiments reveal that the Zn-5Dy alloy enhances osteogenesis and angiogenesis by elevating SIRT4-mediated mitochondrial function. In vivo Micro-CT, SEM-EDS, and immunohistochemistry analyses further indicate good biosafety, suitable biodegradation rate, and great osteointegration of Zn-5Dy alloy during bone healing, which also depends on the upregulation of SIRT4-mediated mitochondrial events. Overall, the study is the first to report a Zn-5Dy alloy that exerts remarkable osteointegration properties and has a strong potential to promote bone healing. Furthermore, the results highlight the importance of mitochondrial modulation and shall guide the future development of mitochondria-targeting materials in enhancing bone fracture healing.
Collapse
Affiliation(s)
- Yue Han
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xian Tong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Runqi Zhou
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yilin Wang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yuge Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
- Department of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonT6G2R3Canada
| | - Liang Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xinhua Hong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Linmei Wu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhiqiang Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yichi Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xuejia Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Chaoming Hu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Bin Li
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yifan Ping
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zelin Cao
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental CareFaculty of DentistryUniversity of Hong KongHong Kong999077China
| | - Zhongchen Song
- Department of PeriodontologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
| | - Yuncang Li
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Cuie Wen
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Yongsheng Zhou
- Department of ProsthodonticsNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyResearch Center of Engineering and Technology for Computerized Dentistry Ministry of HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Jixing Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Shengbin Huang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| |
Collapse
|
17
|
Zhao R, Ding Y, Han R, Ding R, Liu J, Zhu C, Ding D, Bao M. Prognostic correlation between specialized capillary endothelial cells and lung adenocarcinoma. Heliyon 2024; 10:e28236. [PMID: 38533005 PMCID: PMC10963648 DOI: 10.1016/j.heliyon.2024.e28236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Background In-depth analysis of the functional changes occurring in endothelial cells (ECs) involved in capillary formation can help to elucidate the mechanism of tumour vascular growth. Methods Appropriate datasets were retrieved from the GEO database to obtain single-cell data on LUAD samples and adjacent normal tissue samples. ECs were selected by an automatic annotation program in R and further subdivided based on reported EC marker genes. Functional changes in different types of capillary ECs were then visualized, and the concrete expression was classified by genetic data in the TCGA. Finally, a prognostic model was constructed to predict immunoinfiltration status, survival and drug therapy effects. Results The LUAD data contained in the GSE183219 dataset were suitable for our analysis. After dimensionality reduction analysis and cell annotation, EC general capillary and EC aerocyte subsets as capillary specialized phenotypes showed a series of functional changes in tumour samples, with a total of 108 genes found to undergo functional changes. Use of CellPhoneDB revealed a close interaction of activity between ECs. After integration of TCGA, GSE68465 and GSE11969 datasets, the genes obtained were analysed by cluster analysis and risk model construction, identifying 8 genes. Drug sensitivity, immune cell and molecular differences can be accurately predicted. Conclusions EC general capillary and EC aerocyte subsets are recognized capillary ECs in the tumour microenvironment, and the functional changes between them are relevant to the prognosis and treatment of LUAD patients and have the potential to be used in target therapy.
