1
|
Wang J, Xing K, Zhang G, Li Z, Ding X, Leong DT. Surface Components and Biological Interactions of Extracellular Vesicles. ACS NANO 2025; 19:8433-8461. [PMID: 39999425 DOI: 10.1021/acsnano.4c16854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Extracellular vesicles (EVs) are critical mediators of intercellular communication, carrying bioactive cargo and displaying diverse surface components that reflect their cellular origins and functions. The EV surface, composed of proteins, lipids, and glycocalyx elements, plays a pivotal role in targeting recipient cells, mediating biological interactions, and enabling selective cargo delivery. This review comprehensively examined the molecular architecture of EV surfaces, linking their biogenesis to functional diversity, and highlights their therapeutic and diagnostic potential in diseases such as cancer and cardiovascular disorders. Additionally, we explore emerging applications of EVs, including machine-learning-assisted analysis, chemical integration, and cross-system combinations. The review also discusses some key challenges in the clinical translation of EV-related technologies.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Guoying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhiyang Li
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu Province 210008, China
| | - Xianguang Ding
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| |
Collapse
|
2
|
Liu X, Kong Y, Qian Y, Guo H, Zhao L, Wang H, Xu K, Ye L, Liu Y, Lu H, He Y. Spatial heterogeneity of infiltrating immune cells in the tumor microenvironment of non-small cell lung cancer. Transl Oncol 2024; 50:102143. [PMID: 39366301 PMCID: PMC11474367 DOI: 10.1016/j.tranon.2024.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are essential components of the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). Still, it is difficult to describe due to their heterogeneity. In this study, five cell markers from NSCLC patients were analyzed. We segmented tumor cells (TCs) and TILs using Efficientnet-B3 and explored their quantitative information and spatial distribution. After that, we simulated multiplex immunohistochemistry (mIHC) by overlapping continuous single chromogenic IHCs slices. As a result, the proportion and the density of programmed cell death-ligand 1 (PD-L1)-positive TCs were the highest in the core. CD8+ T cells were the closest to the tumor (median distance: 41.71 μm), while PD-1+T cells were the most distant (median distance: 62.2μm), and our study found that most lymphocytes clustered together within the peritumoral range of 10-30 μm where cross-talk with TCs could be achieved. We also found that the classification of TME could be achieved using CD8+ T-cell density, which is correlated with the prognosis of patients. In addition, we achieved single chromogenic IHC slices overlap based on CD4-stained IHC slices. We explored the number and spatial distribution of cells in heterogeneous TME of NSCLC patients and achieved TME classification. We also found a way to show the co-expression of multiple molecules economically.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Kong
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Youwen Qian
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Affiliated to Naval Medical University, Shanghai, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Lishu Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Kandi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Yujin Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Lu
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Lu Y, Xie X, Luo L. Ferroptosis crosstalk in anti-tumor immunotherapy: molecular mechanisms, tumor microenvironment, application prospects. Apoptosis 2024; 29:1914-1943. [PMID: 39008197 DOI: 10.1007/s10495-024-01997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Immunotherapies for cancer, specifically immune checkpoint inhibition (ICI), have shown potential in reactivating the body's immune response against tumors. However, there are challenges to overcome in addressing drug resistance and improving the effectiveness of these treatments. Recent research has highlighted the relationship between ferroptosis and the immune system within immune cells and the tumor microenvironment (TME), suggesting that combining targeted ferroptosis with immunotherapy could enhance anti-tumor effects. This review explores the potential of using immunotherapy to target ferroptosis either alone or in conjunction with other therapies like immune checkpoint blockade (ICB) therapy, radiotherapy, and nanomedicine synergistic treatments. It also delves into the roles of different immune cell types in promoting anti-tumor immune responses through ferroptosis. Together, these findings provide a comprehensive understanding of synergistic immunotherapy focused on ferroptosis and offer innovative strategies for cancer treatment.
Collapse
Affiliation(s)
- Yining Lu
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Xiaoting Xie
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
4
|
Li Z, Yu X, Yuan Z, Li L, Yin P. New horizons in the mechanisms and therapeutic strategies for PD-L1 protein degradation in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189152. [PMID: 38992509 DOI: 10.1016/j.bbcan.2024.189152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Programmed death-ligand 1 (PD-L1) has become a crucial focus in cancer immunotherapy considering it is found in many different cells. Cancer cells enhance the suppressive impact of programmed death receptor 1 (PD-1) through elevating PD-L1 expression, which allows them to escape immune detection. Although there have been significant improvements, the effectiveness of anti-PD-1/PD-L1 treatment is still limited to a specific group of patients. An important advancement in cancer immunotherapy involves improving the PD-L1 protein degradation. This review thoroughly examined the processes by which PD-L1 breaks down, including the intracellular pathways of ubiquitination-proteasome and autophagy-lysosome. In addition, the analysis revealed changes that affect PD-L1 stability, such as phosphorylation and glycosylation. The significant consequences of these procedures on cancer immunotherapy and their potential role in innovative therapeutic approaches are emphasised. Our future efforts will focus on understanding new ways in which PD-L1 degradation is controlled and developing innovative treatments, such as proteolysis-targeting chimeras designed specifically to degrade PD-L1. It is crucial to have a thorough comprehension of these pathways in order to improve cancer immunotherapy strategies and hopefully improve therapeutic effectiveness.
