1
|
Alsaggaf I, Freitas A, Wan C. Predicting the pro-longevity or anti-longevity effect of model organism genes with enhanced Gaussian noise augmentation-based contrastive learning on protein-protein interaction networks. NAR Genom Bioinform 2024; 6:lqae153. [PMID: 39633720 PMCID: PMC11616696 DOI: 10.1093/nargab/lqae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Ageing is a highly complex and important biological process that plays major roles in many diseases. Therefore, it is essential to better understand the molecular mechanisms of ageing-related genes. In this work, we proposed a novel enhanced Gaussian noise augmentation-based contrastive learning (EGsCL) framework to predict the pro-longevity or anti-longevity effect of four model organisms' ageing-related genes by exploiting protein-protein interaction (PPI) networks. The experimental results suggest that EGsCL successfully outperformed the conventional Gaussian noise augmentation-based contrastive learning methods and obtained state-of-the-art performance on three model organisms' predictive tasks when merely relying on PPI network data. In addition, we use EGsCL to predict 10 novel pro-/anti-longevity mouse genes and discuss the support for these predictions in the literature.
Collapse
Affiliation(s)
- Ibrahim Alsaggaf
- School of Computing and Mathematical Sciences, Birkbeck, University of London, WC1E 7HX, London, UK
| | - Alex A Freitas
- School of Computing, University of Kent, CT2 7FS, Canterbury, Kent, UK
| | - Cen Wan
- School of Computing and Mathematical Sciences, Birkbeck, University of London, WC1E 7HX, London, UK
| |
Collapse
|
2
|
Yamaguchi Y, Kadowaki T, Sakai E, Noguromi M, Oyakawa S, Tsukuba T. Impaired Development of Collagen Antibody-Induced Arthritis in Rab44-Deficient Mice. Biomedicines 2024; 12:2504. [PMID: 39595070 PMCID: PMC11591669 DOI: 10.3390/biomedicines12112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease characterized by immune cell-mediated joint inflammation and subsequent osteoclast-dependent bone destruction. Collagen antibody-induced arthritis (CAIA) is a useful mouse model for examining the inflammatory mechanisms in human RA. Previously, we identified the novel gene Rab44, which is a member of the large Rab GTPase family and is highly expressed in immune-related cells and osteoclasts. METHODS In this study, we induced CAIA in Rab44-knockout (KO) mice to investigate the effects of Rab44 on inflammation, cell filtration, and bone destruction. RESULTS Compared with wild-type (WT) mice, Rab44-KO mice showed reduced inflammation in arthritis under CAIA-inducing conditions. Rab44-KO CAIA mice exhibited reduced cell filtration in the radiocarpal joints. Consistent with these findings, Rab44-KO CAIA mice showed decreased mRNA levels of arthritis-related marker genes including genes for inflammation, cartilage turnover, bone formation, and bone absorption markers. Rab44-KO CAIA mice exhibited predominant infiltration of M2-type macrophages at inflammatory sites and reduced bone loss compared to WT CAIA mice. CONCLUSIONS These results indicate that Rab44 deficiency reduces the progression of inflammation in CAIA in mice.
Collapse
Affiliation(s)
- Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.); (M.N.); (S.O.)
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan;
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.); (M.N.); (S.O.)
| | - Mayuko Noguromi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.); (M.N.); (S.O.)
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan;
- Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Shun Oyakawa
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.); (M.N.); (S.O.)
- Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.); (M.N.); (S.O.)
