1
|
Fernández de Santaella J, Koch NG, Widmer L, Nash MA. Amber Codon Mutational Scanning and Bioorthogonal PEGylation for Epitope Mapping of Antibody Binding Sites on Human Arginase-1. ACS Chem Biol 2025; 20:791-801. [PMID: 40168364 DOI: 10.1021/acschembio.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Epitope mapping is crucial for understanding immunological responses to protein therapeutics. Here, we combined genetic code expansion and bacterial surface display to incorporate S-allylcysteine (SAC) into human arginase-1 (hArg1) via Methanococcoides burtonii pyrrolysyl-tRNA synthetase. Using an amber codon deep mutational scanning and sequencing workflow, we mapped SAC incorporation efficiency across the hArg1 sequence, providing insights into structural and sequence dependencies of noncanonical amino acid incorporation. We used mutually bioorthogonal allyl/tetrazine and azide/DBCO chemistries to achieve site-specific PEGylation and fluorescent labeling of hArg1, revealing insights into SAC side chain reactivity and solvent accessibility of residues in hArg1. This system was further applied to determine the binding epitope of a monoclonal antibody on the surface of hArg1, providing high-resolution data on the impact of PEGylation residue position on antibody binding. Our method produces high dimensional data of noncanonical amino acid incorporation efficiency, site-specific functionalization enabled by mutually bioorthogonal chemistries, and epitope mapping of therapeutic proteins.
Collapse
Affiliation(s)
- Jaime Fernández de Santaella
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
- National Center for Competence in Research (NCCR), Molecular Systems Engineering, 4058 Basel, Switzerland
| | - Nikolaj G Koch
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Lorenz Widmer
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
- National Center for Competence in Research (NCCR), Molecular Systems Engineering, 4058 Basel, Switzerland
- Swiss Nanoscience Institute, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Canè S, Geiger R, Bronte V. The roles of arginases and arginine in immunity. Nat Rev Immunol 2025; 25:266-284. [PMID: 39420221 DOI: 10.1038/s41577-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Arginase activity and arginine metabolism in immune cells have important consequences for health and disease. Their dysregulation is commonly observed in cancer, autoimmune disorders and infectious diseases. Following the initial description of a role for arginase in the dysfunction of T cells mounting an antitumour response, numerous studies have broadened our understanding of the regulation and expression of arginases and their integration with other metabolic pathways. Here, we highlight the differences in arginase compartmentalization and storage between humans and rodents that should be taken into consideration when assessing the effects of arginase activity. We detail the roles of arginases, arginine and its metabolites in immune cells and their effects in the context of cancer, autoimmunity and infectious disease. Finally, we explore potential therapeutic strategies targeting arginases and arginine.
Collapse
Affiliation(s)
- Stefania Canè
- The Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | | |
Collapse
|
3
|
Martinenaite E, Lecoq I, Aaboe-Jørgensen M, Ahmad SM, Perez-Penco M, Glöckner HJ, Chapellier M, Lara de la Torre L, Olsen LR, Rømer AMA, Pedersen AW, Andersen MH. Arginase-1-specific T cells target and modulate tumor-associated macrophages. J Immunother Cancer 2025; 13:e009930. [PMID: 39880485 PMCID: PMC11781113 DOI: 10.1136/jitc-2024-009930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/14/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Arginase-1 (Arg1) expressing tumor-associated macrophages (TAMs) may create an immune-suppressive tumor microenvironment (TME), which is a significant challenge for cancer immunotherapy. We previously reported the existence of Arg1-specific memory T cells among peripheral blood mononuclear cells (PBMCs) and described that Arg-1-based immune modulatory vaccines (IMVs) control tumor growth and alter the M1/M2 macrophage ratio in murine models of cancer. In the present study, we investigated how Arg1-specific T cells can directly target TAMs and influence their polarization. METHODS Murine Arg1-specific CD4+T cells isolated from splenocytes of animals vaccinated with an Arg1-derived peptide in the adjuvant montanide were co-cultured with either in vitro M2-differentiated bone marrow-derived macrophages or ex vivo isolated F4/80+TAMs. Human Arg1-specific CD4+T cell clones were co-cultured with Arg1-expressing TAMs generated in vitro from either PBMC-derived CD14+cells or the myeloid cell lines MonoMac1 and THP-1. MHC class II-restricted Arg-1 peptide presentation by macrophages was confirmed by immunopeptidomics. T-cell-mediated changes in the macrophage immune phenotype and cytokine microenvironment were examined using flow cytometry, RT-qPCR and multiplex immunoassay. The effect of Arg1-derived