1
|
Zhang K, Zhang Y, Xiang P, Wang Y, Li Y, Jiang S, Zhang Y, Chen M, Su W, Li X, Li S. Advances in T Cell-Based Cancer Immunotherapy: From Fundamental Mechanisms to Clinical Prospects. Mol Pharm 2025. [PMID: 40359327 DOI: 10.1021/acs.molpharmaceut.4c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
T cells and their T cell receptors (TCRs) play crucial roles in the adaptive immune system's response against pathogens and tumors. However, immunosenescence, characterized by declining T cell function and quantity with age, significantly impairs antitumor immunity. Recent years have witnessed remarkable progress in T cell-based cancer treatments, driven by a deeper understanding of T cell biology and innovative screening technologies. This review comprehensively examines T cell maturation mechanisms, T cell-mediated antitumor responses, and the implications of thymic involution on T cell diversity and cancer prognosis. We discuss recent advances in adoptive T cell therapies, including tumor-infiltrating lymphocyte (TIL) therapy, engineered T cell receptor (TCR-T) therapy, and chimeric antigen receptor T cell (CAR-T) therapy. Notably, we highlight emerging DNA-encoded library technologies in mammalian cells for high-throughput screening of TCR-antigen interactions, which are revolutionizing the discovery of novel tumor antigens and optimization of TCR affinity. The review also explores strategies to overcome challenges in the solid tumor microenvironment and emerging approaches to enhance the efficacy of T cell therapy. As our understanding of T cell biology deepens and screening technologies advances, T cell-based immunotherapies show increasing promise for delivering durable clinical benefits to a broader patient population.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Pan Xiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Wang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shuze Jiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuxuan Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Chen
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoling Li
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Shuai Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
2
|
Choe M, Campbell M, Albert CM. Advances in cellular therapies for children and young adults with solid tumors. Curr Opin Pediatr 2025; 37:67-74. [PMID: 39699103 DOI: 10.1097/mop.0000000000001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
PURPOSE OF REVIEW Adoptive immunotherapy brings hope to children and young adults diagnosed with high-risk solid tumors. Cellular (cell) therapies such as chimeric antigen receptor (CAR) T cell, CAR natural killer (NK) cell, and T cell receptor (TCR) T cell therapy are potential avenues of targeted therapy with limited long-term toxicities. However, development of cell therapies for solid tumors is in its nascent stages. Here, we will review the current clinical experience, barriers to efficacy, and strategies to improve clinical response and patient access. RECENT FINDINGS Cell therapies are shown to be generally safe and well tolerated. Strategies to optimize antitumor activity have now moved into early-phase trials. The immunosuppressive tumor microenvironment remains a major barrier to efficacy, and efforts are underway to gain better understanding. This will inform future treatment strategies to enhance the antitumor activity of cell therapies. SUMMARY Clinical experiences to date provide important insights on how to leverage cell therapies against solid tumors. Key factors in advancing the field include a better understanding of immune cell biology, tumor cell behavior, and the tumor microenvironment. Lastly, improving access to novel cell therapies remains an important consideration in the conduct of clinical trials and for future implementation into standard practice.