Collapse
Affiliation(s)
- Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xi Yu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
5
|
Yao S, Liu X, Feng Y, Li Y, Xiao X, Han Y, Xia S. Unveiling the Role of HGF/c-Met Signaling in Non-Small Cell Lung Cancer Tumor Microenvironment. Int J Mol Sci 2024; 25:9101. [PMID: 39201787 PMCID: PMC11354629 DOI: 10.3390/ijms25169101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is characterized by several molecular alterations that contribute to its development and progression. These alterations include the epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), human epidermal growth factor receptor 2 (HER2), and mesenchymal-epithelial transition factor (c-MET). Among these, the hepatocyte growth factor (HGF)/c-MET signaling pathway plays a crucial role in NSCLC. In spite of this, the involvement of the HGF/c-MET signaling axis in remodeling the tumor microenvironment (TME) remains relatively unexplored. This review explores the biological functions of the HGF/c-MET signaling pathway in both normal and cancerous cells, examining its multifaceted roles in the NSCLC tumor microenvironment, including tumor cell proliferation, migration and invasion, angiogenesis, and immune evasion. Furthermore, we summarize the current progress and clinical applications of MET-targeted therapies in NSCLC and discuss future research directions, such as the development of novel MET inhibitors and the potential of combination immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (S.Y.); (X.L.); (Y.F.); (Y.L.); (X.X.); (Y.H.)
| |
Collapse
|
6
|
Sun B, Zhang L, Li M, Wang X, Wang W. Applications of peptide-based nanomaterials in targeting cancer therapy. Biomater Sci 2024; 12:1630-1642. [PMID: 38404259 DOI: 10.1039/d3bm02026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
To meet the demand for precision medicine, researchers are committed to developing novel strategies to reduce systemic toxicity and side effects in cancer treatment. Targeting peptides are widely applied due to their affinity and specificity, and their ability to be high-throughput screened, chemically synthesized and modified. More importantly, peptides can form ordered self-assembled structures through non-covalent supramolecular interactions, which can form nanostructures with different morphologies and functions, playing crucial roles in targeted diagnosis and treatment. Among them, in targeted immunotherapy, utilizing targeting peptides to block the binding between immune checkpoints and ligands, thereby activating the immune system to eliminate cancer cells, is an advanced therapeutic strategy. In this mini-review, we summarize the screening, self-assembly, and biomedical applications of targeting peptide-based nanomaterials. Furthermore, this mini-review summarizes the potential and optimization strategies of targeting peptides.
Collapse
Affiliation(s)
- Beilei Sun
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xin Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
7
|
Wang Y, Zhu T, Shi Q, Zhu G, Zhu S, Hou F. Tumor-draining lymph nodes: opportunities, challenges, and future directions in colorectal cancer immunotherapy. J Immunother Cancer 2024; 12:e008026. [PMID: 38242718 PMCID: PMC10806546 DOI: 10.1136/jitc-2023-008026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 01/21/2024] Open
Abstract
Tumor-draining lymph nodes (TDLNs) are potential immunotherapy targets that could expand the population of patients with colorectal cancer (CRC) who may benefit from immunotherapy. Currently, pathological detection of tumor cell infiltration limits the acquisition of immune information related to the resected lymph nodes. Understanding the immune function and metastatic risk of specific stages of lymph nodes can facilitate better discussions on the removal or preservation of lymph nodes, as well as the timing of immunotherapy. This review summarized the contribution of TDLNs to CRC responses to immune checkpoint blockade therapy, local immunotherapy, adoptive cell therapy, and cancer vaccines, and discussed the significance of these findings for the development of diagnostics based on TDLNs and the potential implications for guiding immunotherapy after a definitive diagnosis. Molecular pathology and immune spectrum diagnosis of TDLNs will promote significant advances in the selection of immunotherapy options and predicting treatment efficacy.
Collapse
Affiliation(s)
- Yao Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghui Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siwei Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Li X, Duan Z, Li Z, Gu L, Li Y, Gong Q, Gu Z, Luo K. Dendritic polymer-functionalized nanomedicine potentiates immunotherapy via lethal energy crisis-induced PD-L1 degradation. Biomaterials 2023; 302:122294. [PMID: 37657175 DOI: 10.1016/j.biomaterials.2023.122294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
The advent of immune checkpoint inhibitors ushers in a new era of anti-tumor immunity. However, current clinical anti-PD-L1 antibodies only interdict PD-L1 on the membrane, which cannot diminish the complex cancer-promoting effects of intracellular PD-L1. Therefore, directly reducing the PD-L1 abundance of cancer cells might be a potential PD-L1 inhibitory strategy to circumvent the issues of current anti-PD-L1 antibodies. Herein, we develop a dendritic polymer-functionalized nanomedicine with a potent cellular energy depletion effect on colon cancer cells. Treatment with the nanomedicine significantly promotes phosphorylation of AMPK, which in turn leads to PD-L1 degradation and eventual T cell activation. Meanwhile, the nanomedicine can potently induce immunogenic cell death (ICD) to enhance the anti-cancer immunity. Moreover, the combination of the nanomedicine with PD-1 blockade further enhances the activity of cytotoxic T lymphocytes, and dramatically inhibits tumor growth in vivo without distinct side effects. Overall, this study provides a promising nanoplatform to induce lethal energy crisis and ICD, and suppress PD-L1 expression, thus potentiating cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Suqian Advanced Materials Industry Technology Innovation Center, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
9
|
Deng C, Wang Y, Fu F, Li D, Zheng Q, Jin Y, Li Y, Chen H, Zhang Y. Tumor-derived Vimentin as a novel biomarker for distinct subtypes predicting adjuvant chemotherapy resistance and T-cell-inflamed phenotype in small cell lung cancer. MedComm (Beijing) 2023; 4:e370. [PMID: 37789961 PMCID: PMC10542987 DOI: 10.1002/mco2.370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/05/2023] Open
Abstract
Despite recent progress in subtype classification for small cell lung carcinoma (SCLC), little is known about the biomarker for triple-negative (ASCL1, NEUROD1, and POU2F3 negative) tumors. The long-term survival, adjuvant chemotherapy (ACT) response, and immune milieu in different SCLC subtypes have also not been well established. Here, we retrospectively collected a large cohort of 192 primary SCLC tumors and reported that ASCL1-, NEUROD1- and POU2F3-dominant subtypes counted for 61.38%, 19.31%, and 6.21%, respectively. Subtype intra-tumoral heterogeneity and co-expression at the single-cell level existed substantially. The expression of tumor-derived Vimentin (VIM) was nearly restricted to triple-negative SCLC tumors (15/19, 78.9%) while YAP1 expression was distributed widely in other subtypes. The SCLC subtyping model was independently prognostic of OS and RFS (p < 0.001 and p = 0.043). In particular, patients with ASCL1-positive SCLC tumors can benefit more from ACT, and VIM-positive tumors did the opposite. Compared with other subtypes, the VIM-dominant SCLC subtype was associated with abundant but functionally impaired CD4+ and CD8+ T-cells, which highly expressed inhibitory checkpoints and potentially benefit from PD-L1 blockade therapy. Our study showed that tumor-derived SCLC-V subtype could independently predict ACT response. The distinct immune landscape between subtypes may help inform personalized immune therapeutic approaches.