| |
Collapse
|
3
|
Ma M, Xue Z, Li C, Zhang X, Gao J, Deng T, Gao C, Wang N. Inhibition of pseudo-allergic reactions by vitamin K3 directly targeting GAB1 in mast cells. Int Immunopharmacol 2024; 137:112490. [PMID: 38897121 DOI: 10.1016/j.intimp.2024.112490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Vitamin K3 (VK3), a fat-soluble synthetic analog of the vitamin K family, has coagulant, anti-inflammatory, antibacterial, and anticancer properties. Pseudo allergy is a IgE-independent immune response associated with mast cells. This study investigated the role of VK3 in IgE-independent mast cell activation. METHODS Substance P (SP) was used to induce LAD2-cell activation in order to analyze the effects of VK3 in vitro. Cutaneous allergy and systemic allergy mouse models were used to analyze the anti-pseudo-allergic effects of VK3. Proteome microarray assays were used to analyze VK3-binding protein. Biolayer interferometry and immunoprecipitation were used to verify interaction between VK3 and its key targets. RNA interference was used to determine the role of GAB1 in LAD2cell activation. RESULTS VK3 inhibited SP-induced LAD2-cell activation, and resulted in the release of β-hexosaminidase, histamine and cytokines; VK3 inhibited SP-induced pseudo allergic reactions in mice, and serum histamine and TNF-α levels decreased. Degranulation of skin mast cells was reduced; GAB1 in mast cells was stably bound to VK3. GAB1 participated in SP-induced LAD2-cell activation. GAB1 knockdown in LAD2 cells prevented SP-induced β-hexosaminidase release, calcium mobilization and cell skeletal remodeling. VK3 directly binds to GAB1 and reduces its expression to inhibited SP-induced LAD2 cell activation. CONCLUSION The anti-pseudo-allergic activity of VK3 was confirmed in vitro and in vivo. VK3 can inhibit SP-induced mast cell activation by directly targeting GAB1. This study provides new insights on the activity of VK3 and the mechanism of pseudoallergic reaction.
Collapse
Affiliation(s)
- Mengyang Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Zhuoyin Xue
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenjia Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xinping Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jie Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Tingting Deng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Chang Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Pedicini L, Smith J, Savic S, McKeown L. Rab46: a novel player in mast cell function. DISCOVERY IMMUNOLOGY 2023; 3:kyad028. [PMID: 38567292 PMCID: PMC10917158 DOI: 10.1093/discim/kyad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 04/04/2024]
Abstract
Mast cells are infamous for mediating allergic and inflammatory diseases due to their capacity of rapidly releasing a wide range of inflammatory mediators stored in cytoplasmic granules. However, mast cells also have several important physiological roles that involve selective and agonist-specific release of these active mediators. While a filtering mechanism at the plasma membrane could regulate the selective release of some cargo, the plethora of stored cargo and the diversity of mast cell functions suggests the existence of granule subtypes with distinct trafficking pathways. The molecular mechanisms underlying differential trafficking and exocytosis of these granules are not known, neither is it clear how granule trafficking is coupled to the stimulus. In endothelial cells, a Rab GTPase, Rab46, responds to histamine but not thrombin signals, and this regulates the trafficking of a subpopulation of endothelial-specific granules. Here, we sought to explore, for the first time, if Rab46 plays a role in mast cell function. We demonstrate that Rab46 is highly expressed in human and murine mast cells, and Rab46 genetic deletion has an effect on mast cell degranulation that depends on both stimuli and mast cell subtype. This initial insight into the contribution of Rab46 to mast cell function and the understanding of the role of Rab46 in stimuli-dependent trafficking in other cell types necessitates further investigations of Rab46 in mast cell granular trafficking so that novel and specific therapeutic targets for treatment of the diverse pathologies mediated by mast cells can be developed.