Collapse
Affiliation(s)
- Rongchang Zhao
- Department of Oncology, Taixing People's Hospital, Taixing, China
| | - Yan Ding
- Department of Oncology, Taixing People's Hospital, Taixing, China
| | - Rongbo Han
- Department of Oncology, The Fourth Affiliated Hospital Of Nanjing Medical University, Nanjing, China
| | - Rongjie Ding
- Department of Oncology, Taixing People's Hospital, Taixing, China
| | - Jun Liu
- Department of Oncology, Taixing People's Hospital, Taixing, China
| | - Chunrong Zhu
- Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dan Ding
- Department of Oncology, Taixing People's Hospital, Taixing, China
| | - Minhui Bao
- Department of Oncology, Taixing People's Hospital, Taixing, China
| |
Collapse
|
18
|
Yu AC, Deng YH, Long C, Sheng XH, Wang XG, Xiao LF, Lv XZ, Chen XN, Chen L, Qi XL. High Dietary Folic Acid Supplementation Reduced the Composition of Fatty Acids and Amino Acids in Fortified Eggs. Foods 2024; 13:1048. [PMID: 38611353 PMCID: PMC11012142 DOI: 10.3390/foods13071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 04/14/2024] Open
Abstract
AIMS The study aimed to evaluate the effects of dietary folic acid (FA) on the production performance of laying hens, egg quality, and the nutritional differences between eggs fortified with FA and ordinary eggs. METHODS A total of 288 26-week-old Hy-Line Brown laying hens (initial body weights 1.65 ± 0.10 kg) with a similar weight and genetic background were used. A completely randomized design divided the birds into a control group and three treatment groups. Each group consisted of six replicates, with twelve chickens per replicate. Initially, all birds were fed a basal diet for 1 week. Subsequently, they were fed a basal diet supplemented with 0, 5, 10, or 15 mg/kg FA in a premix for a duration of 6 weeks. RESULTS Supplementation of FA could significantly (p < 0.05) enhance the FA content in egg yolks, particularly when 10 mg/kg was used, as it had the most effective enrichment effect. Compared to the control group, the Glu content in the 10 and 15 mg/kg FA groups showed a significant (p < 0.05) decrease. Additionally, the contents of Asp, Ile, Tyr, Phe, Cys, and Met in the 15 mg/kg FA group were significantly (p < 0.05) lower compared to the other groups. Adding FA did not have significant effects on the levels of vitamin A and vitamin E in egg yolk, but the vitamin D content in the 5 and 10 mg/kg FA groups showed a significant (p < 0.05) increase. Furthermore, the addition of FA did not have a significant effect on the levels of Cu, Fe, Mn, Se, and Zn in egg yolk. The dietary FA did not have a significant effect on the total saturated fatty acids (SFA) and polyunsaturated fatty acid (PUFA) content in egg yolk. However, the total monounsaturated fatty acid (MUFA) content in the 5 and 10 mg/kg groups significantly (p < 0.05) increased. These changes in nutritional content might be attributed to the increased very low-density lipoprotein (VLDL) protein content. The significant decrease in solute carrier family 1 Member 1 (SLC1A1), solute carrier family 1 Member 2 (SLC1A2), and solute carrier family 1 Member 3 (SLC1A3) gene expression compared to the control group appeared to be the reason for the decrease in amino acid content in egg yolk within the dietary FA group. CONCLUSION The findings suggest that the appropriate addition of FA can enhance the levels of MUFA and vitamin D in egg yolks, thereby improving their nutritional value. Excessive intake of FA can decrease the effectiveness of enriching FA in egg yolk and impact the enrichment of certain amino acids. The yolk of eggs produced by adding 10 mg/kg of FA to the feed contains the optimal amount of nutrients. This study informs consumers purchasing FA-fortified eggs.
Collapse
Affiliation(s)
- Ao-Chuan Yu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (A.-C.Y.); (Y.-H.D.); (C.L.); (X.-H.S.); (X.-G.W.); (L.-F.X.)
| | - Yu-Han Deng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (A.-C.Y.); (Y.-H.D.); (C.L.); (X.-H.S.); (X.-G.W.); (L.-F.X.)
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (A.-C.Y.); (Y.-H.D.); (C.L.); (X.-H.S.); (X.-G.W.); (L.-F.X.)
| | - Xi-Hui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (A.-C.Y.); (Y.-H.D.); (C.L.); (X.-H.S.); (X.-G.W.); (L.-F.X.)
| | - Xiang-Guo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (A.-C.Y.); (Y.-H.D.); (C.L.); (X.-H.S.); (X.-G.W.); (L.-F.X.)
| | - Long-Fei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (A.-C.Y.); (Y.-H.D.); (C.L.); (X.-H.S.); (X.-G.W.); (L.-F.X.)
| | - Xue-Ze Lv
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing 100107, China;
| | - Xiang-Ning Chen
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China;
| | - Li Chen
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China;
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (A.-C.Y.); (Y.-H.D.); (C.L.); (X.-H.S.); (X.-G.W.); (L.-F.X.)
- Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 102206, China
| |
Collapse
|
19
|
Cai M, Zhao J, Ding Q, Wei J. Oncometabolite 2-hydroxyglutarate regulates anti-tumor immunity. Heliyon 2024; 10:e24454. [PMID: 38293535 PMCID: PMC10826830 DOI: 10.1016/j.heliyon.2024.e24454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
"Oncometabolite" 2-hydroxyglutarate (2-HG) is an aberrant metabolite found in tumor cells, exerting a pivotal influence on tumor progression. Recent studies have unveiled its impact on the proliferation, activation, and differentiation of anti-tumor T cells. Moreover, 2-HG regulates the function of innate immune components, including macrophages, dendritic cells, natural killer cells, and the complement system. Elevated levels of 2-HG hinder α-KG-dependent dioxygenases (α-KGDDs), contributing to tumorigenesis by disrupting epigenetic regulation, genome integrity, hypoxia-inducible factors (HIF) signaling, and cellular metabolism. The chiral molecular structure of 2-HG produces two enantiomers: D-2-HG and L-2-HG, each with distinct origins and biological functions. Efforts to inhibit D-2-HG and leverage the potential of L-2-HG have demonstrated efficacy in cancer immunotherapy. This review delves into the metabolism, biological functions, and impacts on the tumor immune microenvironment (TIME) of 2-HG, providing a comprehensive exploration of the intricate relationship between 2-HG and antitumor immunity. Additionally, we examine the potential clinical applications of targeted therapy for 2-HG, highlighting recent breakthroughs as well as the existing challenges.
Collapse
Affiliation(s)
- Mengyuan Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jianyi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jifu Wei
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
20
|
Zhang J, Tang K, Liu Z, Zhang Z, Duan S, Wang H, Yang H, Yang D, Fan W. Tumor microenvironment-responsive degradable silica nanoparticles: design principles and precision theranostic applications. NANOSCALE HORIZONS 2024; 9:186-214. [PMID: 38164973 DOI: 10.1039/d3nh00388d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Silica nanoparticles have emerged as promising candidates in the field of nanomedicine due to their remarkable versatility and customizable properties. However, concerns about their potential toxicity in healthy tissues and organs have hindered their widespread clinical translation. To address this challenge, significant attention has been directed toward a specific subset of silica nanoparticles, namely degradable silica nanoparticles, primarily because of their excellent biocompatibility and responsive biodegradability. In this review, we provide a comprehensive understanding of degradable silica nanoparticles, categorizing them into two distinct groups: inorganic species-doped and organic moiety-doped silica nanoparticles based on their framework components. Next, the recent progress of tumor microenvironment (TME)-responsive degradable silica nanoparticles for precision theranostic applications is summarized in detail. Finally, current bottlenecks and future opportunities of theranostic nanomedicines based on degradable silica nanoparticles in clinical applications are also outlined and discussed. The aim of this comprehensive review is to shed light on the potential of degradable silica nanoparticles in addressing current challenges in nanomedicine, offering insights into their design, applications in tumor diagnosis and treatment, and paving the way for future advancements in clinical theranostic nanomedicines.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Zilu Liu
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Zhijing Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Shufan Duan
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Dongliang Yang
- Nanjing Polytechnic Institute, Nanjing 210048, P. R. China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
21
|
Pourtavakoli A, Ghafouri-Fard S, Eslami S, Brand S, Taheri M. Expression assay of calcium signaling related lncRNAs in autism. Mol Biol Rep 2024; 51:185. [PMID: 38265729 DOI: 10.1007/s11033-023-09182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Calcium signaling has essential roles in the neurodevelopmental processes and pathophysiology of related disorders for instance autism spectrum disorder (ASD). METHODS AND RESULTS We compared expression of SLC1A1, SLC25A12, RYR2 and ATP2B2, as well as related long non-coding RNAs, namely LINC01231, lnc-SLC25A12, lnc-MTR-1 and LINC00606 in the peripheral blood of patients with ASD with healthy children. Expression of SLC1A1 was lower in ASD samples compared with control samples (Expression ratio (95% CI) 0.24 (0.08-0.77), adjusted P value = 0.01). Contrary, expression of LINC01231 was higher in cases compared with control samples (Expression ratio (95% CI) 25.52 (4.19-154), adjusted P value = 0.0006) and in male cases compared with healthy males (Expression ratio (95% CI) 28.24 (1.91-418), adjusted P value = 0.0009). RYR2 was significantly over-expressed in ASD children compared with control samples (Expression ratio (95% CI) 4.5 (1.16-17.4), adjusted P value = 0.029). Then, we depicted ROC curves for SLC1A1, LINC01231, RYR2 and lnc-SLC25A12 transcripts showing diagnostic power of 0.68, 0.75, 0.67 and 0.59, respectively. CONCLUSION To sum up, the current study displays possible role of calcium related genes and lncRNAs in the development of ASD.
