1
|
Xu L, Wang L, Chen Q, Yun J, Rao H, Zhuo Y, Xu S, Lin Y, Feng B, Wang Y, Sun M. Multi-enzyme cascade Fe/Mo bimetallic nanozyme with mucosal repair function and immunomodulatory capacity for targeted therapy of ulcerative colitis. Int J Biol Macromol 2025; 319:145465. [PMID: 40555315 DOI: 10.1016/j.ijbiomac.2025.145465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 06/20/2025] [Accepted: 06/21/2025] [Indexed: 06/28/2025]
Abstract
In this study, FeMoO4/MoO3 nanoparticles (Fe/Mo NPs) were coated with mannose-modified chitosan (CM) to form Fe/Mo@CM nanozyme. Fe/Mo@CM exhibited strong self-cascading multiple antioxidant enzyme-mimicking activities. It simulated the natural antioxidant defense system composed of superoxide dismutase (SOD), glutathione peroxidase (GPx) and peroxidase (POD), catalyzing the decomposition of superoxide anions (O2-) and hydrogen peroxide (H2O2), while scavenging reactive oxygen species and reactive nitrogen species (RO/NS). Moreover, Fe/Mo@CM effectively alleviated inflammatory damage by inhibiting the excessive immune process and significantly reducing the number of inflammatory macrophages in the colon, thereby lowering the levels of pro-inflammatory cytokines. Furthermore, treatment with Fe/Mo@CM enhanced the expression of gut barrier proteins, which effectively mitigated DSS-induced colon shortening and histopathological damage. These findings suggest that Fe/Mo@CM can prevent oxidative stress, inflammation, and intestinal barrier disruption. Notably, Fe/Mo@CM also demonstrated potential in modulating the inflammatory microenvironment and immune process, with good gastrointestinal tolerance and strong therapeutic efficacy.
Collapse
Affiliation(s)
- Lixiao Xu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Ya'an 625014, PR China
| | - Liling Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Ya'an 625014, PR China
| | - Qingliang Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Ya'an 625014, PR China
| | - Jie Yun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Ya'an 625014, PR China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Ya'an 625014, PR China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Ya'an 625014, PR China.
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Ya'an 625014, PR China.
| |
Collapse
|
2
|
Wei Q, Jiang H, Zeng J, Xu J, Zhang H, Xiao E, Lu Q, Huang G. Quercetin protected the gut barrier in ulcerative colitis by activating aryl hydrocarbon receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156633. [PMID: 40088746 DOI: 10.1016/j.phymed.2025.156633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/25/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is characterized by abdominal pain and bloody diarrhoea and restoring the gut barrier is the core goal of UC treatment. Activation of aryl hydrocarbon receptor (Ahr) was reported to effectively alleviate symptoms and repair the gut barrier damage. Neutrophil extracellular traps (NETs) have been recognized as potential targets in the treatment of UC. Ahr activation has been found to be capable of upregulating Nqo1, thereby reducing the production of reactive oxygen species (ROS), which is important in the formation of NETs. Quercetin (QUE), which is derived from natural plants and herbs used in traditional Chinese medicine (TCM), is able to strengthen gut barrier function by activating Ahr. PURPOSE The aim of this study is to investigate how QUE suppresses NETs in UC and activates Ahr in neutrophils. METHODS In this study, the dextran sulfate sodium (DSS)-induced UC model was used. Histopathological assessments were performed in the paraffin slides of tissues after H&E, PAS, Masson and alcian blue staining. The concentration of cytokines was also detected using cytometric beads array kits. Based on the transcriptomic analysis of colon tissues, western blot (WB) analysis, immunohistochemistry (IHC) assays and immunofluorescence (IF) assays were conducted to validate the significantly regulated genes and pathways. In vitro, the binding of quercetin to Ahr was calculated by molecular dynamic simulations (MDS) and biolayer interferometry (BLI) analysis. Primary neutrophils isolated from mice were cocultured with LPS or PMA with or without quercetin. The regulated genes were detected using WB, real-time quantitative PCR, enzyme-linked immunosorbent assay (ELISA) and IF analysis. The agonists and antagonist of Ahr were used as the control. RESULTS After the administration of quercetin, colon inflammation and gut barrier disruption was significantly prevented through inhibiting the NF-κB pathway and upregulating the expression of Ahr/Arnt and Nqo1. The transcriptomic analysis and IHC assays showed that inflammation and NETs were greatly decreased by QUE treatment. In vitro, quercetin inhibited LPS-induced inflammatory responses through NF-κB pathway. Furthermore, MDS and BLI analysis revealed that QUE is an agonist of AHR. QUE activated Ahr translocation and reduced ROS production via regulation of Arnt and Nqo1. CONCLUSION This study proved that quercetin greatly improved gut barrier function in the DSS-induced colitis model by regulating NET formation and that quercetin was able to activate Ahr and upregulate Arnt in neutrophils to regulate NET formation.