Collapse
Affiliation(s)
- Lucia Pedicini
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Jessica Smith
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James’s University Hospital, Leeds, UK
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds, UK
| | - Lynn McKeown
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Tanimoto A, Yamaguchi Y, Kadowaki T, Sakai E, Oyakawa S, Ono Y, Yoshida N, Tsukuba T. Rab44 negatively regulates myoblast differentiation by controlling fusogenic protein transport and mTORC1 signaling. J Cell Biochem 2023; 124:1486-1502. [PMID: 37566644 DOI: 10.1002/jcb.30457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Skeletal muscle is composed of multinucleated myotubes formed by the fusion of mononucleated myoblasts. Skeletal muscle differentiation, termed as myogenesis, have been investigated using the mouse skeletal myoblast cell line C2C12. It has been reported that several "small" Rab proteins, major membrane-trafficking regulators, possibly regulate membrane protein transport in C2C12 cells; however, the role of Rab proteins in myogenesis remains unexplored. Rab44, a member of "large" Rab GTPases, has recently been identified as a negative regulator of osteoclast differentiation. In this study, using C2C12 cells, we found that Rab44 expression was upregulated during myoblast differentiation into myotubes. Knockdown of Rab44 enhanced myoblast differentiation and myotube formation. Consistent with these results, Rab44 knockdown in myoblasts increased expression levels of several myogenic marker genes. Rab44 knockdown increased the surface accumulation of myomaker and myomixer, two fusogenic proteins required for multinucleation, implying enhanced cell fusion. Conversely, Rab44 overexpression inhibited myoblast differentiation and tube formation, accompanied by decreased expression of some myogenic markers. Furthermore, Rab44 was found to be predominantly localized in lysosomes, and Rab44 overexpression altered the number and size of lysosomes. Considering the underlying molecular mechanism, Rab44 overexpression impaired the signaling pathway of the mechanistic target of rapamycin complex1 (mTORC1) in C2C12 cells. Namely, phosphorylation levels of mTORC1 and downstream mTORC1 substrates, such as S6 and P70-S6K, were notably lower in Rab44 overexpressing cells than those in control cells. These results indicate that Rab44 negatively regulates myoblast differentiation into myotubes by controlling fusogenic protein transport and mTORC1 signaling.
Collapse
Affiliation(s)
- Ayuko Tanimoto
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shun Oyakawa
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Kumamoto University, Kumamoto, Japan
| | - Noriaki Yoshida
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
6
|
Oyakawa S, Yamaguchi Y, Kadowaki T, Sakai E, Noguromi M, Tanimoto A, Ono Y, Murata H, Tsukuba T. Rab44 deficiency accelerates recovery from muscle damage by regulating mTORC1 signaling and transport of fusogenic regulators. J Cell Physiol 2023; 238:2253-2266. [PMID: 37565627 DOI: 10.1002/jcp.31082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023]
Abstract
The skeletal muscle is a tissue that shows remarkable plasticity to adapt to various stimuli. The development and regeneration of skeletal muscles are regulated by numerous molecules. Among these, we focused on Rab44, a large Rab GTPase, that has been recently identified in immune cells and osteoclasts. Recently, bioinformatics data has revealed that Rab44 is upregulated during the myogenic differentiation of myoblasts into myotubes in C2C12 cells. Thus, Rab44 may be involved in myogenesis. Here, we have investigated the effects of Rab44 deficiency on the development and regeneration of skeletal muscle in Rab44 knockout (KO) mice. Although KO mice exhibited body and muscle weights similar to those of wild-type (WT) mice, the histochemical analysis showed that the myofiber cross-sectional area (CSA) of KO mice was significantly smaller than that of WT mice. Importantly, the results of muscle regeneration experiments using cardiotoxin revealed that the CSA of KO mice was significantly larger than that of WT mice, suggesting that Rab44 deficiency promotes muscle regeneration. Consistent with the in vivo results, in vitro experiments indicated that satellite cells derived from KO mice displayed enhanced proliferation and differentiation. Mechanistically, KO satellite cells exhibited an increased mechanistic target of rapamycin complex 1 (mTORC1) signaling compared to WT cells. Additionally, enhanced cell surface transport of myomaker and myomixer, which are essential membrane proteins for myoblast fusion, was observed in KO satellite cells compared to WT cells. Therefore, Rab44 deficiency enhances muscle regeneration by modulating the mTORC1 signaling pathway and transport of fusogenic regulators.
