1
|
Tian L, Shi S, Zhang X, Han F, Dong H. Newest perspectives of glycopeptide antibiotics: biosynthetic cascades, novel derivatives, and new appealing antimicrobial applications. World J Microbiol Biotechnol 2023; 39:67. [PMID: 36593427 PMCID: PMC9807434 DOI: 10.1007/s11274-022-03512-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Glycopeptide antibiotics (GPAs) are a family of non-ribosomal peptide natural products with polypeptide skeleton characteristics, which are considered the last resort for treating severe infections caused by multidrug-resistant Gram-positive pathogens. Over the past few years, an increasing prevalence of Gram-positive resistant strain "superbugs" has emerged. Therefore, more efforts are needed to study and modify the GPAs to overcome the challenge of superbugs. In this mini-review, we provide an overview of the complex biosynthetic gene clusters (BGCs), the ingenious crosslinking and tailoring modifications, the new GPA derivatives, the discoveries of new natural GPAs, and the new applications of GPAs in antivirus and anti-Gram-negative bacteria. With the development and interdisciplinary integration of synthetic biology, next-generation sequencing (NGS), and artificial intelligence (AI), more GPAs with new chemical structures and action mechanisms will constantly be emerging.
Collapse
Affiliation(s)
- Li Tian
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Shi Shi
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Xiangmei Zhang
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Fubo Han
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Huijun Dong
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| |
Collapse
|
3
|
Bereczki I, Vimberg V, Lőrincz E, Papp H, Nagy L, Kéki S, Batta G, Mitrović A, Kos J, Zsigmond Á, Hajdú I, Lőrincz Z, Bajusz D, Petri L, Hodek J, Jakab F, Keserű GM, Weber J, Naesens L, Herczegh P, Borbás A. Semisynthetic teicoplanin derivatives with dual antimicrobial activity against SARS-CoV-2 and multiresistant bacteria. Sci Rep 2022; 12:16001. [PMID: 36163239 PMCID: PMC9511441 DOI: 10.1038/s41598-022-20182-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Patients infected with SARS-CoV-2 risk co-infection with Gram-positive bacteria, which severely affects their prognosis. Antimicrobial drugs with dual antiviral and antibacterial activity would be very useful in this setting. Although glycopeptide antibiotics are well-known as strong antibacterial drugs, some of them are also active against RNA viruses like SARS-CoV-2. It has been shown that the antiviral and antibacterial efficacy can be enhanced by synthetic modifications. We here report the synthesis and biological evaluation of seven derivatives of teicoplanin bearing hydrophobic or superbasic side chain. All but one teicoplanin derivatives were effective in inhibiting SARS-CoV-2 replication in VeroE6 cells. One lipophilic and three perfluoroalkyl conjugates showed activity against SARS-CoV-2 in human Calu-3 cells and against HCoV-229E, an endemic human coronavirus, in HEL cells. Pseudovirus entry and enzyme inhibition assays established that the teicoplanin derivatives efficiently prevent the cathepsin-mediated endosomal entry of SARS-CoV-2, with some compounds inhibiting also the TMPRSS2-mediated surface entry route. The teicoplanin derivatives showed good to excellent activity against Gram-positive bacteria resistant to all approved glycopeptide antibiotics, due to their ability to dually bind to the bacterial membrane and cell-wall. To conclude, we identified three perfluoralkyl and one monoguanidine analog of teicoplanin as dual inhibitors of Gram-positive bacteria and SARS-CoV-2.