Collapse
Affiliation(s)
- Ashkan Pourtavakoli
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders, Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Han M, Sun H, Zhou Q, Liu J, Hu J, Yuan W, Sun Z. Effects of RNA methylation on Tumor angiogenesis and cancer progression. Mol Cancer 2023; 22:198. [PMID: 38053093 PMCID: PMC10698974 DOI: 10.1186/s12943-023-01879-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
Tumor angiogenesis plays vital roles in the growth and metastasis of cancer. RNA methylation is one of the most common modifications and is widely observed in eukaryotes and prokaryotes. Accumulating studies have revealed that RNA methylation affects the occurrence and development of various tumors. In recent years, RNA methylation has been shown to play an important role in regulating tumor angiogenesis. In this review, we mainly elucidate the mechanisms and functions of RNA methylation on angiogenesis and progression in several cancers. We then shed light on the role of RNA methylation-associated factors and pathways in tumor angiogenesis. Finally, we describe the role of RNA methylation as potential biomarker and novel therapeutic target.
Collapse
Affiliation(s)
- Mingyu Han
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
23
|
Cai Y, Wang Z, Guo S, Lin C, Yao H, Yang Q, Wang Y, Yu X, He X, Sun W, Qiu S, Guo Y, Tang S, Xie Y, Zhang A. Detection, mechanisms, and therapeutic implications of oncometabolites. Trends Endocrinol Metab 2023; 34:849-861. [PMID: 37739878 DOI: 10.1016/j.tem.2023.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023]
Abstract
Metabolic abnormalities are a hallmark of cancer cells and are essential to tumor progression. Oncometabolites have pleiotropic effects on cancer biology and affect a plethora of processes, from oncogenesis and metabolism to therapeutic resistance. Targeting oncometabolites, therefore, could offer promising therapeutic avenues against tumor growth and resistance to treatments. Recent advances in characterizing the metabolic profiles of cancer cells are shedding light on the underlying mechanisms and associated metabolic networks. This review summarizes the diverse detection methods, molecular mechanisms, and therapeutic targets of oncometabolites, which may lead to targeting oncometabolism for cancer therapy.
Collapse
Affiliation(s)
- Ying Cai
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhibo Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qiang Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yan Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Xiaodan Yu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Xiaowen He
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Wanying Sun
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yu Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
24
|
Gehl V, O'Rourke CJ, Andersen JB. Immunogenomics of cholangiocarcinoma. Hepatology 2023:01515467-990000000-00649. [PMID: 37972940 DOI: 10.1097/hep.0000000000000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The development of cholangiocarcinoma spans years, if not decades, during which the immune system becomes corrupted and permissive to primary tumor development and metastasis. This involves subversion of local immunity at tumor sites, as well as systemic immunity and the wider host response. While immune dysfunction is a hallmark of all cholangiocarcinoma, the specific steps of the cancer-immunity cycle that are perturbed differ between patients. Heterogeneous immune functionality impacts the evolutionary development, pathobiological behavior, and therapeutic response of these tumors. Integrative genomic analyses of thousands of primary tumors have supported a biological rationale for immune-based stratification of patients, encompassing immune cell composition and functionality. However, discerning immune alterations responsible for promoting tumor initiation, maintenance, and progression from those present as bystander events remains challenging. Functionally uncoupling the tumor-promoting or tumor-suppressing roles of immune profiles will be critical for identifying new immunomodulatory treatment strategies and associated biomarkers for patient stratification. This review will discuss the immunogenomics of cholangiocarcinoma, including the impact of genomic alterations on immune functionality, subversion of the cancer-immunity cycle, as well as clinical implications for existing and novel treatment strategies.