Collapse
Affiliation(s)
- Shun Oyakawa
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mayuko Noguromi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ayuko Tanimoto
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Murata
- Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
7
|
Rab44 Deficiency Induces Impaired Immune Responses to Nickel Allergy. Int J Mol Sci 2023; 24:ijms24020994. [PMID: 36674510 PMCID: PMC9866195 DOI: 10.3390/ijms24020994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Rab44 was recently identified as an atypical Rab GTPase that possesses EF-hand and coiled-coil domains at the N-terminus, and a Rab-GTPase domain at the C-terminus. Rab44 is highly expressed in immune-related cells such as mast cells, macrophages, osteoclasts, and granulocyte-lineage cells in the bone marrow. Therefore, it is speculated that Rab44 is involved in the inflammation and differentiation of immune cells. However, little is known about the role of Rab44 in inflammation. In this study, we showed that Rab44 was upregulated during the early phase of differentiation of M1- and M2-type macrophages. Rab44-deficient mice exhibited impaired tumor necrosis factor alpha and interleukin-10 production after lipopolysaccharide (LPS) stimulation. The number of granulocytes in Rab44-deficient mice was lower, but the lymphocyte count in Rab44-deficient mice was significantly higher than that in wild-type mice after LPS stimulation. Moreover, Rab44-deficient macrophages showed impaired nickel-induced toxicity, and Rab44-deficient mice showed impaired nickel-induced hypersensitivity. Upon nickel hypersensitivity induction, Rab44-deficient mice showed different frequencies of immune cells in the blood and ears. Thus, it is likely that Rab44 is implicated in immune cell differentiation and inflammation, and Rab44 deficiency induces impaired immune responses to nickel allergies.
Collapse
|
8
|
Qin T, Liu M, Lv Y, Zheng A, Wang L, Wu Y, Kasianenko O, Wei X, Teng Z, Xia X, Hu J. Comprehensive Analysis of lncRNA and mRNA Expression Profile of Macrophage RAW264.7 Stimulated by Antimicrobial Peptide BSN-37. Protein Pept Lett 2023; 30:783-793. [PMID: 37587823 DOI: 10.2174/0929866530666230816110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND BSN-37, a novel antimicrobial peptide (AMP) containing 37 amino acid residues isolated from the bovine spleen, has not only antibacterial activity but also immunomodulatory activity. Recent evidence shows that long non-coding RNAs (lncRNAs) play an important role in regulating the activation and function of immune cells. The purpose of this experiment was to investigate the lncRNA and mRNA expression profile of mouse macrophages RAW264.7 stimulated by bovine antimicrobial peptide BSN-37. METHODS The whole gene expression microarray was used to detect the differentially expressed lncRNA and mRNA between antimicrobial peptide BSN-37 activated RAW264.7 cells and normal RAW264.7 cells. KEGG pathway analysis and GO function annotation analysis of differentially expressed lncRNAs and mRNA were carried out. Eight kinds of lncRNAs and nine kinds of mRNA with large differences were selected for qRT-PCR verification, respectively. RESULTS In the current study, we found that 1294 lncRNAs and 260 mRNAs were differentially expressed between antibacterial peptide BSN-37 treatment and control groups. Among them, Bcl2l12, Rab44, C1s, Cd101 and other genes were associated with immune responses and were all significantly up-regulated. Mest and Prkcz are related to cell growth, and other genes are related to glucose metabolism and lipid metabolism. In addition, some immune-related terms were also found in the GO and KEGG analyses. At the same time, real-time quantitative PCR was used to verify selected lncRNA and mRNA with differential expression. The results of qRT-PCR verification were consistent with the sequencing results, indicating that our data were reliable. CONCLUSION This study provides the lncRNA and mRNA expression profiles of RAW264.7 macrophages stimulated by antimicrobial peptide BSN-37 and helps to provide a reference value for subsequent studies on lncRNA regulation of antimicrobial peptide BSN-37 immune function.
Collapse
Affiliation(s)
- Ting Qin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingcheng Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Yanhe Lv
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Airong Zheng
- Forage and Feed Station of Henan Province, Zhengzhou, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yundi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Oksana Kasianenko
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhanwei Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
9
|
Maruta Y, Fukuda M. Large Rab GTPase Rab44 regulates microtubule-dependent retrograde melanosome transport in melanocytes. J Biol Chem 2022; 298:102508. [PMID: 36126775 PMCID: PMC9586991 DOI: 10.1016/j.jbc.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022] Open
Abstract
Melanosomes are melanin-containing organelles in melanocytes, and they are responsible for skin and hair pigmentation in mammals. The intracellular distribution of melanosomes is mainly determined by the balance between their anterograde transport on actin filaments and retrograde transport on microtubules. Although we have shown previously that melanoregulin and Rab36 serve as cargo receptors on melanosomes for retrograde transport, their knockdown does not completely inhibit retrograde melanosome transport, suggesting the existence of an additional cargo receptor(s) in melanocytes. In this study, we investigated the possible involvement of an atypical large Rab, Rab44, which also contains EF-hand domains and a coiled-coil domain, in retrograde melanosome transport in mouse melanocytes (Rab27A-deficient melan-ash cells). Our results showed that Rab44 localizes on mature melanosomes through lipidation of its C-terminal Rab-like GTPase domain, and that its knockdown results in suppression of retrograde melanosome transport. In addition, our biochemical analysis indicated that Rab44 interacts with the dynein–dynactin motor complex via its coiled-coil domain–containing middle region. Since simultaneous depletion of Rab44, melanoregulin, and Rab36 resulted in almost complete inhibition of retrograde melanosome transport, we propose that Rab44 is the third cargo receptor. We also showed that the N-terminal region of Rab44, which contains EF-hand domains, is required for both retrograde melanosome transport and its Ca2+-modulated activities. Our findings indicated that Rab44 is a third melanosomal cargo receptor, and that, unlike other cargo receptors previously described, its transport function is regulated by Ca2+.