peptide IMV on TAMs in vivo was assessed by multiplex gene analysis of F4/80+cells. RESULTS We show that Arg1-based IMV-mediated tumor control was linked to a decrease in multiple immunosuppressive pathways in the TAM population of the treated animals. Tumor-conditioned media (TCM) derived from Arg1-vaccinated mice induced significantly higher upregulation of MHC-II on exposed myeloid cells compared with controls. Furthermore, murine CD4+Arg1-specific T cells were able to target TAMs and effectively reprogram their phenotype ex vivo by secreting IL2 and IFNγ. Next, we established that human Arg1+TAMs present Arg1-derived peptides and are directly recognized by proinflammatory CD4+Arg1-specific T cell clones. These CD4+Arg1-specific T cells were able to reprogram TCM-conditioned macrophages as observed by increased expression of CD80 and HLA-DR. CONCLUSIONS TAMs may be directly targeted and modulated by Arg1-specific CD4+T cells. These findings provide a strong rationale for future clinical development of Arg1-based IMVs to alter the immune-suppressive TME by reprogramming TAMs and promoting a proinflammatory TME.
Collapse
Affiliation(s)
- Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
- IO Biotech ApS, Copenhagen, Denmark
| | - Inés Lecoq
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
- IO Biotech ApS, Copenhagen, Denmark
| | - Mia Aaboe-Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Maria Perez-Penco
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Hannah Jorinde Glöckner
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | | | - Lucía Lara de la Torre
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Lars Rønn Olsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Anne Mette Askehøj Rømer
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
- Department of Immunology, University of Copenhagen, Kobenhavn, Denmark
| |
Collapse
|
4
|
Marzęta-Assas P, Jacenik D, Zasłona Z. Pathophysiology of Arginases in Cancer and Efforts in Their Pharmacological Inhibition. Int J Mol Sci 2024; 25:9782. [PMID: 39337272 PMCID: PMC11431790 DOI: 10.3390/ijms25189782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Arginases are key enzymes that hydrolyze L-arginine to urea and L-ornithine in the urea cycle. The two arginase isoforms, arginase 1 (ARG1) and arginase 2 (ARG2), regulate the proliferation of cancer cells, migration, and apoptosis; affect immunosuppression; and promote the synthesis of polyamines, leading to the development of cancer. Arginases also compete with nitric oxide synthase (NOS) for L-arginine, and their participation has also been confirmed in cardiovascular diseases, stroke, and inflammation. Due to the fact that arginases play a crucial role in the development of various types of diseases, finding an appropriate candidate to inhibit the activity of these enzymes would be beneficial for the therapy of many human diseases. In this review, based on numerous experimental, preclinical, and clinical studies, we provide a comprehensive overview of the biological and physiological functions of ARG1 and ARG2, their molecular mechanisms of action, and affected metabolic pathways. We summarize the recent clinical trials' advances in targeting arginases and describe potential future drugs.
Collapse
Affiliation(s)
| | - Damian Jacenik
- Molecure S.A., 101 Żwirki i Wigury St., 02-089 Warsaw, Poland
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | | |
Collapse
|
5
|
Strum S, Andersen MH, Svane IM, Siu LL, Weber JS. State-Of-The-Art Advancements on Cancer Vaccines and Biomarkers. Am Soc Clin Oncol Educ Book 2024; 44:e438592. [PMID: 38669611 DOI: 10.1200/edbk_438592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The origins of cancer vaccines date back to the 1800s. Since then, there have been significant efforts to generate vaccines against solid and hematologic malignancies using a variety of platforms. To date, these efforts have generally been met with minimal success. However, in the era of improved methods and technological advancements, supported by compelling preclinical and clinical data, a wave of renewed interest in the field offers the promise of discovering field-changing paradigms in the management of established and resected disease using cancer vaccines. These include novel approaches to personalized neoantigen vaccine development, as well as innovative immune-modulatory vaccines (IMVs) that facilitate activation of antiregulatory T cells to limit immunosuppression caused by regulatory immune cells. This article will introduce some of the limitations that have affected cancer vaccine development over the past several decades, followed by an introduction to the latest advancements in neoantigen vaccine and IMV therapy, and then conclude with a discussion of some of the newest technologies and progress that are occurring across the cancer vaccine space. Cancer vaccines are among the most promising frontiers for breakthrough innovations and strategies poised to make a measurable impact in the ongoing fight against cancer.