Collapse
Affiliation(s)
- Virag Gehl
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
25
|
Hong Z, Xie W, Zhuo H, Wei X, Wang K, Cheng J, Lin L, Hou J, Chen X, Cai J. Crosstalk between Cancer Cells and Cancer-Associated Fibroblasts Mediated by TGF-β1-IGFBP7 Signaling Promotes the Progression of Infiltrative Gastric Cancer. Cancers (Basel) 2023; 15:3965. [PMID: 37568781 PMCID: PMC10417438 DOI: 10.3390/cancers15153965] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Patients with infiltrative-type gastric cancer (GC) (Ming's classification) have a poor prognosis due to more metastasis and recurrence. Cancer-associated fibroblasts (CAFs) in infiltrative-type extracellular matrix (ECM) have specific characteristics compared with those of expansive types with respect to metastasis, but the mechanism is still unclear. Based on our proteomics data, TCGA data analysis, and immunohistochemical staining results, significantly higher expression of IGFBP7 was observed in GC, especially in the infiltrative type, and was associated with a poor prognosis. Combining single-cell transcriptome data from GEO and multiple immunofluorescence staining on tissue showed that the differential expression of IGFBP7 mainly originated from myofibroblastic CAFs, the subgroup with higher expression of PDGFRB and α-SMA. After treating primary normal fibroblasts (NFs) with conditional medium or recombined protein, it was demonstrated that XGC-1-derived TGF-β1 upregulated the expression of IGFBP7 in the cells and its secretion via the P-Smad2/3 pathway and mediated its activation with higher FAP, PDGFRB, and α-SMA expression. Then, either conditional medium from CAFs with IGFBP7 overexpression or recombined IGFBP7 protein promoted the migration, invasion, colony formation, and sphere growth ability of XGC-1 and MGC-803, respectively. Moreover, IGFBP7 induced EMT in XGC-1. Therefore, our study clarified that in the tumor microenvironment, tumor-cell-derived TGF-β1 induces the appearance of the IGFBP7+ CAF subgroup, and its higher IGFBP7 extracellular secretion level accelerates the progression of tumors.
Collapse
Affiliation(s)
- Zhijun Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Wen Xie
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Xujin Wei
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
- The Graduate School, Fujian Medical University, Fuzhou 350004, China
| | - Kang Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Jia Cheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Lingyun Lin
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
| | - Xin Chen
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
- The Graduate School, Fujian Medical University, Fuzhou 350004, China
| | - Jianchun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Z.H.); (W.X.); (H.Z.); (K.W.); (J.C.); (L.L.); (J.H.)
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, China; (X.W.); (X.C.)
- The Graduate School, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
26
|
Muthukrishnan SD, Qi H, Wang D, Elahi L, Pham A, Alvarado AG, Li T, Gao F, Kawaguchi R, Lai A, Kornblum HI. Low- and high-grade glioma endothelial cells differentially regulate tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548125. [PMID: 37461434 PMCID: PMC10350040 DOI: 10.1101/2023.07.07.548125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background A key feature distinguishing high-grade glioma (HGG) from low-grade glioma (LGG) is the extensive neovascularization and endothelial hyperproliferation. Prior work has shown that tumor endothelial cells (TEC) from HGG are molecularly and functionally distinct from normal brain EC and secrete higher levels of pro-tumorigenic factors that promote glioma growth and progression. However, it remains unclear whether TEC from LGG also express pro-tumorigenic factors, and to what extent they functionally contribute to glioma growth. Methods Transcriptomic profiling was conducted on tumor endothelial cells (TEC) from grade II/III (LGG, IDH-mutant) and grade IV HGG (IDH-wildtype). Functional differences between LGG- and HGG-TEC were evaluated using growth assays, resistance to anti-angiogenic drugs and radiation therapy. Conditioned media and specific factors from LGG- and HGG-TEC were tested on patient-derived gliomasphere lines using growth assays in vitro and in co-transplantation studies in vivo in orthotopic xenograft models. Results LGG-TEC showed enrichment of extracellular matrix and cell cycle-related gene sets and sensitivity to anti-angiogenic therapy whereas HGG-TEC displayed an increase in immune response-related gene sets and anti-angiogenic resistance. LGG- and HGG-TEC displayed opposing effects on growth and proliferation of IDH-wildtype and mutant tumor cells. Asporin (ASPN), a small leucine rich proteoglycan enriched in LGG-TEC was identified as a growth suppressor of IDH-wildtype GBM by modulating TGFΒ1-GPM6A signaling. Conclusions Our findings indicate that TEC from LGG and HGG are molecularly and functionally heterogeneous and differentially regulate the growth of IDH-wildtype and mutant tumors.