Collapse
Affiliation(s)
- Yuto Maruta
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
10
|
Yamaguchi Y, Kadowaki T, Aibara N, Ohyama K, Okamoto K, Sakai E, Tsukuba T. Coronin1C Is a GDP-Specific Rab44 Effector That Controls Osteoclast Formation by Regulating Cell Motility in Macrophages. Int J Mol Sci 2022; 23:ijms23126619. [PMID: 35743062 PMCID: PMC9224296 DOI: 10.3390/ijms23126619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoclasts are multinucleated bone-resorbing cells that are formed by the fusion of macrophages. Recently, we identified Rab44, a large Rab GTPase, as an upregulated gene during osteoclast differentiation that negatively regulates osteoclast differentiation. However, the molecular mechanisms by which Rab44 negatively regulates osteoclast differentiation remain unknown. Here, we found that the GDP form of Rab44 interacted with the actin-binding protein, Coronin1C, in murine macrophages. Immunoprecipitation experiments revealed that the interaction of Rab44 and Coronin1C occurred in wild-type and a dominant-negative (DN) mutant of Rab44, but not in a constitutively active (CA) mutant of Rab44. Consistent with these findings, the expression of the CA mutant inhibited osteoclast differentiation, whereas that of the DN mutant enhanced this differentiation. Using a phase-contrast microscope, Coronin1C-knockdown osteoclasts apparently impaired multinuclear formation. Moreover, Coronin1C knockdown impaired the migration and chemotaxis of RAW-D macrophages. An in vivo experimental system demonstrated that Coronin1C knockdown suppresses osteoclastogenesis. Therefore, the decreased cell formation and fusion of Coronin1C-depleted osteoclasts might be due to the decreased migration of Coronin1C-knockdown macrophages. These results indicate that Coronin1C is a GDP-specific Rab44 effector that controls osteoclast formation by regulating cell motility in macrophages.
Collapse
Affiliation(s)
- Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan;
| | - Nozomi Aibara
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (N.A.); (K.O.)
| | - Kaname Ohyama
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (N.A.); (K.O.)
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan;
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
- Correspondence: ; Tel.: +81-95-819-7652
| |
Collapse
|
11
|
Longé C, Bratti M, Kurowska M, Vibhushan S, David P, Desmeure V, Huang JD, Fischer A, de Saint Basile G, Sepulveda FE, Blank U, Ménasché G. Rab44 regulates murine mast cell-driven anaphylaxis through kinesin-1-dependent secretory granule translocation. J Allergy Clin Immunol 2022; 150:676-689. [PMID: 35469841 DOI: 10.1016/j.jaci.2022.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mast cells (MCs) are key effectors of the allergic response. Following the cross-linking of IgE receptors (FcεRIs), they release crucial inflammatory mediators through degranulation. Although degranulation depends critically on secretory granule (SG) trafficking towards the plasma membrane, the molecular machinery underlying this transport has not been fully characterized. OBJECTIVE Here, we analyzed the function of Rab44, a large atypical Rab GTPase highly expressed in MC, in MC degranulation process. METHODS Murine KO mouse models (KORab44 and DKOKif5b/Rab44) were used to perform passive cutaneous anaphylaxis (PCA) experiments and analyze granule translocation in derived bone-marrow-derived MCs (BMMCs) during degranulation. RESULTS We demonstrate that mice lacking Rab44 (KORab44) in their BMMCs are impaired in their ability to translocate and degranulate SGs at the plasma membrane upon FcεRI stimulation. Accordingly, KORab44 mice were less sensitive to IgE-mediated passive cutaneous anaphylaxis in vivo. A lack of Rab44 did not impair early FcεRI-stimulated signaling pathways, microtubule reorganization, lipid mediator or cytokine secretion. Mechanistically, Rab44 appears to interact with and function as part of the previously described kinesin-1-dependent transport pathway. CONCLUSIONS Our results highlight a novel role of Rab44 as a regulator of SG transport during degranulation and anaphylaxis acting through the kinesin-1-dependent microtubule transport machinery. Rab44 can thus be considered as a potential target for modulating MC degranulation and inhibiting IgE-mediated allergic reactions.