Collapse
Affiliation(s)
- Scott Strum
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY
| |
Collapse
|
6
|
Glöckner HJ, Martinenaite E, Landkildehus Lisle T, Grauslund J, Ahmad S, Met Ö, Thor Straten P, Hald Andersen M. Arginase-1 specific CD8+ T cells react toward malignant and regulatory myeloid cells. Oncoimmunology 2024; 13:2318053. [PMID: 38404966 PMCID: PMC10885169 DOI: 10.1080/2162402x.2024.2318053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Arginase-1 (Arg1) is expressed by regulatory myeloid cells in the tumor microenvironment (TME), where they play a pro-tumorigenic and T-cell suppressive role. Arg1-specific CD4+ and CD8+ memory T cells have been observed in both healthy individuals and cancer patients. However, while the function of anti-regulatory Arg1-specific CD4+ T cells has been characterized, our knowledge of CD8+ Arg1-specific T cells is only scarce. In the current study, we describe the immune-modulatory capabilities of CD8+ Arg1-specific T cells. We generated CD8+ Arg1-specific T cell clones to target Arg1-expressing myeloid cells. Our results demonstrate that these T cells recognize both malignant and nonmalignant regulatory myeloid cells in an Arg1-expression-dependent manner. Notably, Arg1-specific CD8+ T cells possess cytolytic effector capabilities. Immune modulatory vaccines (IMVs) represent a novel treatment modality for cancer. The activation of Arg1-specific CD8+ T cells through Arg1-based IMVs can contribute to the modulatory effects of this treatment strategy.
Collapse
Affiliation(s)
- Hannah Jorinde Glöckner
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- IO Biotech, Research and Development Department, Copenhagen, Denmark
| | - Thomas Landkildehus Lisle
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Jacob Grauslund
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Shamaila Ahmad
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
7
|
Sadri M, Najafi A, Rahimi A, Behranvand N, Hossein Kazemi M, Khorramdelazad H, Falak R. Hypoxia effects on oncolytic virotherapy in Cancer: Friend or Foe? Int Immunopharmacol 2023; 122:110470. [PMID: 37433246 DOI: 10.1016/j.intimp.2023.110470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Researchers have tried to find novel strategies for cancer treatment in the past decades. Among the utilized methods, administering oncolytic viruses (OVs) alone or combined with other anticancer therapeutic approaches has had promising outcomes, especially in solid tumors. Infecting the tumor cells by these viruses can lead to direct lysis or induction of immune responses. However, the immunosuppressive tumor microenvironment (TME) is considered a significant challenge for oncolytic virotherapy in treating cancer. Based on OV type, hypoxic conditions in the TME can accelerate or repress virus replication. Therefore, genetic manipulation of OVs or other molecular modifications to reduce hypoxia can induce antitumor responses. Moreover, using OVs with tumor lysis capability in the hypoxic TME may be an attractive strategy to overcome the limitations of the therapy. This review summarizes the latest information available in the field of cancer virotherapy and discusses the dual effect of hypoxia on different types of OVs to optimize available related therapeutic methods.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Behranvand
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Starikova EA, Rubinstein AA, Mammedova JT, Isakov DV, Kudryavtsev IV. Regulated Arginine Metabolism in Immunopathogenesis of a Wide Range of Diseases: Is There a Way to Pass between Scylla and Charybdis? Curr Issues Mol Biol 2023; 45:3525-3551. [PMID: 37185755 PMCID: PMC10137093 DOI: 10.3390/cimb45040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
More than a century has passed since arginine was discovered, but the metabolism of the amino acid never ceases to amaze researchers. Being a conditionally essential amino acid, arginine performs many important homeostatic functions in the body; it is involved in the regulation of the cardiovascular system and regeneration processes. In recent years, more and more facts have been accumulating that demonstrate a close relationship between arginine metabolic pathways and immune responses. This opens new opportunities for the development of original ways to treat diseases associated with suppressed or increased activity of the immune system. In this review, we analyze the literature describing the role of arginine metabolism in the immunopathogenesis of a wide range of diseases, and discuss arginine-dependent processes as a possible target for therapeutic approaches.