Collapse
|
27
|
Luo Z, Yao J, Wang Z, Xu J. Mitochondria in endothelial cells angiogenesis and function: current understanding and future perspectives. J Transl Med 2023; 21:441. [PMID: 37407961 DOI: 10.1186/s12967-023-04286-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Endothelial cells (ECs) angiogenesis is the process of sprouting new vessels from the existing ones, playing critical roles in physiological and pathological processes such as wound healing, placentation, ischemia/reperfusion, cardiovascular diseases and cancer metastasis. Although mitochondria are not the major sites of energy source in ECs, they function as important biosynthetic and signaling hubs to regulate ECs metabolism and adaptations to local environment, thus affecting ECs migration, proliferation and angiogenic process. The understanding of the importance and potential mechanisms of mitochondria in regulating ECs metabolism, function and the process of angiogenesis has developed in the past decades. Thus, in this review, we discuss the current understanding of mitochondrial proteins and signaling molecules in ECs metabolism, function and angiogeneic signaling, to provide new and therapeutic targets for treatment of diverse cardiovascular and angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Zhen Luo
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China.
| |
Collapse
|
28
|
Tang F, Wang DW, Xi C, Yang JZ, Liu ZY, Yu DH, Wang ZF, Li ZQ. Local and systemic effects of IDH mutations on primary glioma patients. Immunology 2023. [PMID: 37054988 DOI: 10.1111/imm.13649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023] Open
Abstract
Adult gliomas are divided into isocitrate dehydrogenase (IDH) wild-type and IDH mutant subtypes according to the new 2021 World Health Organization classification system. However, the local and systemic effects of IDH mutations on primary glioma patients are not well illustrated. Retrospective analysis, immune-cell infiltration analysis, meta-analysis, and immunohistochemistry assay were applied in the present study. The results from our cohort showed that IDH mutant gliomas own a lower proliferating rate compared to that in wild-type gliomas. Patients with mutant IDH exhibited a higher frequency of seizures in both our cohort and the cohort from the meta-analysis. Mutations in IDH result in lower levels of intra-tumour but higher levels of circulating CD4+ and CD8+ T lymphocytes. Levels of neutrophils in both intra-tumour and circulating blood were lower in IDH mutant gliomas. Moreover, IDH mutant glioma patients receiving radiotherapy in combination with chemotherapy exhibited better overall survival with respect to radiotherapy alone. Mutations in IDH alters the local and circulating immune microenvironment, and increases the sensitivity of tumour cell to chemotherapy.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan-Wen Wang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Xi
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin-Zhou Yang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhen-Yuan Liu
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Hu Yu
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Zhi-Qiang Li
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
29
|
Huang M, Geng MY, Ding J. Antitumor pharmacological research in the era of personalized medicine. Acta Pharmacol Sin 2022; 43:3015-3020. [PMID: 36424452 PMCID: PMC9712373 DOI: 10.1038/s41401-022-01023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022]
Abstract
Anticancer drug discovery has yielded unprecedented progress in recent decades, resulting in the approval of innovative treatment options for patients and the successful implementation of personalized medicine in clinical practice. This remarkable progress has also reshaped the research scope of pharmacological research. This article, as a tribute to cancer research at Shanghai Institute of Materia Medica in celebration of the institute's 90th birthday, provides an overview of the conceptual revolution occurring in anticancer therapy, and summarizes our recent progress in the development of molecularly targeted therapeutics and exploration of new strategies in personalized medicine. With this review, we hope to provide a glimpse into how antitumor pharmacological researchers have embraced the new era of personalized medicine research and to propose a future path for anticancer drug discovery and pharmacological research.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei-Yu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Richard Q, Laurenge A, Mallat M, Sanson M, Castro-Vega LJ. New insights into the Immune TME of adult-type diffuse gliomas. Curr Opin Neurol 2022; 35:794-802. [PMID: 36226710 PMCID: PMC9671594 DOI: 10.1097/wco.0000000000001112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Adult-type diffuse gliomas are highly heterogeneous tumors. Bulk transcriptome analyses suggested that the composition of the tumor microenvironment (TME) corresponds to genetic and clinical features. In this review, we highlight novel findings on the intratumoral heterogeneity of IDH-wildtype and IDH-mutant gliomas characterized at single-cell resolution, and emphasize the mechanisms shaping the immune TME and therapeutic implications. RECENT FINDINGS Emergent evidence indicates that in addition to genetic drivers, epigenetic mechanisms and microenvironmental factors influence the glioma subtypes. Interactions between glioma and immune cells contribute to immune evasion, particularly in aggressive tumors. Spatial and temporal heterogeneity of malignant and immune cell subpopulations is high in recurrent gliomas. IDH-wildtype and IDH-mutant tumors display distinctive changes in their myeloid and lymphoid compartments, and D-2HG produced by IDH-mutant cells impacts the immune TME. SUMMARY The comprehensive dissection of the intratumoral ecosystem of human gliomas using single-cell and spatial transcriptomic approaches advances our understanding of the mechanisms underlying the immunosuppressed state of the TME, supports the prognostic value of tumor-associated macrophages and microglial cells, and sheds light on novel therapeutic options.