Collapse
Affiliation(s)
- Cyril Longé
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Manuela Bratti
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Mathieu Kurowska
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Shamila Vibhushan
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Pierre David
- Transgenesis Facility, Laboratoire d'Expérimentation Animale et Transgénèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, F-75015, Paris, France
| | - Valère Desmeure
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Alain Fischer
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Immunology and Pediatric Hematology Department, Necker Children's Hospital, AP-HP, F-75015 Paris, France; Collège de France, F-75005 Paris, France
| | - Geneviève de Saint Basile
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Centre d'Etude des Déficits Immunitaires, AP-HP, Hôpital Necker-Enfants Malades, F-75015, Paris, France
| | - Fernando E Sepulveda
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Centre National de la Recherche Scientifique, F-75015, Paris. France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Gaël Ménasché
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| |
Collapse
|
12
|
Krayem I, Sohrabi Y, Javorková E, Volkova V, Strnad H, Havelková H, Vojtíšková J, Aidarova A, Holáň V, Demant P, Lipoldová M. Genetic Influence on Frequencies of Myeloid-Derived Cell Subpopulations in Mouse. Front Immunol 2022; 12:760881. [PMID: 35154069 PMCID: PMC8826059 DOI: 10.3389/fimmu.2021.760881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Differences in frequencies of blood cell subpopulations were reported to influence the course of infections, atopic and autoimmune diseases, and cancer. We have discovered a unique mouse strain B10.O20 containing extremely high frequency of myeloid-derived cells (MDC) in spleen. B10.O20 carries 3.6% of genes of the strain O20 on the C57BL/10 genetic background. It contains much higher frequency of CD11b+Gr1+ cells in spleen than both its parents. B10.O20 carries O20-derived segments on chromosomes 1, 15, 17, and 18. Their linkage with frequencies of blood cell subpopulations in spleen was tested in F2 hybrids between B10.O20 and C57BL/10. We found 3 novel loci controlling MDC frequencies: Mydc1, 2, and 3 on chromosomes 1, 15, and 17, respectively, and a locus controlling relative spleen weight (Rsw1) that co-localizes with Mydc3 and also influences proportion of white and red pulp in spleen. Mydc1 controls numbers of CD11b+Gr1+ cells. Interaction of Mydc2 and Mydc3 regulates frequency of CD11b+Gr1+ cells and neutrophils (Gr1+Siglec-F- cells from CD11b+ cells). Interestingly, Mydc3/Rsw1 is orthologous with human segment 6q21 that was shown previously to determine counts of white blood cells. Bioinformatics analysis of genomic sequence of the chromosomal segments bearing these loci revealed polymorphisms between O20 and C57BL/10 that change RNA stability and genes’ functions, and we examined expression of relevant genes. This identified potential candidate genes Smap1, Vps52, Tnxb, and Rab44. Definition of genetic control of MDC can help to personalize therapy of diseases influenced by these cells.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Yahya Sohrabi
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Eliška Javorková
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia.,Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Valeriya Volkova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Havelková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Vojtíšková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Aigerim Aidarova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimír Holáň
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia.,Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
13
|
Large Rab GTPases: Novel Membrane Trafficking Regulators with a Calcium Sensor and Functional Domains. Int J Mol Sci 2021; 22:ijms22147691. [PMID: 34299309 PMCID: PMC8303950 DOI: 10.3390/ijms22147691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
Rab GTPases are major coordinators of intracellular membrane trafficking, including vesicle transport, membrane fission, tethering, docking, and fusion events. Rab GTPases are roughly divided into two groups: conventional “small” Rab GTPases and atypical “large” Rab GTPases that have been recently reported. Some members of large Rab GTPases in mammals include Rab44, Rab45/RASEF, and Rab46. The genes of these large Rab GTPases commonly encode an amino-terminal EF-hand domain, coiled-coil domain, and the carboxyl-terminal Rab GTPase domain. A common feature of large Rab GTPases is that they express several isoforms in cells. For instance, Rab44’s two isoforms have similar functions, but exhibit differential localization. The long form of Rab45 (Rab45-L) is abundantly distributed in epithelial cells. The short form of Rab45 (Rab45-S) is predominantly present in the testes. Both Rab46 (CRACR2A-L) and the short isoform lacking the Rab domain (CRACR2A-S) are expressed in T cells, whereas Rab46 is only distributed in endothelial cells. Although evidence regarding the function of large Rab GTPases has been accumulating recently, there are only a limited number of studies. Here, we report the recent findings on the large Rab GTPase family concerning their function in membrane trafficking, cell differentiation, related diseases, and knockout mouse phenotypes.
