1
|
Nguyen NV, Lin JS, Parikh MJ, Cutri RM, Shibata SB. Targeted spiral ganglion neuron degeneration in parvalbumin-Cre neonatal mice. Mol Ther Methods Clin Dev 2025; 33:101440. [PMID: 40206512 PMCID: PMC11979521 DOI: 10.1016/j.omtm.2025.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/27/2025] [Indexed: 04/11/2025]
Abstract
The spiral ganglion neurons (SGNs) are the primary afferent neurons in the cochlea; damage to the SGNs leads to irreversible hearing impairment. Mouse models that allow selective SGN degeneration while sparing other cell types in the cochlea are lacking. Here, we investigated a genetic ablation method of the SGN using a Cre-responsive adeno-associated virus (AAV) vector expressing diphtheria toxin subunit-A (DTA). We microinjected AAV2-retro-FLEX-DTA-mCherry driven by the EF1a or hSYN promoter in neonatal parvalbumin-Cre (PVCre) and wild-type strains via the posterior semicircular canal. Apoptotic markers were observed in the degenerating SGNs as early as 3 days. After 1 week, we assessed the SGN cell density, revealing an average degeneration of 60% for AAV-DTA driven by the EF1a promoter and 61% for that driven by the hSYN promoter. By 1 month, injected ears demonstrated a nearly complete loss of SGN, while hair cell morphology was intact. The auditory brain stem response result showed significantly elevated threshold shifts at 1 month, while the distortion-product otoacoustic emissions function remained intact. Furthermore, we show that our method did not effectively ablate SGN in adult PVCre mice. We generated a neonatal mouse model with primary SGN degeneration in PVCre mice, mimicking auditory neuropathy phenotype using an AAV Cre-dependent expression of DTA.
Collapse
Affiliation(s)
- Nhi V. Nguyen
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Joshua S. Lin
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Miti J. Parikh
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Raffaello M. Cutri
- Department of Otolaryngology-Head and Neck Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Seiji B. Shibata
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Xie Q, Li K, Chen Y, Li Y, Jiang W, Cao W, Yu H, Fan D, Deng B. Gene therapy breakthroughs in ALS: a beacon of hope for 20% of ALS patients. Transl Neurodegener 2025; 14:19. [PMID: 40234983 PMCID: PMC12001736 DOI: 10.1186/s40035-025-00477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/05/2025] [Indexed: 04/17/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that remains incurable. Although the etiologies of ALS are diverse and the precise pathogenic mechanisms are not fully understood, approximately 20% of ALS cases are caused by genetic factors. Therefore, advancing targeted gene therapies holds significant promise, at least for the 20% of ALS patients with genetic etiologies. In this review, we summarize the main strategies and techniques of current ALS gene therapies based on ALS risk genes, and review recent findings from animal studies and clinical trials. Additionally, we highlight ALS-related genes with well-understood pathogenic mechanisms and the potential of numerous emerging gene-targeted therapeutic approaches for ALS.
Collapse
Affiliation(s)
- Qingjian Xie
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaojia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
| | - Wenhua Jiang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Huan Yu
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children'S Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Binbin Deng
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, China.
| |
Collapse
|
3
|
Wu F, Chen G, Hu R, Liu P, Lou J, Zhao W, He Z, Sha S, Zheng Y. AAVR Expression is Essential for AAV Vector Transduction in Sensory Hair Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2408873. [PMID: 39776318 DOI: 10.1002/advs.202408873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Adeno-associated virus (AAV) vectors are a leading platform for gene therapy. Recently, AAV-mediated gene therapy in the inner ear has progressed from laboratory use to clinical trials, but the lower transduction rates in outer hair cells (OHCs) in the organ of Corti and in vestibular hair cells in adult mice still pose a challenge. OHCs are particularly vulnerable to inner ear insults. In this study, we demonstrated that expression of a key AAV receptor (AAVR, Kiaa0319l, or Au040320) in OHCs and vestibular hair cells decreases significantly in mature mice and AAV particles directly interact with AAVR by forming complexes. Consequently, antibody blockage of AAVR significantly inhibits AAV transduction in sensory hair cells in cochlear explants. Moreover, use of AAVR knockout mice confirms inhibition of AAV transduction in sensory hair cells in vivo. Finally, conditional overexpression of AAVR in sensory hair cells of adult mice successfully restores AAV transduction efficiency in OHCs and vestibular hair cells. In conclusion, this strong evidence that AAVR is essential for AAV transduction in sensory hair cells will help to increase the efficacy of future gene therapy in inner ear.