Collapse
Affiliation(s)
- Eleonora A Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Artem A Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Jennet T Mammedova
- Laboratory of General Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Dmitry V Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Igor V Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- School of Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| |
Collapse
|
9
|
Grauslund JH, Holmström MO, Martinenaite E, Lisle TL, Glöckner HJ, El Fassi D, Klausen U, Mortensen REJ, Jørgensen N, Kjær L, Skov V, Svane IM, Hasselbalch HC, Andersen MH. An arginase1- and PD-L1-derived peptide-based vaccine for myeloproliferative neoplasms: A first-in-man clinical trial. Front Immunol 2023; 14:1117466. [PMID: 36911725 PMCID: PMC9996128 DOI: 10.3389/fimmu.2023.1117466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Arginase-1 (ARG1) and Programed death ligand-1 (PD-L1) play a vital role in immunosuppression in myeloproliferative neoplasms (MPNs) and directly inhibit T-cell activation and proliferation. We previously identified spontaneous T-cell responses towards PD-L1 and ARG1 derived peptide epitopes in patients with MPNs. In the present First-in-Man study we tested dual vaccinations of ARG1- derived and PD-L1-derived peptides, combined with Montanide ISA-51 as adjuvant, in patients with Janus Kinase 2 (JAK2) V617F-mutated MPN. Methods Safety and efficacy of vaccination with ARG1- derived and PD-L1-derived peptides with montanide as an adjuvant was tested in 9 patients with MPN The primary end point was safety and toxicity evaluation. The secondary end point was assessment of the immune response to the vaccination epitope (www.clinicaltrials.gov identifier NCT04051307). Results The study included 9 patients with JAK2-mutant MPN of which 8 received all 24 planned vaccines within a 9-month treatment period. Patients reported only grade 1 and 2 vaccine related adverse events. No alterations in peripheral blood counts were identified, and serial measurements of the JAK2V617F allelic burden showed that none of the patients achieved a molecular response during the treatment period. The vaccines induced strong immune responses against both ARG1 and PD-L1- derived epitopes in the peripheral blood of all patients, and vaccine-specific skin-infiltrating lymphocytes from 5/6 patients could be expanded in vitro after a delayed-type hypersensitivity test. In two patients we also detected both ARG1- and PD-L1-specific T cells in bone marrow samples at the end of trial. Intracellular cytokine staining revealed IFNγ and TNFγ producing CD4+- and CD8+- T cells specific against both vaccine epitopes. Throughout the study, the peripheral CD8/CD4 ratio increased significantly, and the CD8+ TEMRA subpopulation was enlarged. We also identified a significant decrease in PD-L1 mRNA expression in CD14+ myeloid cells in the peripheral blood in all treated patients and a decrease in ARG1 mRNA expression in bone marrow of 6 out of 7 evaluated patients. Conclusion Overall, the ARG1- and PD-L1-derived vaccines were safe and tolerable and induced strong T-cell responses in all patients. These results warrant further studies of the vaccine in other settings or in combination with additional immune-activating treatments.