Collapse
|
14
|
Jassinskaja M, Pimková K, Arh N, Johansson E, Davoudi M, Pereira CF, Sitnicka E, Hansson J. Ontogenic shifts in cellular fate are linked to proteotype changes in lineage-biased hematopoietic progenitor cells. Cell Rep 2021; 34:108894. [PMID: 33761361 DOI: 10.1016/j.celrep.2021.108894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/16/2020] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
The process of hematopoiesis is subject to substantial ontogenic remodeling that is accompanied by alterations in cellular fate during both development and disease. We combine state-of-the-art mass spectrometry with extensive functional assays to gain insight into ontogeny-specific proteomic mechanisms regulating hematopoiesis. Through deep coverage of the cellular proteome of fetal and adult lympho-myeloid multipotent progenitors (LMPPs), common lymphoid progenitors (CLPs), and granulocyte-monocyte progenitors (GMPs), we establish that features traditionally attributed to adult hematopoiesis are conserved across lymphoid and myeloid lineages, whereas generic fetal features are suppressed in GMPs. We reveal molecular and functional evidence for a diminished granulocyte differentiation capacity in fetal LMPPs and GMPs relative to their adult counterparts. Our data indicate an ontogeny-specific requirement of myosin activity for myelopoiesis in LMPPs. Finally, we uncover an ontogenic shift in the monocytic differentiation capacity of GMPs, partially driven by a differential expression of Irf8 during fetal and adult life.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Kristýna Pimková
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Nejc Arh
- Lund Stem Cell Center, Division of Molecular Medicine and Gene Therapy, Lund University, 221 84 Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Emil Johansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden; Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Mina Davoudi
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Carlos-Filipe Pereira
- Lund Stem Cell Center, Division of Molecular Medicine and Gene Therapy, Lund University, 221 84 Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Ewa Sitnicka
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Jenny Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
15
|
Kadowaki T, Yamaguchi Y, Ogawa K, Tokuhisa M, Okamoto K, Tsukuba T. Rab44 isoforms similarly promote lysosomal exocytosis, but exhibit differential localization in mast cells. FEBS Open Bio 2021; 11:1165-1185. [PMID: 33641252 PMCID: PMC8016136 DOI: 10.1002/2211-5463.13133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/03/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Rab44 is a large Rab GTPase containing a Rab GTPase domain and some additional N-terminal domains. We recently used Rab44-deficient mice to demonstrate that Rab44 regulates granule exocytosis in mast cells and IgE-mediated anaphylaxis. In mouse mast cells, Rab44 is expressed as two isoforms, namely, the long and short forms; however, the characteristics of these two isoforms remain unknown. Here, we investigated secretion and localization of the human long Rab44 isoform and the two mouse isoforms and their mutants expressed in rat basophilic leukemia (RBL)-2H3 cells. Expression of the human long isoform and both mouse isoforms caused an increase in β-hexosaminidase secretion. Confocal and quantitative analyses showed that both human and mouse long isoforms localized mainly to lysosomes while the mouse short isoform localized mainly to the ER. Live imaging with LysoTracker indicated that the size and number of LysoTracker-positive vesicles were altered by the various mutants. Ionomycin treatment partially altered localization of both long isoforms to the plasma membrane and cytosol, whereas it had little effect on colocalization of the short isoform with lysosomes. Mechanistically, both human and mouse Rab44 proteins interacted with vesicle-associated membrane protein 8 (VAMP8), a v-SNARE protein. Therefore, Rab44 isoforms similarly promote lysosomal exocytosis, but exhibit differential localization in mast cells.