Collapse
Affiliation(s)
- Chaoqiang Deng
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiChina
- Institute of Thoracic OncologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yue Wang
- Institute of Thoracic OncologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Fangqiu Fu
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiChina
- Institute of Thoracic OncologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Di Li
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiChina
- Institute of Thoracic OncologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qiang Zheng
- Institute of Thoracic OncologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yan Jin
- Institute of Thoracic OncologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yuan Li
- Institute of Thoracic OncologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Haiquan Chen
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiChina
- Institute of Thoracic OncologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yang Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiChina
- Institute of Thoracic OncologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
10
|
Lu LG, Zhou ZL, Wang XY, Liu BY, Lu JY, Liu S, Zhang GB, Zhan MX, Chen Y. PD-L1 blockade liberates intrinsic antitumourigenic properties of glycolytic macrophages in hepatocellular carcinoma. Gut 2022; 71:2551-2560. [PMID: 35173040 PMCID: PMC9664131 DOI: 10.1136/gutjnl-2021-326350] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/06/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Patients with increased PD-L1+ host cells in tumours are more potent to benefit from antiprogrammed death-1/programmed death ligand-1 (PD-L1) treatment, but the underlying mechanism is still unclear. We aim to elucidate the nature, regulation and functional relevance of PD-L1+ host cells in hepatocellular carcinoma (HCC). DESIGN A total of untreated 184 HCC patients was enrolled randomly. C57BL/6 mice are given injection of Hepa1-6 cells to form autologous hepatoma. ELISpot, flow cytometry and real-time PCR are applied to analyse the phenotypic characteristics of PD-L1+ cells isolated directly from HCC specimens paired with blood samples or generated from ex vivo and in vitro culture systems. Immunofluorescence and immunohistochemistry are performed to detect the presence of immune cells on paraffin-embedded and formalin-fixed samples. The underlying regulatory mechanisms of metabolic switching are assessed by both in vitro and in vivo studies. RESULTS We demonstrate that PD-L1+ host macrophages, which constructively represent the major cellular source of PD-L1 in HCC tumours, display an HLA-DRhighCD86high glycolytic phenotype, significantly produce antitumourigenic IL-12p70 and are polarised by intrinsic glycolytic metabolism. Mechanistically, a key glycolytic enzyme PKM2 triggered by hepatoma cell derived fibronectin 1, via a HIF-1α-dependent manner, concurrently controls the antitumourigenic properties and inflammation-mediated PD-L1 expression in glycolytic macrophages. Importantly, although increased PKM2+ glycolytic macrophages predict poor prognosis of patients, blocking PD-L1 on these cells eliminates PD-L1-dominant immunosuppression and liberates intrinsic antitumourigenic properties. CONCLUSIONS Selectively modulating the 'context' of glycolytic macrophages in HCC tumours might restore their antitumourigenic properties and provide a precise strategy for anticancer therapy.
Collapse
Affiliation(s)
- Li-Gong Lu
- Interventional Radiology Center, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Zhi-Ling Zhou
- Interventional Radiology Center, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Xu-Yan Wang
- Interventional Radiology Center, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Bo-Yuan Liu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
| | - Jin-Ying Lu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
| | - Shuai Liu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
| | - Guang-Bo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mei-Xiao Zhan
- Interventional Radiology Center, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Yun Chen
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Dang Q, Sun Z, Wang Y, Wang L, Liu Z, Han X. Ferroptosis: a double-edged sword mediating immune tolerance of cancer. Cell Death Dis 2022; 13:925. [PMID: 36335094 PMCID: PMC9637147 DOI: 10.1038/s41419-022-05384-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022]
Abstract
The term ferroptosis was put forward in 2012 and has been researched exponentially over the past few years. Ferroptosis is an unconventional pattern of iron-dependent programmed cell death, which belongs to a type of necrosis and is distinguished from apoptosis and autophagy. Actuated by iron-dependent phospholipid peroxidation, ferroptosis is modulated by various cellular metabolic and signaling pathways, including amino acid, lipid, iron, and mitochondrial metabolism. Notably, ferroptosis is associated with numerous diseases and plays a double-edged sword role. Particularly, metastasis-prone or highly-mutated tumor cells are sensitive to ferroptosis. Hence, inducing or prohibiting ferroptosis in tumor cells has vastly promising potential in treating drug-resistant cancers. Immunotolerant cancer cells are not sensitive to the traditional cell death pathway such as apoptosis and necroptosis, while ferroptosis plays a crucial role in mediating tumor and immune cells to antagonize immune tolerance, which has broad prospects in the clinical setting. Herein, we summarized the mechanisms and delineated the regulatory network of ferroptosis, emphasized its dual role in mediating immune tolerance, proposed its significant clinical benefits in the tumor immune microenvironment, and ultimately presented some provocative doubts. This review aims to provide practical guidelines and research directions for the clinical practice of ferroptosis in treating immune-resistant tumors.