Collapse
Affiliation(s)
- Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haixu Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jia Zeng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Honglin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Enfan Xiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
3
|
Wang X, Cheng M, Chen S, Zhang C, Ling R, Qiu S, Chen K, Zhou B, Li Q, Lei W, Chen D. Resistance to anti-LAG-3 plus anti-PD-1 therapy in head and neck cancer is mediated by Sox9+ tumor cells interaction with Fpr1+ neutrophils. Nat Commun 2025; 16:3975. [PMID: 40295483 PMCID: PMC12037843 DOI: 10.1038/s41467-025-59050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Relatlimab and nivolumab combination therapy shows significant efficacy in treating various types of cancer. Current research on the molecular mechanisms of this treatment is abundant, but in-depth investigations into post-treatment resistance remain notably lacking. In this study, we identify significant enrichment of SRY (sex determining region Y)-box 9 (Sox9)+ tumor cells in resistant samples using single cell RNA sequencing (scRNAseq) in a head and neck squamous cell carcinoma (HNSCC) mouse model. In addition, Sox9 directly regulates the expression of annexin A1 (Anxa1), mediating apoptosis of formyl peptide receptor 1 (Fpr1)+ neutrophils through the Anxa1-Fpr1 axis, which promotes mitochondrial fission, inhibits mitophagy by downregulating BCL2/adenovirus E1B interacting protein 3 (Bnip3) expression and ultimately prevents the accumulation of neutrophils in tumor tissues. The reduction of Fpr1+ neutrophils impairs the infiltration and tumor cell-killing ability of cytotoxic Cd8 T and γδT cells within the tumor microenvironment, thereby leading to the development of resistance to the combination therapy. We further validate these findings using various transgenic mouse models. Overall, this study comprehensively explains the mechanisms underlying resistance to the anti-LAG-3 plus anti-PD-1 combination therapy and identifies potential therapeutic targets to overcome this resistance.
Collapse
Affiliation(s)
- Xiaochen Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maosheng Cheng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuang Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Caihua Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rongsong Ling
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuqing Qiu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ke Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Qiuli Li
- Department of Head and Neck Surgery, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Wenbin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Demeng Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
4
|
Kong L, Hu S, Zhao Y, Huang Y, Xiang X, Yu Y, Mao X, Xie K, Zhu X, Xu P. Neutrophil extracellular traps induced by neoadjuvant chemotherapy of breast cancer promotes vascular endothelial damage. Breast Cancer Res 2025; 27:61. [PMID: 40270028 PMCID: PMC12016159 DOI: 10.1186/s13058-025-02011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND The mechanisms underpinning neoadjuvant chemotherapy-induced vascular endothelial injury in breast cancer remain elusive. Our study aims to demonstrate that Neutrophil Extracellular Traps (NETs) play a pivotal role in neoadjuvant chemotherapy-induced vascular endothelial injury in breast cancer, elucidating that chemotherapy-induced upregulation of Solute Carrier 11a1 (Slc11a1) modulates Reactive Oxygen Species (ROS) generation, which may be critical for NETs formation. METHODS We investigated the impact of neoadjuvant chemotherapy for breast cancer on NETs formation and vascular endothelial injury by analyzing NETs dsDNA and serum markers in patients, cells, and chemotherapy mouse models. RNA sequencing of neutrophils from chemotherapy mouse models was performed to identify the potential NETs formation-associated gene Slc11a1, which was further validated through cellular and animal experiments by assessing Slc11a1 expression, intracellular ferrous ion content, and ROS levels. Knockdown of Slc11a1 in human neutrophils and mouse models were also performed to further confirm the phenotypic results. RESULTS Our study revealed that plasma NETs formation and endothelial injury markers were significantly elevated in breast cancer patients