1
|
Montenegro MM, Camilotti D, Quaio CRDC, Gasparini Y, Zanardo ÉA, Rangel-Santos A, Novo-Filho GM, Francisco G, Liro L, Nascimento A, Chehimi SN, Soares DCQ, Krepischi ACV, Grassi MS, Honjo RS, Palmeira P, Kim CA, Carneiro-Sampaio MMS, Rosenberg C, Kulikowski LD. Expanding the Phenotype of 8p23.1 Deletion Syndrome: Eight New Cases Resembling the Clinical Spectrum of 22q11.2 Microdeletion. J Pediatr 2023; 252:56-60.e2. [PMID: 36067875 DOI: 10.1016/j.jpeds.2022.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE To report the effectiveness of early molecular diagnosis in the clinical management of rare diseases, presenting 8 patients with 8p23.1DS who have clinical features that overlap the phenotypic spectrum of 22q11.2DS. STUDY DESIGN This report is part of a previous study that aims to provide a precocious molecular diagnosis of the 22q11.2 deletion syndrome in 118 infants with congenital heart disease. To confirm the clinical diagnosis, patients underwent comparative genomic screening by the multiplex ligation-dependent probe amplification (MLPA) assay with the SALSA MLPA probemix kits P064-B2, P036-E1, P070-B2, P356-A1, and P250- B1. Subsequently, the patients performed the genomic microarray using the Infinium CytoSNP-850K BeadChip to confirm the deletion, determine the breakpoints of the deletion, and search for genomic copy number variations. RESULTS MLPA performed with 3 different kits revealed the 8p23.1 typical deletion involving the PPP1R3B, MSRA, and GATA4 genes in the 5 patients. The array analysis was performed on these 5 patients and 3 other patients (8 patients) who also had clinical suspicion of 22q11 deletion (8 patients) allowed a precise definition of the breakpoints and excluded other genomic abnormalities. CONCLUSIONS Cytogenomic screening was efficient in establishing a differential diagnosis and ruling out the presence of other concomitant syndromes. The clinical picture of the 8p23.1 deletion syndrome is challenging; however, cytogenomic tools can provide an exact diagnosis and help to clarify the genotype-phenotype complexity of these patients. Our reports underline the importance of early diagnosis and clinical follow-up of microdeletion syndromes.
Collapse
Affiliation(s)
- Marília Moreira Montenegro
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil; Laboratory of Medical Research in Pediatrics (LIM-36), Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil; Department of Pediatrics, Children's Institute, Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil.
| | - Débora Camilotti
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo (USP), Sao Paulo - SP, Brazil
| | | | - Yanca Gasparini
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Évelin Aline Zanardo
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Andreia Rangel-Santos
- Laboratory of Medical Research in Pediatrics (LIM-36), Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Gil Monteiro Novo-Filho
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Gleyson Francisco
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Lucas Liro
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Amom Nascimento
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Samar Nasser Chehimi
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Diogo Cordeiro Queiroz Soares
- Department of Pediatrics, Children's Institute, Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Ana C V Krepischi
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo (USP), Sao Paulo - SP, Brazil
| | - Marcília Sierro Grassi
- Department of Pediatrics, Children's Institute, Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Rachel Sayuri Honjo
- Genetics Unit, Department of Pediatrics, Children's Institute, Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Patricia Palmeira
- Laboratory of Medical Research in Pediatrics (LIM-36), Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Chong Ae Kim
- Genetics Unit, Department of Pediatrics, Children's Institute, Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Magda Maria Sales Carneiro-Sampaio
- Department of Pediatrics, Children's Institute, Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Carla Rosenberg
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo (USP), Sao Paulo - SP, Brazil
| | - Leslie Domenici Kulikowski
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| |
Collapse
|
2
|
THAWEESAPPHITHAK S, SAENGSIN J, KAMOLVISIT W, THEERAPANON T, PORNTAVEETUS T, SHOTELERSUK V. Cleidocranial dysplasia and novel RUNX2 variants: dental, craniofacial, and osseous manifestations. J Appl Oral Sci 2022; 30:e20220028. [PMID: 35674542 PMCID: PMC9239300 DOI: 10.1590/1678-7757-2022-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is a skeletal disorder affecting cranial sutures, teeth, and clavicles, and is associated with the
RUNX2
mutations. Although numerous patients have been described, a direct genotype–phenotype correlation for
RUNX2
has been difficult to establish. Further cases must be studied to understand the clinical and genetic spectra of CCD.