Collapse
Affiliation(s)
- Fan Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516621, China
| | - Peiwen Liu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516621, China
| | - Jintao Lou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenji Zhao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Suhua Sha
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516621, China
| |
Collapse
|
4
|
Qi J, Fu X, Zhang L, Tan F, Li N, Sun Q, Hu X, He Z, Xia M, Chai R. Current AAV-mediated gene therapy in sensorineural hearing loss. FUNDAMENTAL RESEARCH 2025; 5:192-202. [PMID: 40166123 PMCID: PMC11955060 DOI: 10.1016/j.fmre.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The number of patients with hearing loss is on the rise due to congenital abnormalities, degenerative changes in old age, and acquired injuries such as virus or ototoxic drug-induced diseases. Hearing loss is a refractory and disabling disease that has serious negative effects on quality of life. The pathology of hearing loss in the inner ear is characterized by varying degrees of damage to the cochlear sensory epithelium cells (such as hair cells and supporting cells), stria vascularis (including marginal, intermediate and basal cells) and spiral ganglion neurons. Regeneration or direct repair of damaged cells in the inner ear is an effective way to treat sensorineural deafness. It is currently possible to regenerate hair cells to treat sensorineural hearing loss by FX-322, a small molecule drug in clinical trials. With the development of genetic engineering technology, gene therapy has brought a promising treatment strategy for many previously intractable diseases. Gene therapy has been regarded as a promising method in the treatment and rehabilitation of sensorineural hearing loss, and recombinant adeno-associated virus gene therapy has been widely used in fundamental research into hearing loss treatments. At present, gene therapy for hearing loss is transitioning from feasibility studies to explorations of its safety and its therapeutic potential. The present article reviews the concepts, strategies, and applications of gene therapy mediated by recombinant adeno-associated viruses in the field of hearing loss treatment.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Hearing and Balance Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China
| | - Xiaolong Fu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Qiuhan Sun
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xiaojie Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen 518063, China
| |
Collapse
|
5
|
Zhang L, Tan F, Qi J, Lu Y, Wang X, Yang X, Chen X, Zhang X, Fan J, Zhou Y, Peng L, Li N, Xu L, Yang S, Chai R. AAV-mediated Gene Therapy for Hereditary Deafness: Progress and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402166. [PMID: 39556694 DOI: 10.1002/advs.202402166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Indexed: 11/20/2024]
Abstract
Hereditary deafness is the most prevalent sensory deficit disorder, with over 100 identified deafness-related genes. Clinical treatment options are currently limited to external devices like hearing aids and cochlear implants. Gene therapy has shown promising results in various genetic disorders and has emerged as a potential treatment for hereditary deafness. It has successfully restored hearing function in >20 types of genetic deafness model mice and can almost completely cure patients with hereditary autosomal recessvie deafness 9 (DFNB9) caused by the OTOFERLIN (OTOF) mutation, thus serving as a translational paradigm for gene therapy for other forms of genetic deafness. However, due to the complexity of the inner ear structure, the diverse nature of deafness genes, and variations in transduction efficiency among different types of inner ear cells targeted by adeno-associated virus (AAV), precision gene therapy approaches are required for different genetic forms of deafness. This review provides a comprehensive overview of gene therapy for hereditary deafness, including preclinical studies and recent research advancements in this field as well as challenges associated with AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- State Key Laboratory of Hearing and Balance Science, Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yicheng Lu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiaohan Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xuehan Yang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiangyan Chen
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xinru Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jinyi Fan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Li Peng
- Otovia Therapeutics Inc., Suzhou, 215101, China
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China
| | - Shiming Yang
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- State Key Laboratory of Hearing and Balance Science, Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- University of Electronic Science and Technology of China, Chengdu, 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| |
Collapse
|
6
|