Collapse
Affiliation(s)
- Qin Dang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ziqi Sun
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yang Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
12
|
Arnouk S, De Groof TW, Van Ginderachter JA. Imaging and therapeutic targeting of the tumor immune microenvironment with biologics. Adv Drug Deliv Rev 2022; 184:114239. [PMID: 35351469 DOI: 10.1016/j.addr.2022.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/14/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
The important role of tumor microenvironmental elements in determining tumor progression and metastasis has been firmly established. In particular, the presence and activity profile of tumor-infiltrating immune cells may be associated with the outcome of the disease and may predict responsiveness to (immuno)therapy. Indeed, while some immune cell types, such as macrophages, support cancer cell outgrowth and mediate therapy resistance, the presence of activated CD8+ T cells is usually indicative of a better prognosis. It is therefore of the utmost interest to obtain a full picture of the immune infiltrate in tumors, either as a prognostic test, as a way to stratify patients to maximize therapeutic success, or as therapy follow-up. Hence, the non-invasive imaging of these cells is highly warranted, with biologics being prime candidates to achieve this goal.
Collapse
|
13
|
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, Xia Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol 2022; 15:24. [PMID: 35279217 PMCID: PMC8917703 DOI: 10.1186/s13045-022-01242-2] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint molecules are promising anticancer targets, among which therapeutic antibodies targeting the PD-1/PD-L1 pathway have been widely applied to cancer treatment in clinical practice and have great potential. However, this treatment is greatly limited by its low response rates in certain cancers, lack of known biomarkers, immune-related toxicity, innate and acquired drug resistance, etc. Overcoming these limitations would significantly expand the anticancer applications of PD-1/PD-L1 blockade and improve the response rate and survival time of cancer patients. In the present review, we first illustrate the biological mechanisms of the PD-1/PD-L1 immune checkpoints and their role in the healthy immune system as well as in the tumor microenvironment (TME). The PD-1/PD-L1 pathway inhibits the anticancer effect of T cells in the TME, which in turn regulates the expression levels of PD-1 and PD-L1 through multiple mechanisms. Several strategies have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including combination therapy with other standard treatments, such as chemotherapy, radiotherapy, targeted therapy, anti-angiogenic therapy, other immunotherapies and even diet control. Downregulation of PD-L1 expression in the TME via pharmacological or gene regulation methods improves the efficacy of anti-PD-1/PD-L1 treatment. Surprisingly, recent preclinical studies have shown that upregulation of PD-L1 in the TME also improves the response and efficacy of immune checkpoint blockade. Immunotherapy is a promising anticancer strategy that provides novel insight into clinical applications. This review aims to guide the development of more effective and less toxic anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Xie
- Department of Obstetrics and Gynaecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China
| | - Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| |
Collapse
|
14
|
Shao L, Yu X, Han Q, Zhang X, Lu N, Zhang C. Enhancing anti-tumor efficacy and immune memory by combining 3p-GPC-3 siRNA treatment with PD-1 blockade in hepatocellular carcinoma. Oncoimmunology 2022; 11:2010894. [PMID: 36524206 PMCID: PMC9746623 DOI: 10.1080/2162402x.2021.2010894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is associated with a high mortality rate and presents a major challenge for human health. Activation of multiple oncogenes has been reported to be strongly associated with the progression of HCC. Moreover, the immunosuppressive tumor microenvironment (TME) and the host immune system are also implicated in the development of malignant HCC tumors. Glypican-3 (GPC-3), a proteoglycan involved in the regulation of cell proliferation and apoptosis, is aberrantly expressed in HCC. We synthesized a short 5'-triphosphate (3p) RNA targeting GPC-3, 3p-GPC-3 siRNA, and found that it effectively inhibited subcutaneous HCC growth by raising type I IFN levels in tumor cells and serum and promoting tumor cell apoptosis. Moreover, 3p-GPC-3 siRNA was able to enhance the activation of CD4+ T cells, CD8+ T cells, and natural killer (NK) cells while reducing the proportion of regulatory T cells (Tregs) in the TME. Most intriguingly, a blocking anti-PD-1 antibody improved the anti-tumor effect of 3p-GPC-3 siRNA, predominantly by activating the immune response, reversing immune exhaustion, and improving immune memory. Our study suggests that the combination of 3p-GPC-3 siRNA administration and PD-1 blockade may represent a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Liwei Shao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Yu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,College of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinke Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,CONTACT Cai Zhang , Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012Shandong, China
| |
Collapse
|
15
|
Zhang X, Huang Y, Yang X. The complex role of PD-L1 in antitumor immunity: a recent update. Cell Mol Immunol 2021; 18:2067-2068. [PMID: 34059793 PMCID: PMC8322256 DOI: 10.1038/s41423-021-00702-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Xiaoqing Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Huang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ, Shao ZM. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol 2021; 14:98. [PMID: 34172088 PMCID: PMC8234625 DOI: 10.1186/s13045-021-01103-4] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Tumors are not only aggregates of malignant cells but also well-organized complex ecosystems. The immunological components within tumors, termed the tumor immune microenvironment (TIME), have long been shown to be strongly related to tumor development, recurrence and metastasis. However, conventional studies that underestimate the potential value of the spatial architecture of the TIME are unable to completely elucidate its complexity. As innovative high-flux and high-dimensional technologies emerge, researchers can more feasibly and accurately detect and depict the spatial architecture of the TIME. These findings have improved our understanding of the complexity and role of the TIME in tumor biology. In this review, we first epitomized some representative emerging technologies in the study of the spatial architecture of the TIME and categorized the description methods used to characterize these structures. Then, we determined the functions of the spatial architecture of the TIME in tumor biology and the effects of the gradient of extracellular nonspecific chemicals (ENSCs) on the TIME. We also discussed the potential clinical value of our understanding of the spatial architectures of the TIME, as well as current limitations and future prospects in this novel field. This review will bring spatial architectures of the TIME, an emerging dimension of tumor ecosystem research, to the attention of more researchers and promote its application in tumor research and clinical practice.