Collapse
Affiliation(s)
- Michelle Choe
- Clinical Research Division, Fred Hutchinson Cancer Center
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington
| | - Matthew Campbell
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas, Southwestern, Dallas, Texas
| | - Catherine M Albert
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
3
|
Volta L, Myburgh R, Pellegrino C, Koch C, Maurer M, Manfredi F, Hofstetter M, Kaiser A, Schneiter F, Müller J, Buehler MM, De Luca R, Favalli N, Magnani CF, Schroeder T, Neri D, Manz MG. Efficient combinatorial adaptor-mediated targeting of acute myeloid leukemia with CAR T-cells. Leukemia 2024; 38:2598-2613. [PMID: 39294295 PMCID: PMC11588662 DOI: 10.1038/s41375-024-02409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
CAR T-cell products targeting lineage-specific cell-of-origin antigens, thereby eliminating both tumor and healthy counterpart cells, are currently clinically approved therapeutics in B- and plasma-cell malignancies. While they represent a major clinical improvement, they are still limited in terms of efficacy by e.g. single, sometimes low-expressed antigen targeting, and in terms of safety by e.g., lack of on-off activity. Successful cell-of-origin non-discriminative targeting of heterogeneous hematopoietic stem and progenitor cell malignancies, such as acute myeloid leukemia (AML), will require antigen-versatile targeting and off-switching of effectors in order to then allow rescue by hematopoietic stem cell transplantation (HSCT), preventing permanent myeloablation. To address this, we developed adaptor-CAR (AdFITC-CAR) T-cells targeting fluoresceinated AML antigen-binding diabody adaptors. This platform enables the use of adaptors matching the AML-antigen-expression profile and conditional activity modulation. Combining adaptors significantly improved lysis of AML cells in vitro. In therapeutic xenogeneic mouse models, AdFITC-CAR T-cells co-administered with single diabody adaptors were as efficient as direct CAR T-cells, and combinatorial use of adaptors further enhanced therapeutic efficacy against both, cell lines and primary AML. Collectively, this study provides proof-of-concept that AdFITC-CAR T-cells and combinations of adaptors can efficiently enhance immune-targeting of AML.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Humans
- Animals
- Mice
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Laura Volta
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Pellegrino
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Koch
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Monique Maurer
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Francesco Manfredi
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Mara Hofstetter
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Anne Kaiser
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Florin Schneiter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jan Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marco M Buehler
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Chiara F Magnani
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Dario Neri
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Philochem AG, Otelfingen, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
| |
Collapse
|
4
|
Leopold AV, Verkhusha VV. Engineering signalling pathways in mammalian cells. Nat Biomed Eng 2024; 8:1523-1539. [PMID: 39237709 PMCID: PMC11852397 DOI: 10.1038/s41551-024-01237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/14/2024] [Indexed: 09/07/2024]
Abstract
In mammalian cells, signalling pathways orchestrate cellular growth, differentiation and survival, as well as many other processes that are essential for the proper functioning of cells. Here we describe cutting-edge genetic-engineering technologies for the rewiring of signalling networks in mammalian cells. Specifically, we describe the recombination of native pathway components, cross-kingdom pathway transplantation, and the development of de novo signalling within cells and organelles. We also discuss how, by designing signalling pathways, mammalian cells can acquire new properties, such as the capacity for photosynthesis, the ability to detect cancer and senescent cell markers or to synthesize hormones or metabolites in response to chemical or physical stimuli. We also review the applications of mammalian cells in biocomputing. Technologies for engineering signalling pathways in mammalian cells are advancing basic cellular biology, biomedical research and drug discovery.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Zheng R, Zhu X, Xiao Y. Advances in CAR-T-cell therapy in T-cell malignancies. J Hematol Oncol 2024; 17:49. [PMID: 38915099 PMCID: PMC11197302 DOI: 10.1186/s13045-024-01568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
Significant advances have been made in chimeric antigen receptor T (CAR-T)-cell therapy for the treatment of recurrent or refractory B-cell hematologic malignancies. However, CAR-T-cell therapy has not yet achieved comparable success in the management of aggressive T-cell malignancies. This article reviews the challenges of CAR-T-cell therapy in treating T-cell malignancies and summarizes the progress of preclinical and clinical studies in this area. We present an analysis of clinical trials of CAR-T-cell therapies for the treatment of T-cell malignancies grouped by target antigen classification. Moreover, this review focuses on the major challenges encountered by CAR-T-cell therapies, including the nonspecific killing due to T-cell target antigen sharing and contamination with cell products during preparation. This review discusses strategies to overcome these challenges, presenting novel therapeutic approaches that could enhance the efficacy and applicability of CAR-T-cell therapy in the treatment of T-cell malignancies. These ideas and strategies provide important information for future studies to promote the further development and application of CAR-T-cell therapy in this field.