Collapse
Affiliation(s)
| | | | | | | | | | - Vorasuk SHOTELERSUK
- Chulalongkorn University, Thailand; King Chulalongkorn Memorial Hospital, Thailand
| |
Collapse
|
3
|
Paradise CR, Galvan ML, Pichurin O, Jerez S, Kubrova E, Dehghani SS, Carrasco ME, Thaler R, Larson AN, van Wijnen AJ, Dudakovic A. Brd4 is required for chondrocyte differentiation and endochondral ossification. Bone 2022; 154:116234. [PMID: 34700039 PMCID: PMC9014208 DOI: 10.1016/j.bone.2021.116234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
Differentiation of multi-potent mesenchymal stromal cells (MSCs) is directed by the activities of lineage-specific transcription factors and co-factors. A subset of these proteins controls the accessibility of chromatin by recruiting histone acetyl transferases or deacetylases that regulate acetylation of the N-termini of H3 and H4 histone proteins. Bromodomain (BRD) proteins recognize these acetylation marks and recruit the RNA pol II containing transcriptional machinery. Our previous studies have shown that Brd4 is required for osteoblast differentiation in vitro. Here, we investigated the role of Brd4 on endochondral ossification in C57BL/6 mice and chondrogenic differentiation in cell culture models. Conditional loss of Brd4 in the mesenchyme (Brd4 cKO, Brd4fl/fl: Prrx1-Cre) yields smaller mice that exhibit alteration in endochondral ossification. Importantly, abnormal growth plate morphology and delayed long bone formation is observed in juvenile Brd4 cKO mice. One week old Brd4 cKO mice have reduced proliferative and hypertrophic zones within the physis and exhibit a delay in the formation of the secondary ossification center. At the cellular level, Brd4 function is required for chondrogenic differentiation and maturation of both ATDC5 cells and immature mouse articular chondrocytes. Mechanistically, Brd4 loss suppresses Sox9 levels and reduces expression of Sox9 and Runx2 responsive endochondral genes (e.g., Col2a1, Acan, Mmp13 and Sp7/Osx). Collectively, our results indicate that Brd4 is a key epigenetic regulator required for normal chondrogenesis and endochondral ossification.
Collapse
Affiliation(s)
- Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sofia Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eva Kubrova
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Altered microRNAs in C3H10T1/2 cells induced by p.E95K mutant IHH signaling. Hereditas 2021; 158:48. [PMID: 34922634 PMCID: PMC8684136 DOI: 10.1186/s41065-021-00207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Background Indian Hedgehog (IHH), an important cell signaling protein, plays a key regulatory role in development of cartilage and chondrogenesis. Earlier studies have shown that heterozygous missense mutations in IHH gene may cause brachydactyly type A1 (BDA1), an autosomal dominant inheritance disease characterized by apparent shortness or absence of the middle phalanges of all digits. MicroRNAs (miRNAs) have been found to be significant post-transcriptional regulators of gene expression and significantly influence the process of bone-development. Therefore, it is possible that miRNAs are involved in the mechanism underlying the development of BDA1. However, the relationship between miRNAs and the pathogenesis of BDA1 remains unclear. Methods In this study, we used microarray-based miRNA profiling to investigate the role of miRNAs in BDA1 by characterization of differentially expressed miRNAs in C3H10T1/2 cell line induced by wild type (WT) and p.E95K mutant (MT) IHH signaling. Results Our results identified 6 differentially expressed miRNAs between WT and control (CT) group and 5 differentially expressed miRNAs between MT and CT groups. In particular, miR-135a-1-3p was found to be a significantly differentially expressed miRNA between WT and CT group. Results of dual-luciferase reporter gene experiment successfully discovered Hoxd10 was one of the target gene of miR-135a-1-3p. Additionally, our pathway analysis revealed that the targets of these miRNAs of interest were highly involved with Runx1/2, Notch and collagen-related pathways. Conclusions Taken together, our findings provided important clue for future study of the process of miRNA-regulation in IHH signaling and novel insights into the regulatory role of miRNA in pathogenesis of BDA1. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00207-8.