Collapse
Affiliation(s)
- Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Research and Development, IO Biotech ApS, Copenhagen, Denmark
| | - Thomas Landkildehus Lisle
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Hannah Jorinde Glöckner
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel El Fassi
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Uffe Klausen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus E. J. Mortensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Nicolai Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Lorentzen CL, Martinenaite E, Kjeldsen JW, Holmstroem RB, Mørk SK, Pedersen AW, Ehrnrooth E, Andersen MH, Svane IM. Arginase-1 targeting peptide vaccine in patients with metastatic solid tumors - A phase I trial. Front Immunol 2022; 13:1023023. [PMID: 36330525 PMCID: PMC9622376 DOI: 10.3389/fimmu.2022.1023023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Arginase-1-producing cells inhibit T cell-mediated anti-tumor responses by reducing L-arginine levels in the tumor microenvironment. T cell-facilitated elimination of arginase-1-expressing cells could potentially restore L-arginine levels and improve anti-tumor responses. The activation of arginase-1-specific T cells may convert the immunosuppressive tumor microenvironment and induce or strengthen local Th1 inflammation. In the current clinical study, we examined the safety and immunogenicity of arginase-1-based peptide vaccination. METHODS In this clinical phase I trial, ten patients with treatment-refractory progressive solid tumors were treated. The patients received an arginase-1 peptide vaccine comprising three 20-mer peptides from the ARG1 immunological "hot spot" region in combination with the adjuvant Montanide ISA-51. The vaccines were administered subcutaneously every third week (maximum 16 vaccines). The primary endpoint was to evaluate safety assessed by Common Terminology Criteria for Adverse Events 4.0 and laboratory monitoring. Vaccine-specific immune responses were evaluated using enzyme-linked immune absorbent spot assays and intracellular cytokine staining on peripheral blood mononuclear cells. Clinical responses were evaluated using Response Evaluation Criteria in Solid Tumors 1.1. RESULTS The vaccination was feasible, and no vaccine-related grade 3-4 adverse events were registered. Nine (90%) of ten patients exhibited peptide-specific immune responses in peripheral blood mononuclear cells. Six (86%) of the seven evaluable patients developed a reactive T cell response against at least one of the ARG1 peptides during treatment. A phenotypic classification revealed that arginase-1 vaccine-specific T cells were both CD4+ T cells and CD8+ T cells. Two (20%) of ten patients obtained stable disease for respectively four- and seven months on vaccination treatment. CONCLUSION The peptide vaccine against arginase-1 was safe. Nine (90%) of ten patients had measurable peptide-specific responses in the periphery blood, and two (20%) of ten patients attained stable disease on protocol treatment. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT03689192, identifier NCT03689192.
Collapse
Affiliation(s)
- Cathrine Lund Lorentzen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- IO Biotech ApS, Copenhagen, Denmark
| | - Julie Westerlin Kjeldsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Rikke Boedker Holmstroem
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Sofie Kirial Mørk
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
11
|
Abstract
The identification and characterization of tumor antigens are central objectives in developing anti-cancer immunotherapy. Traditionally, tumor-associated antigens (TAAs) are considered relatively restricted to tumor cells (i.e., overexpressed proteins in tumor cells), whereas tumor-specific antigens (TSAs) are considered unique to tumor cells. Recent studies have focused on identifying patient-specific neoantigens, which might be highly immunogenic because they are not expressed in normal tissues. The opposite strategy has emerged with the discovery of anti-regulatory T cells (anti-Tregs) that recognize and attack many cell types in the tumor microenvironment, such as regulatory immune cells, in addition to tumor cells. The term proposed in this review is "tumor microenvironment antigens" (TMAs) to describe the antigens that draw this attack. As therapeutic targets, TMAs offer several advantages that differentiate them from more traditional tumor antigens. Targeting TMAs leads not only to a direct attack on tumor cells but also to modulation of the tumor microenvironment, rendering it immunocompetent and tumor-hostile. Of note, in contrast to TAAs and TSAs, TMAs also are expressed in non-transformed cells with consistent human leukocyte antigen (HLA) expression. Inflammation often induces HLA expression in malignant cells, so that targeting TMAs could additionally affect tumors with no or very low levels of surface HLA expression. This review defines the characteristics, differences, and advantages of TMAs compared with traditional tumor antigens and discusses the use of these antigens in immune modulatory vaccines as an attractive approach to immunotherapy. Different TMAs are expressed by different cells and could be combined in anti-cancer immunotherapies to attack tumor cells directly and modulate local immune cells to create a tumor-hostile microenvironment and inhibit tumor angiogenesis. Immune modulatory vaccines offer an approach for combinatorial therapy with additional immunotherapy including checkpoint blockade, cellular therapy, or traditional cancer vaccines. These combinations would increase the number of patients who can benefit from such therapeutic measures, which all have optimal efficiency in inflamed tumors.