undergoing docetaxel & carboplatin (TCb) neoadjuvant chemotherapy, compared to controls. In these patients, NETs formation was associated with the augmentation of endothelial injury markers. Chemotherapy mouse models demonstrated that TCb treatment markedly elevated NETs formation and endothelial injury, which can be mitigated by CI-amidine, a protein-arginine deiminase inhibitor. In human neutrophils, we demonstrated that the TCb chemotherapeutic agents (combination of docetaxel and carboplatin) induced the formation of NETs, which subsequently facilitated damage to human umbilical vein endothelial cells in vitro. RNA sequencing of mouse neutrophils identified Slc11a1 as a key NETs formation-related gene, which was upregulated by TCb chemotherapy in neutrophils, leading to increased intracellular ferrous ion content and ROS generation. Knockdown of Slc11a1 in human neutrophils and mouse models demonstrated its reversal effect on TCb-induced ferrous ion upregulation, ROS generation, and NETs formation. CONCLUSIONS Our research underscores the capacity of TCb neoadjuvant chemotherapy in breast cancer to augment NETs formation in neutrophils through Slc11a1-mediated ROS generation, which is linked to vascular endothelial injury. Our study elucidates the potential mechanisms underlying perioperative vascular endothelial injury in breast cancer patients undergoing neoadjuvant chemotherapy, offering novel insights into perioperative therapeutic management strategies for these patients.
Collapse
Affiliation(s)
- Linghui Kong
- Department of Anesthesiology, Zhejiang Cancer Hospital; Laboratory of Anethesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, East Banshan Road, Hangzhou, 310022, Zhejiang, People's Republic of China
| | - Song Hu
- Department of Anesthesiology, Zhejiang Cancer Hospital; Laboratory of Anethesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, East Banshan Road, Hangzhou, 310022, Zhejiang, People's Republic of China
| | - Ying Zhao
- Department of Anesthesiology, Zhejiang Cancer Hospital; Laboratory of Anethesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, East Banshan Road, Hangzhou, 310022, Zhejiang, People's Republic of China
| | - Yan Huang
- Department of Anesthesiology, Zhejiang Cancer Hospital; Laboratory of Anethesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, East Banshan Road, Hangzhou, 310022, Zhejiang, People's Republic of China
| | - Xiaobing Xiang
- Department of Anesthesiology, Zhejiang Cancer Hospital; Laboratory of Anethesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, East Banshan Road, Hangzhou, 310022, Zhejiang, People's Republic of China
| | - Yang Yu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, People's Republic of China
| | - Xiaochun Mao
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, People's Republic of China
| | - Kangjie Xie
- Department of Anesthesiology, Zhejiang Cancer Hospital; Laboratory of Anethesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, East Banshan Road, Hangzhou, 310022, Zhejiang, People's Republic of China
| | - Xiaoyan Zhu
- Department of Physiology, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Pingbo Xu
- Department of Anesthesiology, Zhejiang Cancer Hospital; Laboratory of Anethesia and Perioperative Medicine, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, East Banshan Road, Hangzhou, 310022, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Xu Y, Gong X, Wang Y, Liu X, Pu H, Jiang H, Yu X. Research trends on neutrophil extracellular traps in ischemic stroke: a scientific metrology study. Front Pharmacol 2025; 16:1537566. [PMID: 40290435 PMCID: PMC12021921 DOI: 10.3389/fphar.2025.1537566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Background Ischemic stroke (IS) remains a leading global cause of mortality and chronic disability. Neutrophil extracellular traps (NETs), recently identified as neutrophil-derived structures that trap and neutralize pathogens, have increasingly drawn attention for their involvement in IS pathogenesis. Despite a surge in related research, no bibliometric analyses have yet examined the knowledge framework and trends within this emerging field. Here, we conducted a systematic bibliometric analysis to map the research landscape and identify current and potential hotspots regarding NETs in IS. Methods Relevant literature published