Collapse
Affiliation(s)
- Rubing Zheng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaojian Zhu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yi Xiao
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Wang X, Zhang W, Wang Y, Zhu X, Liu Z, Liu M, Wu Z, Li B, Liu S, Liao S, Zhu P, Liu B, Li C, Wang Y, Chen Z. Logic "AND Gate Circuit"-Based Gasdermin Protein Expressing Nanoplatform Induces Tumor-Specific Pyroptosis to Enhance Cancer Immunotherapy. ACS NANO 2024; 18:6946-6962. [PMID: 38377037 DOI: 10.1021/acsnano.3c09405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Pyroptosis mediated by gasdermin protein has shown great potential in cancer immunotherapies. However, the low expression of gasdermin proteins and the systemic toxicity of nonspecific pyroptosis limit its clinical application. Here, we designed a synthetic biology strategy to construct a tumor-specific pyroptosis-inducing nanoplatform M-CNP/Mn@pPHS, in which a pyroptosis-inducing plasmid (pPHS) was loaded onto a manganese (Mn)-doped calcium carbonate nanoparticle and wrapped in a tumor-derived cell membrane. M-CNP/Mn@pPHS showed an efficient tumor targeting ability. After its internalization by tumor cells, the degradation of M-CNP/Mn@pPHS in the acidic endosomal environment allowed the efficient endosomal escape of plasmid pPHS. To trigger tumor-specific pyroptosis, pPHS was designed according to the logic "AND gate circuit" strategy, with Hif-1α and Sox4 as two input signals and gasdermin D induced pyroptosis as output signal. Only in cells with high expression of Hif-1α and Sox4 simultaneously will the output signal gasdermin D be expressed. Since Hif-1α and Sox4 are both specifically expressed in tumor cells, M-CNP/Mn@pPHS induces the tumor-specific expression of gasdermin D and thus pyroptosis, triggering an efficient immune response with little systemic toxicity. The Mn2+ released from the nanoplatform further enhanced the antitumor immune response by stimulating the cGAS-STING pathway. Thus, M-CNP/Mn@pPHS efficiently inhibited tumor growth with 79.8% tumor regression in vivo. We demonstrate that this logic "AND gate circuit"-based gasdermin nanoplatform is a promising strategy for inducing tumor-specific pyroptosis with little systemic toxicity.
Collapse
Affiliation(s)
- Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenyan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zimai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Meiyi Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zixian Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bingyu Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sijia Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shixin Liao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Center for Stem Cell and Regenerative Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Benyu Liu
- Center for Stem Cell and Regenerative Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Chong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Zhongke Jianlan Medical Research Institute, Beijing 100190, China
| | - Yongchao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Kalim M, Jing R, Li X, Jiang Z, Zheng N, Wang Z, Wei G, Lu Y. Essentials of CAR-T Therapy and Associated Microbial Challenges in Long Run Immunotherapy. JOURNAL OF CELLULAR IMMUNOLOGY 2024; 6:22-50. [PMID: 38883270 PMCID: PMC11172397 DOI: 10.33696/immunology.6.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown potential in improving outcomes for individuals with hematological malignancies. However, achieving long-term full remission for blood cancer remains challenging due to severe life-threatening toxicities such as limited anti-tumor efficacy, antigen escape, trafficking restrictions, and limited tumor invasion. Furthermore, the interactions between CAR-T cells and their host tumor microenvironments have a significant impact on CAR-T function. To overcome these considerable hurdles, fresh methodologies and approaches are needed to produce more powerful CAR-T cells with greater anti-tumor activity and less toxicity. Despite advances in CAR-T research, microbial resistance remains a significant obstacle. In this review, we discuss and describe the basics of CAR-T structures, generations, challenges, and potential risks of infections in CAR-T cell therapy.