Collapse
Affiliation(s)
- Tong Fu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei-Jie Dai
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Song-Yang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ding Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Bazzazi H, Shahraz A. A mechanistic systems pharmacology modeling platform to investigate the effect of PD-L1 expression heterogeneity and dynamics on the efficacy of PD-1 and PD-L1 blocking antibodies in cancer. J Theor Biol 2021; 522:110697. [PMID: 33794288 DOI: 10.1016/j.jtbi.2021.110697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Tumors have developed multitude of ways to evade immune response and suppress cytotoxic T cells. Programed cell death protein 1 (PD-1) and programed cell death ligand 1 (PD-L1) are immune checkpoints that when activated, rapidly inactivate the cytolytic activity of T cells. Expression heterogeneity of PD-L1 and the surface receptor dynamics of both PD-1 and PD-L1 may be important parameters in modulating the immune response. PD-L1 is expressed on both tumor and non-tumor immune cells and this differential expression reflects different aspects of anti-tumor immunity. Here, we developed a mechanistic computational model to investigate the role of PD-1 and PD-L1 dynamics in modulating the efficacy of PD-1 and PD-L1 blocking antibodies. Our model incorporates immunological synapse restricted interaction of PD-1 and PD-L1, basal parameters for receptor dynamics, and T cell interaction with tumor and non-tumor immune cells. Simulations predict the existence of a threshold in PD-1 expression above which there is no efficacy for both anti-PD-1 and anti-PD-L1. Model also predicts that anti-tumor response is more sensitive to PD-L1 expression on non-tumor immune cells than tumor cells. New combination strategies are suggested that may enhance efficacy in resistant cases such as combining anti-PD-1 with a low dose of anti-PD-L1 or with inhibitors of PD-L1 recycling and synthesis. Another combination strategy suggested by the model is the combination of anti-PD-1 and anti-PD-L1 with enhancers of PD-L1 degradation rate. Virtual patients are then generated to test specific biomarkers of response. Intriguing predictions that emerge from the virtual patient simulations are that PD-1 blocking antibody results in higher response rate than PD-L1 blockade and that PD-L1 expression density on non-tumor immune cells rather than tumor cells is a predictor of response.
Collapse
Affiliation(s)
- Hojjat Bazzazi
- Millenium Pharmaceuticals, a wholly-owned subsidiary of Takeda Pharmaceuticals, Cambridge, MA, United States.
| | - Azar Shahraz
- Simulations Plus Inc., Lancaster, CA, United States
| |
Collapse
|
18
|
Gao T, Mao Z, Li W, Pei R. Anti-PD-L1 DNA aptamer antagonizes the interaction of PD-1/PD-L1 with antitumor effect. J Mater Chem B 2021; 9:746-756. [PMID: 33319876 DOI: 10.1039/d0tb01668c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor immune evasion enables cancer cells to escape destruction by the immune system, which causes poor prognosis and overall survival of some tumor patients. The binding of PD-L1 on tumor cells to PD-1 on T cells suppresses T cell function, and the axis is considered one of the major pathways mediating tumor cells to evade immune surveillance. The PD-L1 ligation of T cells has a profound inhibitory effect on the growth, cytokine secretion, and development of cytotoxicity. Aptamers, known as chemical antibodies, are single-stranded oligonucleotides with high affinity. In this work, we take a cell-SELEX with the engineered PD-L1-expressing cells as a target to obtain the aptamer, designated PL1, which specifically binds to PD-L1 with a Kd value of 95.73 nM, resulting in the inhibition of PD-1/PD-L1. The aptamer PL1 could restore the proliferation and IFN-γ rescue from the T cell inhibited by the PD-1/PD-L1 axis, and inhibit the growth of the CT26 colon carcinoma. The similar tumor inhibition efficacy and binding capacity of the aptamer PL1 as an antibody indicate that the aptamer PL1 can serve as an alternative therapeutic agent for cancer immunotherapy since the use of antibodies is often restricted by high cost, large size and poor tumor penetration.
Collapse
Affiliation(s)
- Tian Gao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | | | | | | |
Collapse
|
19
|
Li M, Xu Y, Liang J, Lin H, Qi X, Li F, Han P, Gao Y, Yang X. USP22 deficiency in melanoma mediates resistance to T cells through IFNγ-JAK1-STAT1 signal axis. Mol Ther 2021; 29:2108-2120. [PMID: 33601053 DOI: 10.1016/j.ymthe.2021.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/12/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated 9 (Cas9)-mediated loss-of-function screens are powerful tools for identifying genes responsible for diverse phenotypes. Here, we perturbed genes in melanoma cells to screen for genes involved in tumor escape from T cell-mediated killing. Multiple interferon gamma (IFNγ) signaling-related genes were enriched in melanoma cells resistant to T cell killing. In addition, deletion of the deubiquitinating protease ubiquitin specific peptidase 22 (USP22) in mouse melanoma (B16-OVA) cells decreased the efficacy of T cell-mediated killing, both in vitro and in vivo, while overexpression enhanced tumor-cell sensitivity to T (OT-I) cell-mediated killing. USP22 deficiency in both mouse and human melanoma cells showed impaired sensitivity to interferon pathway and USP22 was positively correlated with key molecules of interferon pathway in clinical melanoma samples. Mechanistically, USP22 may directly interact with signal transducer and activator of transcription 1 (STAT1), deubiquitinate it, and improve its stability in both human and mouse melanoma cells. Our findings identified a previously unknown function of USP22 and linked the loss of genes in tumor cells that are essential for escaping the effector function of CD8+ T cells during immunotherapy.