between 2014 and 2024 was systematically retrieved from the Web of Science Core Collection (WoSCC) database. Multiple analytical tools, including CiteSpace, VOSviewer, R package "bibliometrix," and Python scripts, were employed to explore publication trends, academic collaborations, prominent research themes, and emerging topics. Results Ninety-two publications were eligible for bibliometric assessment, supplemented by an additional latent Dirichlet allocation (LDA)-based topic analysis of 4,504 documents. China (30 publications) and the United States (23 publications) emerged as leading countries in terms of research output, with global collaboration networks predominantly centering around the United States. Noteworthy contributions also arose from European institutions, particularly Katholieke Universiteit Leuven and Karolinska Institutet. The leading authors identified were Desilles, Jean-Philippe, Ho-Tin-Noé, Benoit, and Mazighi, Mikael. Journals such as Stroke, Annals of Neurology, and Nature Communications significantly influenced this domain. Three main research hotspots emerged: (1) "promoting effect of protein arginine deiminase 4 (PAD4) in NET formation," (2) "cell-free DNA as a biomarker for disease diagnosis," and (3) "influence of platelets and thrombosis on NETs-related diseases." Conclusion Our study offers an extensive overview of existing literature and evolving research trajectories concerning NETs in IS, providing researchers with clear insights into current trends and future investigative directions. Nevertheless, our study has limitations-including dependence on a single database (WoSCC), restriction to English-language publications, and inherent constraints of the LDA methodology-that merit consideration in interpreting these findings.
Collapse
Affiliation(s)
- Yaji Xu
- School of Preclinical Medicine, Chengdu University, Chengdu, China
- Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Xingyu Gong
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Yilin Wang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Xinyu Liu
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Haomou Pu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjie Jiang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Xiaoping Yu
- School of Preclinical Medicine, Chengdu University, Chengdu, China
- Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
6
|
Kajana X, Caridi G, Bruschi M, Spinelli S, Lugani F, Ghiggeri GM, La Porta E, Mortari G, Verrina EE, Angeletti A, Bigatti C. The Crosstalk Between NETs and the Complement Cascade: An Overview in Nephrological Autoimmune Disease. Int J Mol Sci 2025; 26:2789. [PMID: 40141431 PMCID: PMC11943363 DOI: 10.3390/ijms26062789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
The complement cascade and Neutrophil Extracellular Traps (NETs) represent fundamental tools in protecting the host from foreign pathogens. Complement components and relative fragments, classically assigned to the innate immunity, represent a key link with the humoral immune response. NETs are a crucial component of the innate immune response, consisting of chromatin release from activated neutrophils. These web-like structures facilitate pathogen entrapment and elimination through proteolytic degradation and antimicrobial effectors. Previous findings suggested complement components and NETs have a significant role in the pathogenesis of several diseases characterized by inflammation, such as autoimmune and infectious diseases. However, the crosstalk between NETs and the complement cascade has only recently been investigated, and several aspects still need to be fully clarified. Recent evidence seems to suggest a bidirectional link between the complement cascade and NETosis. We here present the interaction between complement components and NETs in specific autoimmune diseases that mostly affect the kidney, such as systemic lupus erythematosus, Antineutrophilic Cytoplasmic Antibody (ANCA)-associated vasculitis and antiphospholipid syndrome. The mechanisms reported here may represent specific targets for the development of possible therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrea Angeletti
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto Giannina Gaslini, 16145 Genoa, Italy; (X.K.); (G.C.); (M.B.); (S.S.); (F.L.); (G.M.G.); (E.L.P.); (G.M.); (E.E.V.); (C.B.)