Collapse
Affiliation(s)
- Quentin Richard
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
| | - Alice Laurenge
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
| | - Michel Mallat
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
| | - Marc Sanson
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
- Department of Neurology 2, Pitié-Salpêtrière Hospital
- Onconeurotek Tumor Bank, Paris, France
| | - Luis Jaime Castro-Vega
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Genetics and Development of Brain Tumors Team
| |
Collapse
|
31
|
Bögürcü-Seidel N, Bergers G. R-2-HG assists IDH1-mutant solid tumors by promoting angiogenesis. Cell Res 2022; 32:795-796. [PMID: 35931821 PMCID: PMC9437032 DOI: 10.1038/s41422-022-00708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Nuray Bögürcü-Seidel
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, VIB Center for Cancer Biology, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, VIB Center for Cancer Biology, Leuven, Belgium.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
32
|
Kato T, Kusakizako T, Jin C, Zhou X, Ohgaki R, Quan L, Xu M, Okuda S, Kobayashi K, Yamashita K, Nishizawa T, Kanai Y, Nureki O. Structural insights into inhibitory mechanism of human excitatory amino acid transporter EAAT2. Nat Commun 2022; 13:4714. [PMID: 35953475 PMCID: PMC9372063 DOI: 10.1038/s41467-022-32442-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Glutamate is a pivotal excitatory neurotransmitter in mammalian brains, but excessive glutamate causes numerous neural disorders. Almost all extracellular glutamate is retrieved by the glial transporter, Excitatory Amino Acid Transporter 2 (EAAT2), belonging to the SLC1A family. However, in some cancers, EAAT2 expression is enhanced and causes resistance to therapies by metabolic disturbance. Despite its crucial roles, the detailed structural information about EAAT2 has not been available. Here, we report cryo-EM structures of human EAAT2 in substrate-free and selective inhibitor WAY213613-bound states at 3.2 Å and 2.8 Å, respectively. EAAT2 forms a trimer, with each protomer consisting of transport and scaffold domains. Along with a glutamate-binding site, the transport domain possesses a cavity that could be disrupted during the transport cycle. WAY213613 occupies both the glutamate-binding site and cavity of EAAT2 to interfere with its alternating access, where the sensitivity is defined by the inner environment of the cavity. We provide the characterization of the molecular features of EAAT2 and its selective inhibition mechanism that may facilitate structure-based drug design for EAAT2. EAAT2 is an amino acid transporter implicated in glutamate homeostasis in brain and therapy resistance of cancer cells. Here, the authors report cryo-EM structures and reveal inhibitory mechanisms via selective inhibitor WAY213613.