Collapse
Affiliation(s)
- Min Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yanqin Xu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jie Liang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hao Lin
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinyue Qi
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fanlin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Han
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
20
|
Wei Y, Xiao X, Lao XM, Zheng L, Kuang DM. Immune landscape and therapeutic strategies: new insights into PD-L1 in tumors. Cell Mol Life Sci 2021; 78:867-887. [PMID: 32940722 PMCID: PMC11072479 DOI: 10.1007/s00018-020-03637-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 08/07/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
PD-1/PD-L1 axis represents an important target for renormalizing and resetting anti-tumor immunity in cancer patients. Currently, anti-PD-1/PD-L1 therapy has been applied in a broad spectrum of tumors and has yielded durable remission in patients. However, how to further broaden the application, guide personalized therapeutic strategies, and improve clinical responses remains a vital task. At present, PD-L1 expression is an important parameter of clinical indications for immune checkpoint blockade in many types of cancers, a strategy based on the supposition that positive PD-L1 expression reflects local T cell response. Recent studies have revealed that PD-L1 expression is regulated by multiple layers of complicated factors, during which the host immune microenvironment exerts a pivotal role and determines the clinical efficacy of the therapy. In this review, we will summarize recent findings on PD-1/PD-L1 in cancer, focusing on how local immune landscape participates in the regulation of PD-L1 expression and modification. Importantly, we will also discuss these topics in the context of clinical treatment and analyze how these fundamental principles might inspire our efforts to develop more precise and effective immune therapeutics for cancer.
Collapse
Affiliation(s)
- Yuan Wei
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao Xiao
- Cancer Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Xiang-Ming Lao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Limin Zheng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China.
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Dong-Ming Kuang
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China.
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
21
|
Zhou F, Qiao M, Zhou C. The cutting-edge progress of immune-checkpoint blockade in lung cancer. Cell Mol Immunol 2021; 18:279-293. [PMID: 33177696 PMCID: PMC8027847 DOI: 10.1038/s41423-020-00577-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Great advances in immune checkpoint blockade have resulted in a paradigm shift in patients with lung cancer. Immune-checkpoint inhibitor (ICI) treatment, either as monotherapy or combination therapy, has been established as the standard of care for patients with locally advanced/metastatic non-small cell lung cancer without EGFR/ALK alterations or extensive-stage small cell lung cancer. An increasing number of clinical trials are also ongoing to further investigate the role of ICIs in patients with early-stage lung cancer as neoadjuvant or adjuvant therapy. Although PD-L1 expression and tumor mutational burden have been widely studied for patient selection, both of these biomarkers are imperfect. Due to the complex cancer-immune interactions among tumor cells, the tumor microenvironment and host immunity, collaborative efforts are needed to establish a multidimensional immunogram to integrate complementary predictive biomarkers for personalized immunotherapy. Furthermore, as a result of the wide use of ICIs, managing acquired resistance to ICI treatment remains an inevitable challenge. A deeper understanding of the underlying biological mechanisms of acquired resistance to ICIs is helpful to overcome these obstacles. In this review, we describe the cutting-edge progress made in patients with lung cancer, the optimal duration of ICI treatment, ICIs in some special populations, the unique response patterns during ICI treatment, the emerging predictive biomarkers, and our understanding of primary and acquired resistance mechanisms to ICI treatment.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Peng Q, Qiu X, Zhang Z, Zhang S, Zhang Y, Liang Y, Guo J, Peng H, Chen M, Fu YX, Tang H. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun 2020; 11:4835. [PMID: 32973173 PMCID: PMC7518441 DOI: 10.1038/s41467-020-18570-x] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoint blockade therapies have shown clinical promise in a variety of cancers, but how tumor-infiltrating T cells are activated remains unclear. In this study, we explore the functions of PD-L1 on dendritic cells (DCs), which highly express PD-L1. We observe that PD-L1 on DC plays a critical role in limiting T cell responses. Type 1 conventional DCs are essential for PD-L1 blockade and they upregulate PD-L1 upon antigen uptake. Upregulation of PD-L1 on DC is mediated by type II interferon. While DCs are the major antigen presenting cells for cross-presenting tumor antigens to T cells, subsequent PD-L1 upregulation protects them from killing by cytotoxic T lymphocytes, yet dampens the antitumor responses. Blocking PD-L1 in established tumors promotes re-activation of tumor-infiltrating T cells for tumor control. Our study identifies a critical and dynamic role of PD-L1 on DC, which needs to be harnessed for better invigoration of antitumor immune responses.