Collapse
|
5
|
Berkay EG, Elkanova L, Kalaycı T, Uludağ Alkaya D, Altunoğlu U, Cefle K, Mıhçı E, Nur B, Taşdelen E, Bayramoğlu Z, Karaman V, Toksoy G, Güneş N, Öztürk Ş, Palandüz Ş, Kayserili H, Tüysüz B, Uyguner ZO. Skeletal and molecular findings in 51 Cleidocranial dysplasia patients from Turkey. Am J Med Genet A 2021; 185:2488-2495. [PMID: 33987976 DOI: 10.1002/ajmg.a.62261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 04/04/2021] [Accepted: 04/22/2021] [Indexed: 11/07/2022]
Abstract
Loss or decrease of function in runt-related transcription factor 2 encoded by RUNX2 is known to cause a rare autosomal-dominant skeletal disorder, cleidocranial dysplasia (CCD). Clinical spectrum and genetic findings in 51 CCD patients from 30 unrelated families are herein presented. In a majority of the patients, facial abnormalities, such as delayed fontanel closure (89%), parietal and frontal bossing (80%), metopic groove (77%), midface hypoplasia (94%), and abnormal mobility of shoulders (90%), were recorded following clinical examination. In approximately one-half of the subjects, wormian bone (51%), short stature (43%), bell-shaped thorax (42%), wide pubic symphysis (50%), hypoplastic iliac wing (59%), and chef's hat sign (44%) presented in available radiological examinations. Scoliosis was identified in 28% of the patients. Investigation of RUNX2 revealed small sequence alterations in 90% and gross deletions in 10% of the patients; collectively, 23 variants including 11 novel changes (c.29_30insT, c.203delAinsCG, c.423 + 2delT, c.443_454delTACCAGATGGGAinsG, c.505C > T, c.594_595delCTinsG, c.636_637insC, c.685 + 5G > A, c.1088G > T, c.1281delC, Exon 6-9 deletion) presented high allelic heterogeneity. Novel c.29_30insT is unique in affecting the P1-driven long isoform of RUNX2, which is expected to disrupt the N-terminal region of RUNX2; this was shown in two unrelated phenotypically discordant patients. The clinical findings highlighted mild intra-familial genotype-phenotype correlation in our CCD cohort.
Collapse
Affiliation(s)
- Ezgi Gizem Berkay
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Leyla Elkanova
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Istanbul, Turkey
| | - Tuğba Kalaycı
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Istanbul, Turkey
| | - Umut Altunoğlu
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,Medical Genetics Department, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Kıvanç Cefle
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ercan Mıhçı
- Division of Medical Genetics, Department of Pediatrics, Akdeniz University Medical School, Antalya, Turkey
| | - Banu Nur
- Division of Medical Genetics, Department of Pediatrics, Akdeniz University Medical School, Antalya, Turkey
| | - Elifcan Taşdelen
- Department of Medical Genetics, School of Medicine, Ankara University, Ankara, Turkey
| | - Zuhal Bayramoğlu
- Department of Radiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Volkan Karaman
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Güven Toksoy
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Nilay Güneş
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Istanbul, Turkey
| | - Şükrü Öztürk
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Şükrü Palandüz
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Hülya Kayserili
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,Medical Genetics Department, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Istanbul, Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Li Y, Sun R, Zhao X, Sun B. RUNX2 promotes malignant progression in gastric cancer by regulating COL1A1. Cancer Biomark 2021; 31:227-238. [PMID: 33896817 DOI: 10.3233/cbm-200472] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Runt-related transcription factor 2 (RUNX2) is an important gene that has been implicated in the progression of human cancer. Aberrant expression of RUNX2 predicts gastric cancer (GC) metastasis. However, the molecular mechanism of RUNX2 remains unknown. OBJECTIVE We hypothesize that RUNX2 promotes GC metastasis by regulating the extracellular matrix component collagen type I alpha 1 (COL1A1). METHODS The GEPIA database and immunohistochemical staining of 60 GC tissues were used to analyse the correlations between RUNX2 or COL1A1 expression and clinicopathological features, and the Kaplan-Meier method was used to evaluate survival. RT-PCR, western blotting and immunofluorescence were used to detect RUNX2 and COL1A1 expression in GC cells. Migration and invasion assays were performed to assess the influence of RUNX2 and COL1A1 on metastasis. RESULTS RUNX2 and COL1A1 were highly expressed at both the gene and protein levels in GC, and patients who were positive for RUNX2 and COL1A1 had shorter survival. RUNX2 and COL1A1 expression linearly correlated with each other (r= 0.15, p< 0.01) and with clinical stage and lymph node metastasis (p< 0.05). Overexpressing RUNX2in vitro enhanced COL1A1 expression and promoted GC cell invasion and migration, whereas COL1A1 knockdown inhibited the increase in cell metastatic capacity promoted by RUNX2. In vivo, GC cells overexpressing RUNX2 promoted lung metastasis, and the downregulation of COL1A1 reduced the metastasis promoted by RUNX2. CONCLUSIONS RUNX2 may promote GC metastasis by regulating COL1A1. RUNX2/COL1A1 can be employed as a novel target for therapy in GC.