| | | |
Collapse
|
7
|
Che Z, Yan W, Zhao Q. Extracellular Vesicles in the Mesenchymal Stem Cell/Macrophage Axis: Potential Targets for Inflammatory Treatment. Int J Mol Sci 2025; 26:2827. [PMID: 40141469 PMCID: PMC11943156 DOI: 10.3390/ijms26062827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used for the treatment of autoimmune and inflammatory diseases due to their pluripotent differentiation potential and immunomodulatory function. Macrophage (Mφ) polarization also acts an essential and central role in regulating inflammation, basically the dynamic balance of pro-inflammatory M1-like (M1φ) and anti-inflammatory M2-like macrophages (M2φ), affecting the occurrence and progression of inflammatory diseases. Since a pivotal molecular crosstalk between MSCs and Mφ has been elucidated using in vitro and in vivo preclinical studies, we presume that the mesenchymal stem cell/macrophages axis (MSC/Mφ axis) acts an important role in pathophysiological mechanisms of inflammatory diseases and should be the potential therapeutic target. However, the crucial effects of EVs as intercellular communicators and therapeutic agents in the MSC/Mφ axis remains explorable. Therefore, this review elaborated on the mechanisms of EVs mediating the MSC/Mφ axis regulating inflammation in-depth, hoping to provide more references for related research in the future.
Collapse
Affiliation(s)
- Zhen Che
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Wenbin Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University (SYSU), Guangzhou 510120, China
| | - Qun Zhao
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| |
Collapse
|
8
|
Chen S, Ma T, Hu M, Li R, Lu D, Jin Y, Zhang M, Huang Y, Li Y, Liu T, Liu W. Common immunotoxicity mechanisms of hepatotoxicity induced by raw Polygonum multiflorum and Polygonum multiflorum praeparata: Inhibition of M2 macrophage polarization. Toxicon 2025; 257:108293. [PMID: 39999927 DOI: 10.1016/j.toxicon.2025.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
Macrophage polarization has been linked to hepatotoxicity induced by raw Polygonum multiflorum (RPM) and Polygonum multiflorum praeparata (PMP), but the regulatory mechanisms behind this remain unclear. This study aims to investigate the regulatory effects of RPM and PMP on M2 macrophages and the potential mechanisms. Sprague-Dawley rats were exposed to RPM and PMP under lipopolysaccharide (LPS) stimulation. RAW264.7 cells induced with IL-4 were treated with RPM and PMP. Under LPS stimulation, both RPM and PMP increased serum enzyme levels and pro-inflammatory factor levels and induced histopathological injury. M1 macrophage infiltration and M1 gene expression in the liver increased, whereas M2 macrophage infiltration and M2 gene expression decreased. RPM and PMP inhibited M2 gene expression and reduced green fluorescence intensity. RNA sequencing and metabolomics revealed that RPM regulated sphingolipid signaling and Janus kinase/signal transducer and activator of transcription signaling pathways, while PMP influenced arginine and proline metabolism, arginine biosynthesis, and cholesterol metabolism pathways. RPM and PMP orchestrate distinct signaling pathways, thereby inhibiting M2 macrophage polarization and inducing hepatotoxicity. This study not only elucidates the pathophysiology underlying RPM- and PMP-induced hepatotoxicity, but also provides insights for the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Shuaishuai Chen
- Guizhou Institute of Precision Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China; State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guian New Area, 561113, China; School of Pharmacy, Guizhou Medical University, Guian New Area, 561113, China
| | - Taotao Ma
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guian New Area, 561113, China; School of Pharmacy, Guizhou Medical University, Guian New Area, 561113, China
| | - Minmin Hu
- School of Pharmacy, Guizhou Medical University, Guian New Area, 561113, China
| | - Ruixi Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guian New Area, 561113, China
| | - Dingyan Lu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guian New Area, 561113, China
| | - Yang Jin
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guian New Area, 561113, China
| | - Mingliang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450003, China
| | - Yong Huang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guian New Area, 561113, China
| | - Yongjun Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guian New Area, 561113, China; School of Pharmacy, Guizhou Medical University, Guian New Area, 561113, China.