Collapse
Affiliation(s)
- Qi Peng
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiangyan Qiu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Zihan Zhang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Silin Zhang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Yuanyuan Zhang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Yong Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Jingya Guo
- Chinese Academy of Science Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hua Peng
- Chinese Academy of Science Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Haidong Tang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
23
|
Sun DW, An L, Huang HY, Sun XD, Lv GY. Establishing peripheral PD-L1 as a prognostic marker in hepatocellular carcinoma patients: how long will it come true? Clin Transl Oncol 2020; 23:82-91. [PMID: 32462395 DOI: 10.1007/s12094-020-02390-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/10/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The prognostic role of intratumoral programmed cell death ligand 1 (PD-L1) expression in hepatocellular carcinoma (HCC) has been investigated by several meta-analyses. However, the prognostic value of pretreatment peripheral PD-L1 (PPPD-L1) level in HCC remains undetermined. Thus, this systemic review aimed to establish PPPD-L1 as a new prognostic marker in HCC according to available evidence. METHODS Case-control studies investigating the prognostic role of PPPD-L1 in HCC were systemically sought in the database of PubMed and Web of Science until March 25th, 2020. Our main concern is survival results, including overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS). The combined results were summarized in narrative form according to data extracted from each included study. RESULTS Finally, nine studies published from 2011 to 2019, were incorporated into this systemic review. Among these, six studies evaluated the PD-L1 expression by enzyme-linked immunosorbent assay (ELISA) from blood serum, and three studies evaluated the PD-L1 expression by flow cytometric analysis from peripheral blood mononuclear cells (PBMC). According to the extracted evidence, high PPPD-L1 expression, measured in either blood serum or PBMC, is associated with poor OS, poor DFS, and poor PFS. Meanwhile, PPPD-L1 was also correlated with enlarged tumor size and more likely with advanced tumor stage as well as vascular invasion. CONCLUSION High PPPD-L1 level is associated with increased mortality rate and increased recurrence rate in HCC. As a convenient serum marker, PPPD-L1 could be a promising marker of prognosis in HCC patients.
Collapse
Affiliation(s)
- D-W Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - L An
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, Jilin, China
| | - H-Y Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - X-D Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China.
| | - G-Y Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
24
|
Liu Y, Zhang C. The Role of Human γδ T Cells in Anti-Tumor Immunity and Their Potential for Cancer Immunotherapy. Cells 2020; 9:cells9051206. [PMID: 32413966 PMCID: PMC7290839 DOI: 10.3390/cells9051206] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022] Open
Abstract
γδ T cells are a distinct subset of T cells whose T cell receptors consist of γ chains and δ chains, different from conventional αβ T cells. γδ T cells are considered as a member of the innate immunity because of their non-MHC restricted antigen recognition, rapid response to invading pathogens and sense early changes of malignant cells. Upon activation, they can further promote the activation of adaptive immune cells, such as T cells and B cells, by secreting various cytokines. Thus, γδ T cells are regarded as a bridge between innate immunity and acquired immunity. γδ T cells are involved in a variety of immune response processes, including immune defense and immune surveillance against infection and tumorigenesis. γδ T cells recognize multiple tumor-associated antigens or molecules in T cell receptors (TCRs)-dependent and natural killer cell receptors (NKRs)-dependent ways. γδ T cells not only display a direct killing capacity on a variety of tumors, but also exert anti-tumor immune responses indirectly by facilitating the function of other immune cells, such as dendritic cells (DCs), B cells and CD8+ T cells. In this review, we summarize the major subpopulations, the tumor recognition mechanisms, and the anti-tumor effects of human γδ T cells, particularly the potential of γδ T cells for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Cai Zhang
- Correspondence: ; Tel.: +86-531-8838-3782
| |
Collapse
|
25
|
Rodriguez-Barbosa JI, Azuma M, Zelinskyy G, Perez-Simon JA, del Rio ML. Critical role of PD-L1 expression on non-tumor cells rather than on tumor cells for effective anti-PD-L1 immunotherapy in a transplantable mouse hematopoietic tumor model. Cancer Immunol Immunother 2020; 69:1001-1014. [DOI: 10.1007/s00262-020-02520-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
|
26
|
Ahtiainen M, Wirta EV, Kuopio T, Seppälä T, Rantala J, Mecklin JP, Böhm J. Combined prognostic value of CD274 (PD-L1)/PDCDI (PD-1) expression and immune cell infiltration in colorectal cancer as per mismatch repair status. Mod Pathol 2019; 32:866-883. [PMID: 30723299 DOI: 10.1038/s41379-019-0219-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
Abstract
The CD274 (programmed cell death ligand-1, PD-L1)/PDCD1 (programmed cell death-1, PD-1) pathway is crucial suppressor of the cytotoxic immune response. Antibodies targeting CD274 or PDCD1 have been revealed to be effective in several malignancies. In colorectal cancer, the response to CD274/PDCD1 blockage is associated with microsatellite instability. However, the value of CD274/PDCD1 for predicting response to treatment or survival benefit is still unclear. The aims of the study were (1) to clarify differences in immune microenvironment and expression of checkpoint proteins (CD274/PDCD1) in DNA mismatch repair-proficient, mismatch repair-deficient, and hereditary Lynch syndrome-associated colorectal cancer, and (2) to assess the prognostic value of these factors and their combinations. Ninety-four mismatch repair-deficient colorectal cancers, 100 age, sex, and AJCC/UICC stage-matched mismatch repair-proficient colorectal cancers, and 48 Lynch syndrome-associated colorectal cancers were analyzed. Using whole section samples, detailed analysis of immune cell score, PDCD1, and CD274 expression was performed. Overlapping of CD274 expression in tumor and immune cells was almost complete (95%). Immune cell score and CD274/PDCD1 positivity were significantly more frequent in mismatch repair-deficient than in mismatch repair-proficient colorectal cancers (70% vs. 41% (high immune cell score); 81% vs. 49% (PDCD1high), 23% vs. 1% (CD274 on tumor cells) and 68% vs. 30% (CD274 on immune cells), P < 0.001), and were associated strongly with each other. Although the independent impact of immune cell score, PDCD1, and CD274 on immune cells was moderate, the immunoprofile parameter combining the above three factors appeared to be a strong independent prognostic factor for disease-specific survival and overall survival (P = 0.001) and had suggestive impact on disease-free survival (P = 0.011). Our results encourage the use of immune cell score analysis together with PDCD1 and CD274 detection to improve the prognostic evaluation of colorectal cancer patients. Particularly, the analyses from whole tissue sections are encouraged to allow reliable and cell-specific analyses of CD274 expression.