Collapse
Affiliation(s)
- Takafumi Kato
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Biochemistry, The University of Oxford, Oxford, UK
| | - Tsukasa Kusakizako
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Chunhuan Jin
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Xinyu Zhou
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI), Osaka University, Osaka, Japan
| | - LiLi Quan
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Minhui Xu
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kan Kobayashi
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Peptidream Inc, Kawasaki, Japan
| | - Keitaro Yamashita
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Tomohiro Nishizawa
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI), Osaka University, Osaka, Japan.
| | - Osamu Nureki
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
33
|
Freidman NJ, Briot C, Ryan RM. Characterizing unexpected interactions of a glutamine transporter inhibitor with members of the SLC1A transporter family. J Biol Chem 2022; 298:102178. [PMID: 35752361 PMCID: PMC9293768 DOI: 10.1016/j.jbc.2022.102178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022] Open
Abstract
The solute carrier 1A family comprises a group of membrane proteins that act as dual-function amino acid transporters and chloride (Cl-) channels and includes the alanine serine cysteine transporters (ASCTs) as well as the excitatory amino acid transporters. ASCT2 is regarded as a promising target for cancer therapy, as it can transport glutamine and other neutral amino acids into cells and is upregulated in a range of solid tumors. The compound L-γ-glutamyl-p-nitroanilide (GPNA) is widely used in studies probing the role of ASCT2 in cancer biology; however, the mechanism by which GPNA inhibits ASCT2 is not entirely clear. Here, we used electrophysiology and radiolabelled flux assays to demonstrate that GPNA activates the Cl- conductance of ASCT2 to the same extent as a transported substrate, whilst not undergoing the full transport cycle. This is a previously unreported phenomenon for inhibitors of the solute carrier 1A family but corroborates a body of literature suggesting that the structural requirements for transport are distinct from those for Cl- channel formation. We also show that in addition to its currently known targets, GPNA inhibits several of the excitatory amino acid transporters. Together, these findings raise questions about the true mechanisms of its anticancer effects.
Collapse
Affiliation(s)
- Natasha J Freidman
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Chelsea Briot
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Renae M Ryan
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
34
|
Rodrigues T, Piccirillo S, Magi S, Preziuso A, Dos Santos Ramos V, Serfilippi T, Orciani M, Maciel Palacio Alvarez M, Luis Dos Santos Tersariol I, Amoroso S, Lariccia V. Control of Ca 2+ and metabolic homeostasis by the Na +/Ca 2+ exchangers (NCXs) in health and disease. Biochem Pharmacol 2022; 203:115163. [PMID: 35803319 DOI: 10.1016/j.bcp.2022.115163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Spatial and temporal control of calcium (Ca2+) levels is essential for the background rhythms and responses of living cells to environmental stimuli. Whatever other regulators a given cellular activity may have, localized and wider scale Ca2+ events (sparks, transients, and waves) are hierarchical determinants of fundamental processes such as cell contraction, excitability, growth, metabolism and survival. Different cell types express specific channels, pumps and exchangers to efficiently generate and adapt Ca2+ patterns to cell requirements. The Na+/Ca2+ exchangers (NCXs) in particular contribute to Ca2+ homeostasis by buffering intracellular Ca2+ loads according to the electrochemical gradients of substrate ions - i.e., Ca2+ and sodium (Na+) - and under a dynamic control of redundant regulatory processes. An interesting feature of NCX emerges from the strict relationship that connects transporter activity with cell metabolism: on the one hand NCX operates under constant control of ATP-dependent regulatory processes, on the other hand the ion fluxes generated through NCX provide mechanistic support for the Na+-driven uptake of glutamate and Ca2+ influx to fuel mitochondrial respiration. Proof of concept evidence highlights therapeutic potential of preserving a timed and balanced NCX activity in a growing rate of diseases (including excitability, neurodegenerative, and proliferative disorders) because of an improved ability of stressed cells to safely maintain ion gradients and mitochondrial bioenergetics. Here, we will summarize and review recent works that have focused on the pathophysiological roles of NCXs in balancing the two-way relationship between Ca2+ signals and metabolism.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Vyctória Dos Santos Ramos
- Interdisciplinary Center for Biochemistry Investigation (CIIB), University of Mogi das Cruzes (UMC), Mogi das Cruzes, SP, Brazil
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Histology, University "Politecnica delle Marche", Ancona, Italy.
| | - Marcela Maciel Palacio Alvarez
- Department of Biochemistry, São Paulo School of Medicine, Federal University of São Paulo (Unifesp) São Paulo, SP, Brazil
| | | | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| |
Collapse
|