Collapse
Affiliation(s)
- Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Ran Sun
- Department of Gastrointestinal Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Guasto A, Cormier-Daire V. Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia. Int J Mol Sci 2021; 22:4321. [PMID: 33919228 PMCID: PMC8122623 DOI: 10.3390/ijms22094321] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Bone development is a tightly regulated process. Several integrated signaling pathways including HH, PTHrP, WNT, NOTCH, TGF-β, BMP, FGF and the transcription factors SOX9, RUNX2 and OSX are essential for proper skeletal development. Misregulation of these signaling pathways can cause a large spectrum of congenital conditions categorized as skeletal dysplasia. Since the signaling pathways involved in skeletal dysplasia interact at multiple levels and have a different role depending on the time of action (early or late in chondrogenesis and osteoblastogenesis), it is still difficult to precisely explain the physiopathological mechanisms of skeletal disorders. However, in recent years, significant progress has been made in elucidating the mechanisms of these signaling pathways and genotype-phenotype correlations have helped to elucidate their role in skeletogenesis. Here, we review the principal signaling pathways involved in bone development and their associated skeletal dysplasia.
Collapse
Affiliation(s)
- Alessandra Guasto
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
- Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, Service de Génétique Clinique, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
8
|
Shen L, Ma G, Shi Y, Ruan Y, Yang X, Wu X, Xiong Y, Wan C, Yang C, Cai L, Xiong L, Gong X, He L, Qin S. p.E95K mutation in Indian hedgehog causing brachydactyly type A1 impairs IHH/Gli1 downstream transcriptional regulation. BMC Genet 2019; 20:10. [PMID: 30651074 PMCID: PMC6335781 DOI: 10.1186/s12863-018-0697-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background Brachydactyly type A1 (BDA1, OMIM 112500) is a rare inherited malformation characterized primarily by shortness or absence of middle bones of fingers and toes. It is the first recorded disorder of the autosomal dominant Mendelian trait. Indian hedgehog (IHH) gene is closely associated with BDA1, which was firstly mapped and identified in Chinese families in 2000. Previous studies have demonstrated that BDA1-related mutant IHH proteins affected interactions with its receptors and impaired IHH signaling. However, how the altered signaling pathway affects downstream transcriptional regulation remains unclear. Results Based on the mouse C3H10T1/2 cell model for IHH signaling activation, two recombinant human IHH-N proteins, including a wild type protein (WT, amino acid residues 28–202) and a mutant protein (MT, p.E95k), were analyzed. We identified 347, 47 and 4 Gli1 binding sites in the corresponding WT, MT and control group by chromatin immunoprecipitation and the overlapping of these three sets was poor. The putative cis regulated genes in WT group were enriched in sensory perception and G-protein coupled receptor-signaling pathway. On the other hand, putative cis regulated genes were enriched in Runx2-related pathways in MT group. Differentially expressed genes in WT and MT groups indicated that the alteration of mutant IHH signaling involved cell-cell signaling and cellular migration. Cellular assay of migration and proliferation validated that the mutant IHH signaling impaired these two cellular functions. Conclusions In this study, we performed integrated genome-wide analyses to characterize differences of IHH/Gli1 downstream regulation between wild type IHH signaling and the E95K mutant signaling. Based on the cell model, our results demonstrated that the E95K mutant signaling altered Gli1-DNA binding pattern, impaired downstream gene expressions, and leaded to weakened cellular proliferation and migration. This study may help to deepen the understanding of pathogenesis of BDA1 and the role of IHH signaling in chondrogenesis. Electronic supplementary material The online version of this article (10.1186/s12863-018-0697-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Gang Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Ye Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuyu Xiong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Chao Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Lei Cai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Likuan Xiong
- Center Laboratory, Baoan Maternal and Children Healthcare Hospital, Shenzhen, China.,Key Laboratory of Birth Defects Research, Shenzhen, China.,Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Xueli Gong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China. .,Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China. .,Shanghai Center for Women and Children's Health, Shanghai, 200062, People's Republic of China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China. .,The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, People's Republic of China.
| |
Collapse
|