Collapse
Affiliation(s)
- Maarit Ahtiainen
- Department of Education and Research, Central Finland Central Hospital, Jyväskylä, Finland.
| | - Erkki-Ville Wirta
- Department of Surgery, Central Finland Central Hospital, Jyväskylä, Finland.,Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Teijo Kuopio
- Department of Pathology, Central Finland Central Hospital, Jyväskylä, Finland.,Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Toni Seppälä
- Department of Gastrointestinal Surgery, Abdominal Center, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | | | - Jukka-Pekka Mecklin
- Department of Education and Research, Central Finland Central Hospital, Jyväskylä, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jan Böhm
- Department of Pathology, Central Finland Central Hospital, Jyväskylä, Finland
| |
Collapse
|
27
|
Wei Y, Zhao Q, Gao Z, Lao XM, Lin WM, Chen DP, Mu M, Huang CX, Liu ZY, Li B, Zheng L, Kuang DM. The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy. J Clin Invest 2019; 129:3347-3360. [PMID: 31112529 DOI: 10.1172/jci127726] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PD-L1 is a promising therapeutic target in aggressive cancers. However, immune landscapes and cancer hallmarks of human PD-L1+ tumors, as well as their roles in determining therapeutic efficacies are unknown. Here we identified, in detailed studies of gene data regarding 9769 patients of 32 types of human cancers, that PD-L1 could not exclusively represent IFN-γ signature and potentially signified pro-inflammatory myeloid responses in a tumor. PD-L1 heterogeneity endowed by local immune landscapes controlled cancer hallmarks and clinical outcomes of patients. Mechanically, NF-κB signal elicited by macrophage inflammatory responses generated PD-L1+ cancer cells exhibiting capabilities to aggressively survive, support angiogenesis, and metastasize, whereas STAT1 signal triggered by activated T cells induced PD-L1+ cancer cells susceptive to apoptosis. Importantly, PD-L1+ cancer cells generated by macrophages established great resistance to conventional chemotherapy, cytotoxicity of tumor-specific effector T cells, and therapy of immune checkpoint blockade. Therapeutic strategy combining immune checkpoint blockade with macrophage depletion or NF-κB inhibition in vivo effectively and successfully elicited caner regression. Our results provide insight into the functional features of PD-L1+ tumors and suggest that strategies to influence functional activities of inflammatory cells may benefit immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Infectious Diseases, Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Ming Lao
- Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei-Ming Lin
- Department of Infectious Diseases, Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong-Ping Chen
- Department of Infectious Diseases, Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Mu
- Department of Infectious Diseases, Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Xiang Huang
- Department of Infectious Diseases, Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zheng-Yu Liu
- Department of Infectious Diseases, Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bo Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Limin Zheng
- Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dong-Ming Kuang
- Department of Infectious Diseases, Third Affiliated Hospital, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China.,The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Optimization of 4-1BB antibody for cancer immunotherapy by balancing agonistic strength with FcγR affinity. Nat Commun 2019; 10:2141. [PMID: 31105267 PMCID: PMC6526162 DOI: 10.1038/s41467-019-10088-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/15/2019] [Indexed: 11/09/2022] Open
Abstract
Costimulation of T cell responses with monoclonal antibody agonists (mAb-AG) targeting 4-1BB showed robust anti-tumor activity in preclinical models, but their clinical development was hampered by low efficacy (Utomilumab) or severe liver toxicity (Urelumab). Here we show that isotype and intrinsic agonistic strength co-determine the efficacy and toxicity of anti-4-1BB mAb-AG. While intrinsically strong agonistic anti-4-1BB can activate 4-1BB in the absence of FcγRs, weak agonistic antibodies rely on FcγRs to activate 4-1BB. All FcγRs can crosslink anti-41BB antibodies to strengthen co-stimulation, but activating FcγR-induced antibody-dependent cell-mediated cytotoxicity compromises anti-tumor immunity by deleting 4-1BB+ cells. This suggests balancing agonistic activity with the strength of FcγR interaction as a strategy to engineer 4-1BB mAb-AG with optimal therapeutic performance. As a proof of this concept, we have developed LVGN6051, a humanized 4-1BB mAb-AG that shows high anti-tumor efficacy in the absence of liver toxicity in a mouse model of cancer immunotherapy. Agonistic 4-1BB antibodies developed for cancer immunotherapy have suffered from either hepatotoxicity or insufficient anti-cancer activity. Here the authors determine the contribution of FcγR binding and agonistic strength to these outcomes, and engineer a 4-1BB antibody with potent anti-tumor effect and no liver toxicity in mice.
Collapse
|
29
|
韩 萍, 杨 选. 胞内染色法检测T细胞活化产生的细胞因子. Bio Protoc 2019. [DOI: 10.21769/bioprotoc.1010314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
30
|
Emerging predictors of the response to the blockade of immune checkpoints in cancer therapy. Cell Mol Immunol 2018; 16:28-39. [PMID: 30002451 DOI: 10.1038/s41423-018-0086-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022] Open
Abstract
Checkpoint blockade-based immunotherapy offers new options and powerful weapons for the treatment of cancer, but its efficacy varies greatly among different types of cancer and across individual patients. Thus, the development of the right tools that can be used to identify patients who could benefit from this therapy is of utmost importance in order to maximize the therapeutic benefit, minimize risk of toxicities, and guide combination approaches. Multiple predictors have emerged that are based on checkpoint receptor ligand expression, tumor mutational burden, neoantigen and microsatellite instability, tumor-infiltrating immune cells, and peripheral blood biomarkers. In this review, we discuss the current state and progress of predictors as aids in checkpoint blockade-based immunotherapy in cancer.
Collapse
|