Munir A, Ali M, Qari SH, Munawar N, Saleem MS, Ahmad A. CRISPR workflow solutions: Cargos and versatile delivery platforms in genome editing. CRISPRIZED HORTICULTURE CROPS 2024:67-90. [DOI: 10.1016/b978-0-443-13229-2.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Wang J, Zheng J, Wang H, He H, Li S, Zhang Y, Wang Y, Xu X, Wang S. Gene therapy: an emerging therapy for hair cells regeneration in the cochlea. Front Neurosci 2023; 17:1177791. [PMID: 37207182 PMCID: PMC10188948 DOI: 10.3389/fnins.2023.1177791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Sensorineural hearing loss is typically caused by damage to the cochlear hair cells (HCs) due to external stimuli or because of one's genetic factors and the inability to convert sound mechanical energy into nerve impulses. Adult mammalian cochlear HCs cannot regenerate spontaneously; therefore, this type of deafness is usually considered irreversible. Studies on the developmental mechanisms of HC differentiation have revealed that nonsensory cells in the cochlea acquire the ability to differentiate into HCs after the overexpression of specific genes, such as Atoh1, which makes HC regeneration possible. Gene therapy, through in vitro selection and editing of target genes, transforms exogenous gene fragments into target cells and alters the expression of genes in target cells to activate the corresponding differentiation developmental program in target cells. This review summarizes the genes that have been associated with the growth and development of cochlear HCs in recent years and provides an overview of gene therapy approaches in the field of HC regeneration. It concludes with a discussion of the limitations of the current therapeutic approaches to facilitate the early implementation of this therapy in a clinical setting.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianwei Zheng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Wang
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoying He
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuang Li
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ya Zhang
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - You Wang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: You Wang,
| | - Xiaoxiang Xu
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Xiaoxiang Xu,
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Shuyi Wang,
| |
Collapse
|
8
|
Zhao Y, Zhang L, Wang D, Chen B, Shu Y. Approaches and Vectors for Efficient Cochlear Gene Transfer in Adult Mouse Models. Biomolecules 2022; 13:biom13010038. [PMID: 36671423 PMCID: PMC9855574 DOI: 10.3390/biom13010038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Inner ear gene therapy using adeno-associated viral vectors (AAVs) in neonatal mice can alleviate hearing loss in mouse models of deafness. However, efficient and safe transgene delivery to the adult mouse cochlea is critical for the effectiveness of AAV-mediated therapy. Here, we examined three gene delivery approaches including posterior semicircular canal (PSCC) canalostomy, round window membrane (RWM) injection, and tubing-RWM+PSCC (t-RP) in adult mice. Transduction rates and survival rates of cochlear hair cells were analyzed, hearing function was recorded, AAV distribution in the sagittal brain sections was evaluated, and cochlear histopathologic images were appraised. We found that an injection volume of 1 μL AAV through the PSCC is safe and highly efficient and does not impair hearing function in adult mice, but local injection allows AAV vectors to spread slightly into the brain. We then tested five AAV serotypes (PHP.eB, IE, Anc80L65, AAV2, and PHP.s) in parallel and observed the most robust eGFP expression in inner hair cells, outer hair cells, and spiral ganglion neurons throughout the cochlea after AAV-Anc80L65 injection. Thus, PSCC-injected Anc80L65 provides a foundation for gene therapy in the adult cochlea and will facilitate the development of inner ear gene therapy.
Collapse
Affiliation(s)
- Yu Zhao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Longlong Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Bing Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Correspondence: (B.C.); (Y.S.)
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Correspondence: (B.C.); (Y.S.)
| |
Collapse
|
9
|
Zhao X, Liu H, Liu H, Cai R, Wu H. Gene Therapy Restores Auditory Functions in an Adult Vglut3 Knockout Mouse Model. Hum Gene Ther 2022; 33:729-739. [PMID: 35726398 DOI: 10.1089/hum.2022.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy has been demonstrated to be extremely effective for treating genetic hearing loss over the past several years. However, successful gene therapies for hereditary deafness have not been well-studied in adult mice. To explore the possibility of gene therapy after peripheral auditory maturity, we used AAV8 to express Vglut3 in the cochleae of 5 w, 8 w, and 20 w Vglut3KO mice. Results indicated that AAV8-Vglut3 could mediate the exogenous expression of Vglut3 in all inner hair cells (IHCs). Auditory function was successfully restored, and the hearing threshold remained stable for at least 12 weeks after rescue. Moreover, the results revealed that the number of synaptic ribbons, as well as their morphology, were significantly recovered after gene therapy, potentially indicating the glutamate-dependent plasticity of IHCs. Taken together, our data introduces the possibility of gene therapy in adult mice and advances our knowledge of the role of Vglut3 in presynaptic plasticity.