Collapse
Affiliation(s)
- Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 5th floor, DK-2730, Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Niu F, Yu Y, Li Z, Ren Y, Li Z, Ye Q, Liu P, Ji C, Qian L, Xiong Y. Arginase: An emerging and promising therapeutic target for cancer treatment. Biomed Pharmacother 2022; 149:112840. [PMID: 35316752 DOI: 10.1016/j.biopha.2022.112840] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
Arginase is a key hydrolase in the urea cycle that hydrolyses L-arginine to urea and L-ornithine. Increasing number of studies in recent years demonstrate that two mammalian arginase isoforms, arginase 1 (ARG1) and arginase 2 (ARG2), were aberrantly upregulated in various types of cancers, and played crucial roles in the regulation of tumor growth and metastasis through various mechanisms such as regulating L-arginine metabolism, influencing tumor immune microenvironment, etc. Thus, arginase receives increasing focus as an attractive target for cancer therapy. In this review, we provide a comprehensive overview of the physiological and biological roles of arginase in a variety of cancers, and shed light on the underlying mechanisms of arginase mediating cancer cells growth and development, as well as summarize the recent clinical research advances of targeting arginase for cancer therapy.
Collapse
Affiliation(s)
- Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Zi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Qiang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Ping Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China; Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an 710018, Shaanxi, China
| | - Chenshuang Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China; Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an 710018, Shaanxi, China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, Shaanxi, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Arginine and Arginases Modulate Metabolism, Tumor Microenvironment and Prostate Cancer Progression. Nutrients 2021; 13:nu13124503. [PMID: 34960055 PMCID: PMC8704013 DOI: 10.3390/nu13124503] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 12/30/2022] Open
Abstract
Arginine availability and activation of arginine-related pathways at cancer sites have profound effects on the tumor microenvironment, far beyond their well-known role in the hepatic urea cycle. Arginine metabolism impacts not only malignant cells but also the surrounding immune cells behavior, modulating growth, survival, and immunosurveillance mechanisms, either through an arginase-mediated effect on polyamines and proline synthesis, or by the arginine/nitric oxide pathway in tumor cells, antitumor T-cells, myeloid-derived suppressor cells, and macrophages. This review presents evidence concerning the impact of arginine metabolism and arginase activity in the prostate cancer microenvironment, highlighting the recent advances in immunotherapy, which might be relevant for prostate cancer. Even though further research is required, arginine deprivation may represent a novel antimetabolite strategy for the treatment of arginine-dependent prostate cancer.
Collapse
|
14
|
Aaboe Jørgensen M, Ugel S, Linder Hübbe M, Carretta M, Perez-Penco M, Weis-Banke SE, Martinenaite E, Kopp K, Chapellier M, Adamo A, De Sanctis F, Frusteri C, Iezzi M, Zocca MB, Hargbøll Madsen D, Wakatsuki Pedersen A, Bronte V, Andersen MH. Arginase 1-Based Immune Modulatory Vaccines Induce Anticancer Immunity and Synergize with Anti-PD-1 Checkpoint Blockade. Cancer Immunol Res 2021; 9:1316-1326. [PMID: 34518197 DOI: 10.1158/2326-6066.cir-21-0280] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Expression of the L-arginine catabolizing enzyme arginase 1 (ARG1) is a central immunosuppressive mechanism mediated by tumor-educated myeloid cells. Increased activity of ARG1 promotes the formation of an immunosuppressive microenvironment and leads to a more aggressive phenotype in many cancers. Intrinsic T-cell immunity against ARG1-derived epitopes in the peripheral blood of cancer patients and healthy subjects has previously been demonstrated. To evaluate the antitumor efficacy of ARG1-derived peptide vaccines as a monotherapy and as a combinational therapy with checkpoint blockade, different in vivo syngeneic mouse tumor models were utilized. To evaluate the antitumor effects, flow cytometry analysis and IHC were performed on tumors, and ELISPOT assays were performed to characterize immune responses. We show that ARG1-targeting therapeutic vaccines were able to activate endogenous antitumor immunity in several in vivo syngeneic mouse tumor models and to modulate the cell composition of the tumor microenvironment without causing any associated side effects or systemic toxicity. ARG1-targeting vaccines in combination with anti-PD-1 also resulted in increased T-cell infiltration, decreased ARG1 expression, reduced suppressive function of tumor-educated myeloid cells, and a shift in the M1/M2 ratio of tumor-infiltrating macrophages. These results indicated that the induced shift toward a more proinflammatory microenvironment by ARG1-targeting immunotherapy favors effective tumor control when combined with anti-PD-1 checkpoint blockade. Our data illustrate the ability of ARG1-based immune modulatory vaccination to elicit antigen-specific immunosurveillance and imply the feasibility of this novel immunotherapeutic approach for clinical translation.