Collapse
Affiliation(s)
- Muhammad Kalim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Rui Jing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Xin Li
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Zhiwu Jiang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Ningbo Zheng
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Ziyu Wang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Guo Wei
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Yong Lu
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Theuerkauf SA, Herrera-Carrillo E, John F, Zinser LJ, Molina MA, Riechert V, Thalheimer FB, Börner K, Grimm D, Chlanda P, Berkhout B, Buchholz CJ. AAV vectors displaying bispecific DARPins enable dual-control targeted gene delivery. Biomaterials 2023; 303:122399. [PMID: 37992599 PMCID: PMC10721713 DOI: 10.1016/j.biomaterials.2023.122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Precise delivery of genes to therapy-relevant cells is crucial for in vivo gene therapy. Receptor-targeting as prime strategy for this purpose is limited to cell types defined by a single cell-surface marker. Many target cells are characterized by combinations of more than one marker, such as the HIV reservoir cells. Here, we explored the tropism of adeno-associated viral vectors (AAV2) displaying designed ankyrin repeat proteins (DARPins) mono- and bispecific for CD4 and CD32a. Cryo-electron tomography revealed an unaltered capsid structure in the presence of DARPins. Surprisingly, bispecific AAVs transduced CD4/CD32a double-positive cells at much higher efficiencies than single-positive cells, even if present in low amounts in cell mixtures or human blood. This preference was confirmed when vector particles were systemically administered into mice. Cell trafficking studies revealed an increased cell entry rate for bispecific over monospecific AAVs. When equipped with an HIV genome-targeting CRISPR/Cas cassette, the vectors prevented HIV replication in T cell cultures. The data provide proof-of-concept for high-precision gene delivery through tandem-binding regions on AAV. Reminiscent of biological products following Boolean logic AND gating, the data suggest a new option for receptor-targeted vectors to improve the specificity and safety of in vivo gene therapy.
Collapse
Affiliation(s)
- Samuel A Theuerkauf
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Fabian John
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Luca J Zinser
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Vanessa Riechert
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Frederic B Thalheimer
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Kathleen Börner
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Dirk Grimm
- BioQuant, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg, Germany; Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University Hospital, Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Petr Chlanda
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany; Schaller Research Groups, Heidelberg University, Heidelberg, Germany
| | | | - Christian J Buchholz
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany.
| |
Collapse
|
9
|
Haubner S, Mansilla-Soto J, Nataraj S, Kogel F, Chang Q, de Stanchina E, Lopez M, Ng MR, Fraser K, Subklewe M, Park JH, Wang X, Rivière I, Sadelain M. Cooperative CAR targeting to selectively eliminate AML and minimize escape. Cancer Cell 2023; 41:1871-1891.e6. [PMID: 37802054 PMCID: PMC11006543 DOI: 10.1016/j.ccell.2023.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
Acute myeloid leukemia (AML) poses a singular challenge for chimeric antigen receptor (CAR) therapy owing to its phenotypic heterogeneity and similarity to normal hematopoietic stem/progenitor cells (HSPCs). Here we expound a CAR strategy intended to efficiently target AML while minimizing HSPC toxicity. Quantification of target expression in relapsed/refractory patient samples and normal HSPCs reveals a therapeutic window for gated co-targeting of ADGRE2 and CLEC12A: We combine an attenuated ADGRE2-CAR with a CLEC12A-chimeric costimulatory receptor (ADCLEC.syn1) to preferentially engage ADGRE2posCLEC12Apos leukemic stem cells over ADGRE2lowCLEC12Aneg normal HSPCs. ADCLEC.syn1 prevents antigen escape in AML xenograft models, outperforms the ADGRE2-CAR alone and eradicates AML despite proximate myelopoiesis in humanized mice. Off-target HSPC toxicity is similar to that of a CD19-CAR and can be mitigated by reducing CAR T cell-derived interferon-γ. Overall, we demonstrate the ability of target density-adapted cooperative CAR targeting to selectively eliminate AML and potentially obviate the need for hematopoietic rescue.
Collapse
Affiliation(s)
- Sascha Haubner
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Nataraj
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Friederike Kogel
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qing Chang
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Lopez
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mei Rosa Ng
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | - Kathryn Fraser
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jae H Park
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiuyan Wang
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|