Collapse
Affiliation(s)
- Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary.,National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary
| | - Vladimir Vimberg
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Eszter Lőrincz
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary.,Institute of Healthcare Industry, University of Debrecen, Debrecen, Nagyerdei körút 98, 4032, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary
| | - Henrietta Papp
- National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary.,Faculty of Sciences, Institute of Biology, University of Pécs, Pecs, Ifjúság útja 6, 7624, Hungary
| | - Lajos Nagy
- Department of Applied Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Sándor Kéki
- Department of Applied Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Áron Zsigmond
- TargetEx Ltd., Dunakeszi, Madách Imre utca 31/2, 2120, Hungary
| | - István Hajdú
- TargetEx Ltd., Dunakeszi, Madách Imre utca 31/2, 2120, Hungary
| | - Zsolt Lőrincz
- TargetEx Ltd., Dunakeszi, Madách Imre utca 31/2, 2120, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117, Hungary
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000, Prague 6, Czech Republic
| | - Ferenc Jakab
- National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary.,Faculty of Sciences, Institute of Biology, University of Pécs, Pecs, Ifjúság útja 6, 7624, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117, Hungary.
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000, Prague 6, Czech Republic
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium.
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary. .,National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary.
| |
Collapse
|
4
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
7
|
Shatalov DO, Kedik SA, Ivanov IS, Aydakova AV, Akhmedova DA, Minenkov DS, Beliakov SV, Herbst A, Greiner L, Kozlovskaya LI, Volok VP. Development of a Promising Method for Producing Oligomeric Mixture of Branched Alkylene Guanidines to Improve Substance Quality and Evaluate Their Antiviral Activity against SARS-CoV-2. Molecules 2021; 26:3472. [PMID: 34200418 PMCID: PMC8201297 DOI: 10.3390/molecules26113472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/19/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
This paper reports the synthesis of branched alkylene guanidines using microfluidic technologies. We describe the preparation of guanidine derivatives at lower temperatures, and with significantly less time than that required in the previously applicable method. Furthermore, the use of microfluidics allows the attainment of high-purity products with a low residual monomer content, which can expand the range of applications of this class of compounds. For all the samples obtained, the molecular-weight characteristics are calculated, based on which the optimal condensation conditions are established. Additionally, in this work, the antiviral activity of the alkylene guanidine salt against the SARS-CoV-2 virus is confirmed.
Collapse
Affiliation(s)
- Denis O. Shatalov
- Institute of Fine Chemical Technologies Named after Lomonosov, MIREA—Russian Technological University, 119571 Moscow, Russia; (D.O.S.); (S.A.K.); (I.S.I.); (A.V.A.); (S.V.B.)
| | - Stanislav A. Kedik
- Institute of Fine Chemical Technologies Named after Lomonosov, MIREA—Russian Technological University, 119571 Moscow, Russia; (D.O.S.); (S.A.K.); (I.S.I.); (A.V.A.); (S.V.B.)
| | - Ivan S. Ivanov
- Institute of Fine Chemical Technologies Named after Lomonosov, MIREA—Russian Technological University, 119571 Moscow, Russia; (D.O.S.); (S.A.K.); (I.S.I.); (A.V.A.); (S.V.B.)
| | - Anna V. Aydakova
- Institute of Fine Chemical Technologies Named after Lomonosov, MIREA—Russian Technological University, 119571 Moscow, Russia; (D.O.S.); (S.A.K.); (I.S.I.); (A.V.A.); (S.V.B.)
- Institute of Pharmaceutical Technology, 119571 Moscow, Russia
| | - Diana A. Akhmedova
- Institute of Fine Chemical Technologies Named after Lomonosov, MIREA—Russian Technological University, 119571 Moscow, Russia; (D.O.S.); (S.A.K.); (I.S.I.); (A.V.A.); (S.V.B.)
- Institute of Pharmaceutical Technology, 119571 Moscow, Russia
| | | | - Sergei V. Beliakov
- Institute of Fine Chemical Technologies Named after Lomonosov, MIREA—Russian Technological University, 119571 Moscow, Russia; (D.O.S.); (S.A.K.); (I.S.I.); (A.V.A.); (S.V.B.)
| | | | - Lasse Greiner
- Mannheim University of Applied Sciences, 68163 Mannheim, Germany;
| | - Liubov I. Kozlovskaya
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (L.I.K.); (V.P.V.)
- Institute of Translational Medicine and Biotechnology, Sechenov Moscow State Medical University, 117418 Moscow, Russia
| | - Viktor P. Volok
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (L.I.K.); (V.P.V.)
| |
Collapse
|