Collapse
Affiliation(s)
- Mia Aaboe Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Mie Linder Hübbe
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Carretta
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Maria Perez-Penco
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,IO Biotech ApS, Copenhagen, Denmark
| | | | | | - Annalisa Adamo
- Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| | | | - Cristina Frusteri
- Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Manuela Iezzi
- Center for Advanced Studies and Technology (CAST), Department of Neurosciences Imaging and Clinical Sciences, University of G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Daniel Hargbøll Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Vincenzo Bronte
- Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark. .,IO Biotech ApS, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Weis-Banke SE, Hübbe ML, Holmström MO, Jørgensen MA, Bendtsen SK, Martinenaite E, Carretta M, Svane IM, Ødum N, Pedersen AW, Met Ö, Madsen DH, Andersen MH. The metabolic enzyme arginase-2 is a potential target for novel immune modulatory vaccines. Oncoimmunology 2020; 9:1771142. [PMID: 32923127 PMCID: PMC7458644 DOI: 10.1080/2162402x.2020.1771142] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One way that tumors evade immune destruction is through tumor and stromal cell expression of arginine-degrading enzyme arginase-2 (ARG2). Here we describe the existence of pro-inflammatory effector T-cells that recognize ARG2 and can directly target tumor and tumor-infiltrating cells. Using a library of 34 peptides covering the entire ARG2 sequence, we examined reactivity toward these peptides in peripheral blood mononuclear cells from cancer patients and healthy individuals. Interferon-γ ELISPOT revealed frequent immune responses against several of the peptides, indicating that ARG2–specific self-reactive T-cells are natural components of the human T-cell repertoire. Based on this, the most immunogenic ARG2 protein region was further characterized. By identifying conditions in the microenvironment that induce ARG2 expression in myeloid cells, we showed that ARG2-specific CD4T-cells isolated and expanded from a peripheral pool from a prostate cancer patient could recognize target cells in an ARG2-dependent manner. In the ‘cold’ in vivo tumor model Lewis lung carcinoma, we found that activation of ARG2-specific T-cells by vaccination significantly inhibited tumor growth. Immune-modulatory vaccines targeting ARG2 thus are a candidate strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Mie Linder Hübbe
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Mia Aaboe Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Simone Kloch Bendtsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark.,IO Biotech ApS, Copenhagen, Denmark
| | - Marco Carretta
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Daniel Hargbøl Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark.,IO Biotech ApS, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Martinenaite E, Ahmad SM, Bendtsen SK, Jørgensen MA, Weis-Banke SE, Svane IM, Andersen MH. Arginase-1-based vaccination against the tumor microenvironment: the identification of an optimal T-cell epitope. Cancer Immunol Immunother 2019; 68:1901-1907. [PMID: 31690955 DOI: 10.1007/s00262-019-02425-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
L-arginine depletion by regulatory cells and cancer cells expressing arginase-1 (Arg-1) is a vital contributor to the immunosuppressive tumor microenvironment in patients with cancer. We have recently described the existence of pro-inflammatory effector T cells that recognize Arg-1. Hence, Arg-1-specific self-reactive T cells are a naturally occurring part of the memory T-cell repertoire of the human immune system. Here, we further characterize a highly immunogenic epitope from Arg-1. We describe frequent T-cell-based immune responses against this epitope in patients with cancer, as well as in healthy donors. Furthermore, we show that Arg-1-specific T cells expand in response to the TH2 cytokine interleukin (IL)-4 without any specific stimulation. Arg-1-specific memory TH1 cells that respond to increased IL-4 concentration may, therefore, drive the immune response back into the TH1 pathway. Arg-1-specific T cells thus appear to have an important function in immune regulation. Because Arg-1 plays an important role in the immunosuppressive microenvironment in most cancers, an immune modulatory vaccination approach can readily be employed to tilt the balance away from immune suppression in these settings.
Collapse
Affiliation(s)
- Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
- IO Biotech ApS, 2200, Copenhagen, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Simone Kloch Bendtsen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Mia Aaboe Jørgensen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-dk), Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 2730, Herlev, Denmark.
- IO Biotech ApS, 2200, Copenhagen, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Ødum N. Anti-regulatory T cells are natural regulatory effector T cells. Cell Stress 2019; 3:310-311. [PMID: 31680691 PMCID: PMC6789433 DOI: 10.15698/cst2019.10.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/13/2023] Open
Affiliation(s)
- Niels Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|