Collapse
Affiliation(s)
- Xingle Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Department of Otolaryngology-Head and Neck Surgery, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai, China;
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai, China;
| | - Hongchao Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai, China;
| | - Ruijie Cai
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai, China;
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai, China;
| |
Collapse
|
10
|
Liu SS, Yang R. Inner Ear Drug Delivery for Sensorineural Hearing Loss: Current Challenges and Opportunities. Front Neurosci 2022; 16:867453. [PMID: 35685768 PMCID: PMC9170894 DOI: 10.3389/fnins.2022.867453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Most therapies for treating sensorineural hearing loss are challenged by the delivery across multiple tissue barriers to the hard-to-access anatomical location of the inner ear. In this review, we will provide a recent update on various pharmacotherapy, gene therapy, and cell therapy approaches used in clinical and preclinical studies for the treatment of sensorineural hearing loss and approaches taken to overcome the drug delivery barriers in the ear. Small-molecule drugs for pharmacotherapy can be delivered via systemic or local delivery, where the blood-labyrinth barrier hinders the former and tissue barriers including the tympanic membrane, the round window membrane, and/or the oval window hinder the latter. Meanwhile, gene and cell therapies often require targeted delivery to the cochlea, which is currently achieved via intra-cochlear or intra-labyrinthine injection. To improve the stability of the biomacromolecules during treatment, e.g., RNAs, DNAs, proteins, additional packing vehicles are often required. To address the diverse range of biological barriers involved in inner ear drug delivery, each class of therapy and the intended therapeutic cargoes will be discussed in this review, in the context of delivery routes commonly used, delivery vehicles if required (e.g., viral and non-viral nanocarriers), and other strategies to improve drug permeation and sustained release (e.g., hydrogel, nanocarriers, permeation enhancers, and microfluidic systems). Overall, this review aims to capture the important advancements and key steps in the development of inner ear therapies and delivery strategies over the past two decades for the treatment and prophylaxis of sensorineural hearing loss.
Collapse
Affiliation(s)
- Sophie S. Liu
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Rong Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Fajardo-Serrano A, Rico AJ, Roda E, Honrubia A, Arrieta S, Ariznabarreta G, Chocarro J, Lorenzo-Ramos E, Pejenaute A, Vázquez A, Lanciego JL. Adeno-Associated Viral Vectors as Versatile Tools for Neurological Disorders: Focus on Delivery Routes and Therapeutic Perspectives. Biomedicines 2022; 10:biomedicines10040746. [PMID: 35453499 PMCID: PMC9025350 DOI: 10.3390/biomedicines10040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
It is without doubt that the gene therapy field is currently in the spotlight for the development of new therapeutics targeting unmet medical needs. Thus, considering the gene therapy scenario, neurological diseases in general and neurodegenerative disorders in particular are emerging as the most appealing choices for new therapeutic arrivals intended to slow down, stop, or even revert the natural progressive course that characterizes most of these devastating neurodegenerative processes. Since an extensive coverage of all available literature is not feasible in practical terms, here emphasis was made in providing some advice to beginners in the field with a narrow focus on elucidating the best delivery route available for fulfilling any given AAV-based therapeutic approach. Furthermore, it is worth nothing that the number of ongoing clinical trials is increasing at a breath-taking speed. Accordingly, a landscape view of preclinical and clinical initiatives is also provided here in an attempt to best illustrate what is ongoing in this quickly expanding field.
Collapse
Affiliation(s)
- Ana Fajardo-Serrano
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (A.F.-S.); (J.L.L.)
| | - Alberto J. Rico
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Elvira Roda
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Adriana Honrubia
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Sandra Arrieta
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Goiaz Ariznabarreta
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Julia Chocarro
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Elena Lorenzo-Ramos
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Alvaro Pejenaute
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Alfonso Vázquez
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Department of Neurosurgery, Servicio Navarro de Salud, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - José Luis Lanciego
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (A.F.-S.); (J.L.L.)
| |
Collapse
|
12
|
Sun Z, Cheng Z, Gong N, Xu Z, Jin C, Wu H, Tao Y. Neural presbycusis at ultra-high frequency in aged common marmosets and rhesus monkeys. Aging (Albany NY) 2021; 13:12587-12606. [PMID: 33909598 PMCID: PMC8148503 DOI: 10.18632/aging.202936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The aging of the population and environmental noise have contributed to high rates of presbycusis, also known as age-related hearing loss (ARHL). Because mice have a relatively short life span, murine models have not been suitable for determining the mechanism of presbycusis development and methods of diagnosis. Although the common marmoset, a non-human primate (NHP), is an ideal animal model for studying age-related diseases, its auditory spectrum has not been systematically studied. Auditory brainstem responses (ABRs) from 38 marmosets of different ages demonstrated that auditory function correlated with age. Hearing loss in geriatric common marmosets started at ultra-high frequency (>16 kHz), then extended to lower frequencies. Despite age-related deterioration of ABR threshold and amplitude in marmosets, outer hair cell (OHC) function remained stable at all ages. Spiral ganglion neurons (SGNs), which are the first auditory neurons in the auditory system, were found to degenerate distinctly in aged common marmosets, indicating that neural degeneration caused presbycusis in these animals. Similarly, age-associated ABR deterioration without loss of OHC function was observed in another NHP, rhesus monkeys. Audiometry results from these two species of NHP suggested that NHPs were ideal for studying ARHL and that neural presbycusis at high frequency may be prevalent in primates.