| | - Ting Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guian New Area, 561113, China; School of Pharmacy, Guizhou Medical University, Guian New Area, 561113, China.
| | - Wen Liu
- Guizhou Institute of Precision Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China; State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Guizhou Medical University, Guian New Area, 561113, China; School of Pharmacy, Guizhou Medical University, Guian New Area, 561113, China.
| |
Collapse
|
9
|
Li Y, Cai M, Qin Y, Dai X, Liang L, Li Z, Wen X, Jin H, Yang C, Chen Z. MTHFD2 promotes osteoclastogenesis and bone loss in rheumatoid arthritis by enhancing CKMT1-mediated oxidative phosphorylation. BMC Med 2025; 23:124. [PMID: 40016725 PMCID: PMC11866863 DOI: 10.1186/s12916-025-03945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by disrupted bone homeostasis. This study investigated the effect and underlying mechanisms of one-carbon metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) on osteoclast differentiation and bone loss in RA. METHODS The expression of MTHFD2 was examined in CD14 + monocytes and murine bone marrow-derived macrophages (BMMs). RNA-sequencing was performed to evaluate the regulatory mechanisms of MTHFD2 on osteoclastogenesis. Extracellular flux assay, JC-1 staining, and transmission electron microscopy were used to detect mitochondrial function and energy metabolism changes during osteoclast formation. Collagen-induced arthritis (CIA) mice were used to evaluate the therapeutic effect of MTHFD2 knockdown on bone loss. Bone volume and osteoclast counts were quantified by μCT and histomorphometry. RESULTS Elevated MTHFD2 was observed in RA patients and CIA mice with a positive correlation to bone resorption parameters. During osteoclast formation, MTHFD2 was significantly upregulated in both human CD14 + monocytes and murine BMMs. The application of MTHFD2 inhibitor and MTHFD2 knockdown suppressed osteoclastogenesis, while MTHFD2 overexpression promoted osteoclast differentiation in vitro. RNA-sequencing revealed that MTHFD2 inhibition blocked oxidative phosphorylation (OXPHOS) in osteoclasts, leading to decreased adenosine triphosphate (ATP) production and mitochondrial membrane potential without affecting mitochondrial biogenesis. Mechanistically, inhibition of MTHFD2 downregulated the expression of mitochondrial creatine kinase 1 (CKMT1), which in turn affected phosphocreatine energy shuttle and OXPHOS during osteoclastogenesis. Further, a therapeutic strategy to knock down MTHFD2 in knee joint in vivo ameliorated bone loss in CIA mice. CONCLUSIONS Our findings demonstrate that MTHFD2 is upregulated in RA with relation to joint destruction. MTHFD2 promotes osteoclast differentiation and arthritic bone erosion by enhancing mitochondrial energy metabolism through CKMT1. Thus, targeting MTHFD2 may provide a potential new therapeutic strategy for tackling osteoclastogenesis and bone loss in RA.
Collapse
Affiliation(s)
- Yujing Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Minglong Cai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yi Qin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xiaojuan Dai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Liyuan Liang
- The MED-X Institute, Center for Cancer Precision Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China
| | - Zhenyu Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xi Wen
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Huizhi Jin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Chao Yang
- Department of Rheumatology and Immunology and The MED-X institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China.
| | - Zhu Chen
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
10
|
Quan M, Zhang H, Deng X, Liu H, Xu Y, Song X. Neutrophils, NETs and multiple sclerosis: a mini review. Front Immunol 2025; 16:1487814. [PMID: 39935468 PMCID: PMC11810747 DOI: 10.3389/fimmu.2025.1487814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Multiple sclerosis (MS), a chronic inflammatory and degenerative autoimmune disease characterized by the activation of various inflammatory cells, leads to demyelination and neuronal injury. Neutrophils, often underestimated in MS, are gaining increased attention for their significant functions in MS patients and the experimental autoimmune encephalomyelitis (EAE) animal model. Neutrophils play multiple roles in mediating the pathogenesis of autoimmune diseases, and numerous studies suggest that neutrophils might have a crucial role through neutrophil extracellular trap (NET) formation. Studies on NETs in MS are still in their infancy. In this review, we discuss the clinical perspective on the linkage between neutrophils and MS or EAE, as well as the role of NETs in the pathogenesis of MS/EAE. Further, we analyze the potential mechanisms by which NETs contribute to MS, the protective effects of NETs in MS, and their value as targets for disease intervention. NET formation and/or clearance as a therapeutic approach for MS still requires research in greater depth.