Collapse
Affiliation(s)
- Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Kohei Ogawa
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Japan.,Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Mitsuko Tokuhisa
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Japan.,Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| |
Collapse
|
16
|
Ménasché G, Longé C, Bratti M, Blank U. Cytoskeletal Transport, Reorganization, and Fusion Regulation in Mast Cell-Stimulus Secretion Coupling. Front Cell Dev Biol 2021; 9:652077. [PMID: 33796537 PMCID: PMC8007931 DOI: 10.3389/fcell.2021.652077] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mast cells are well known for their role in allergies and many chronic inflammatory diseases. They release upon stimulation, e.g., via the IgE receptor, numerous bioactive compounds from cytoplasmic secretory granules. The regulation of granule secretion and its interaction with the cytoskeleton and transport mechanisms has only recently begun to be understood. These studies have provided new insight into the interaction between the secretory machinery and cytoskeletal elements in the regulation of the degranulation process. They suggest a tight coupling of these two systems, implying a series of specific signaling effectors and adaptor molecules. Here we review recent knowledge describing the signaling events regulating cytoskeletal reorganization and secretory granule transport machinery in conjunction with the membrane fusion machinery that occur during mast cell degranulation. The new insight into MC biology offers novel strategies to treat human allergic and inflammatory diseases targeting the late steps that affect harmful release from granular stores leaving regulatory cytokine secretion intact.
Collapse
Affiliation(s)
- Gaël Ménasché
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Cyril Longé
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
17
|
Ogawa K, Kadowaki T, Tokuhisa M, Yamaguchi Y, Umeda M, Tsukuba T. Role of the EF-hand and coiled-coil domains of human Rab44 in localisation and organelle formation. Sci Rep 2020; 10:19149. [PMID: 33154405 PMCID: PMC7645795 DOI: 10.1038/s41598-020-75897-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/15/2020] [Indexed: 12/26/2022] Open
Abstract
Rab44 is a large Rab GTPase that contains an amino-terminal EF-hand domain, a coiled-coil domain, and a carboxyl-terminal Rab GTPase domain. However, the roles of the EF-hand and coiled-coil domains remain unclear. Here, we constructed various deletion and point mutants of human Rab44. When overexpressed in HeLa cells, the wild-type Rab44 (hWT) formed ring-like structures, and partially localised to lysosomes. The dominant negative mutant, hT847N, localised to lysosomes and the cytosol, while the constitutively active mutant, hQ892L, formed ring-like structures, and partially localised to the plasma membrane and nuclei. The hΔEF, hΔcoil, and h826-1021 mutants also formed ring-like structures; however, their localisation patterns differed from hWT. Analysis of live imaging with LysoTracker revealed that the size of LysoTracker-positive vesicles was altered by all other mutations than the hC1019A and hΔEF. Treatment with ionomycin, a Ca2+ ionophore, induced the translocation of hWT and hΔcoil into the plasma membrane and cytosol, but had no effect on the localisation of the hΔEF and h826-1021 mutants. Thus, the EF- hand domain is likely required for the partial translocation of Rab44 to the plasma membrane and cytosol following transient Ca2+ influx, and the coiled-coil domain appears to be important for localisation and organelle formation.
Collapse
Affiliation(s)
- Kohei Ogawa
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan.,Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan.,Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan.
| | - Mitsuko Tokuhisa
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan.,Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan.,Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Masahiro Umeda
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan.
| |
Collapse
|