Collapse
Affiliation(s)
- Zhuoer Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| | - Neng Gong
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhen Xu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| |
Collapse
|
13
|
Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021; 15:652215. [PMID: 33815052 PMCID: PMC8010260 DOI: 10.3389/fnins.2021.652215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
14
|
Valentini C, Szeto B, Kysar JW, Lalwani AK. Inner Ear Gene Delivery: Vectors and Routes. HEARING BALANCE AND COMMUNICATION 2020; 18:278-285. [PMID: 33604229 DOI: 10.1080/21695717.2020.1807261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives Current treatments for hearing loss offer some functional improvements in hearing, but do not restore normal hearing. The aim of this review is to highlight recent advances in viral and non-viral vectors for gene therapy and to discuss approaches for overcoming barriers inherent to inner ear delivery of gene products. Data Sources The databases used were Medline, EMBASE, Web of Science, and Google Scholar. Search terms were [("cochlea*" or "inner ear" or "transtympanic" or "intratympanic" or "intracochlear" or "hair cells" or "spiral ganglia" or "Organ of Corti") and ("gene therapy" or "gene delivery")]. The references section of resulting articles was also used to identify relevant studies. Results Both viral and non-viral vectors play important roles in advancing gene delivery to the inner ear. The round window membrane is one significant barrier to gene delivery that intratympanic delivery methods attempt to overcome through diffusion and intracochlear delivery methods bypass completely. Conclusions Gene therapy for hearing loss is a promising treatment for restoring hearing function by addressing innate defects. Recent technological advances in inner ear drug delivery techniques pose exciting opportunities for progress in gene therapy.
Collapse
Affiliation(s)
- Chris Valentini
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Betsy Szeto
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Jeffrey W Kysar
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY.,Department of Mechanical Engineering, School of Engineering, Columbia University, New York, New York
| | - Anil K Lalwani
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY.,Department of Mechanical Engineering, School of Engineering, Columbia University, New York, New York
| |
Collapse
|
15
|
Spotlight on gene therapy in China. Gene Ther 2020; 27:307-308. [PMID: 32728206 DOI: 10.1038/s41434-020-0184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022]
|
16
|
Zhao X, Jin C, Dong T, Sun Z, Zheng X, Feng B, Cheng Z, Li X, Tao Y, Wu H. Characterization of promoters for adeno-associated virus mediated efficient Cas9 activation in adult Cas9 knock-in murine cochleae. Hear Res 2020; 394:107999. [PMID: 32611519 DOI: 10.1016/j.heares.2020.107999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 11/27/2022]
Abstract
CRISPR/Cas9 gene editing enables the treatment of hearing loss in congenitally deaf neonatal mice via both viral and non-viral delivery. While adeno-associated virus (AAV)-mediated gene delivery systems have been shown to be effective tools for gene replacement in the inner ear, application of the AAV-mediated CRISPR/Cas9 gene-editing approach for this purpose is yet to be documented. Based on our previous findings, we focused on the effects of several AAVs delivered via canalostomy injection in adult mice. Among the AAVs examined, AAV8 showed the greatest efficiency and specificity in transducing inner hair cells (IHC). The ability of Cre-expressing AAV8 to activate Cas9 in floxed-Cas9 knock-in (Cas9 KI) mice was further evaluated. We compared the effects of six different promoters (CMV, CAG, hSyn, CaMKIIa, GFAP, and ALB) of AAV8 delivered to the inner ear of adult Cas9 KI mice. Our findings showed that three AAV groups (CMV, CAG and hSyn promoters) infected the inner ear efficiently with different tropisms. Notably, AAVs with CMV, CAG, and hSyn promoters infected diverse cell types in mature murine cochleae, including IHCs. In particular, AAV8-hSyn showed high affinity to IHCs and spiral ganglion neurons (SGN). Neither the AAV8 virus itself (except AAV8-CAG) nor the surgical procedures used caused damage to HCs or impaired normal hearing. Our findings indicated that injection of AAV-Cre into mature inner ear efficiently induces Cas9 activation to achieve safe and efficient gene editing and different constituent promoters confer diverse infection patterns in cochlea, expanding the repertoire of gene-editing tools for regulating gene expression in target cells of the inner ear as part of the collective effort to rescue genetic hearing loss and develop effective gene therapy techniques.
Collapse
Affiliation(s)
- Xingle Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Tingting Dong
- Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China; Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Zhuoer Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Baoyi Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Xiang Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, PR China; Ear Institute, Shanghai Jiaotong University School of Medicine, No.115, Jinzun Road, Shanghai, 200011, PR China; Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200011, PR China.
| |
Collapse
|