Collapse
Affiliation(s)
- Moyuan Quan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| | - Huining Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiaohong Deng
- Department of Rehabilitation Medicine, Beijing Zhongguancun Hospital, Beijing, China
| | - Huijia Liu
- Department of Internal Medicine, The Military Special Care Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yanqiu Xu
- Department of Neurology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Xiujuan Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Liu Y, Deng H, Yao J, He C, Zhang J. The role of neutrophil extracellular traps in Crohn's disease. Heliyon 2024; 10:e40577. [PMID: 39654789 PMCID: PMC11625251 DOI: 10.1016/j.heliyon.2024.e40577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Crohn's disease (CD) is an idiopathic and chronic inflammation of the gastrointestinal (GI) tract. The underlying pathogenesis of CD is multifaceted, with complex interactions between genetic predisposition, environmental triggers, and abnormalities within the immune system. Neutrophil extracellular traps (NETs) have gained significant attention as a novel component in the pathogenesis of CD. NETs are intricate structures fashioned from DNA, histones, and granule proteins, and are actively released by neutrophils to entangle and eliminate pathogenic microbes. This review article delves into the intricate role of NETs in the pathogenesis of CD. We examine how NETs may serve as a pivotal mechanism for the recruitment of immune cells to the site of inflammation. NETs are known to influence the function of epithelial cells, which line the GI tract, potentially contributing to the structural integrity and barrier dysfunction observed in CD. NETs stimulate inflammation, a hallmark of the disease, by releasing pro-inflammatory molecules and activating immune cells. We also investigate the promising therapeutic potential of targeting NETs in CD. By intercepting the formation or function of NETs, it may be possible to mitigate the chronic inflammation, reduce tissue damage, and alleviate the symptoms associated with CD. Strategies to inhibit NET formation, such as the use of DNase I and approaches to disrupt NET-mediated signaling pathways, are discussed in CD therapeutics. Understanding the detailed mechanisms of NETs is crucial for the development of targeted treatments that could potentially revolutionize the management of CD.
Collapse
Affiliation(s)
- Ying Liu
- College of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Heng Deng
- Department of Anorectal Surgery, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jinfeng Yao
- Department of Internal Medicine, Anhui Hospital Affiliated Shanghai Shuguang Hospital, Hefei, Anhui, China
| | - Chunrong He
- Hefei Haiheng Health Service Center, Hefei, Anhui, China
| | - Jun Zhang
- College of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
12
|
Yang S, Li Y, Zhang Y, Wang Y. Impact of chronic stress on intestinal mucosal immunity in colorectal cancer progression. Cytokine Growth Factor Rev 2024; 80:24-36. [PMID: 39490234 DOI: 10.1016/j.cytogfr.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Chronic stress is a significant risk factor that contributes to the progression of colorectal cancer (CRC) and has garnered considerable attention in recent research. It influences the distribution and function of immune cells within the intestinal mucosa through the "brain-gut" axis, altering cytokine and chemokine secretion and creating an immunosuppressive tumor microenvironment. The intestine, often called the "second brain," is particularly susceptible to the effects of chronic stress. Cytokines and chemokines in intestinal mucosal immunity(IMI) are closely linked to CRC cells' proliferation, metastasis, and drug resistance under chronic stress. Recently, antidepressants have emerged as potential therapeutic agents for CRC, possibly by modulating IMI to restore homeostasis and exert anti-tumor effects. This article reviews the role of chronic stress in promoting CRC progression via its impact on intestinal mucosal immunity, explores potential targets within the intestinal mucosa under chronic stress, and proposes new approaches for CRC treatment.
Collapse
Affiliation(s)
- Shengya Yang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingru Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|