1
|
Zavvar M, Zargaran S, Baghdadi H, Poopak P, Poopak AH, Nabatchian F, Fatahi Y, Khosravipour G, Poopak B. Dihydrorhodamine-123 flow cytometry method: time for substantial revision in technical procedure. Lab Med 2025; 56:150-163. [PMID: 39244676 DOI: 10.1093/labmed/lmae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
The dihydrorhodamine 123 assay is generally applied to measure the production of intracellular reactive oxygen species in neutrophils using flow cytometry and is considered a diagnostic evaluation for chronic granulomatous disease. In fact, there is a broad range of variables that can directly or indirectly affect test results, either individually or collectively. It is therefore crucial to identify the ideal requirements to achieve reliable results as well as using these requirements to provide standard operating procedures that should be taken into account. Therefore, we focus on aligning optimum results by comparing preanalytical and analytical phases that influence test results, such as the effect of various anticoagulants, transport and maintaining temperature (24°C or 4°C) of samples, test prime run time, appropriate solution concentrations, and effect of incubation temperature (24°C or 37°C) during the test run.
Collapse
Affiliation(s)
- Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Payvand Clinical and Specialty Laboratory, Tehran, Iran
| | - Sina Zargaran
- Payvand Clinical and Specialty Laboratory, Tehran, Iran
- Faculty of Dentistry, University of Toronto, Ontario, Canada
| | - Hamed Baghdadi
- Payvand Clinical and Specialty Laboratory, Tehran, Iran
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Amir Hossein Poopak
- Payvand Clinical and Specialty Laboratory, Tehran, Iran
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Nabatchian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Behzad Poopak
- Payvand Clinical and Specialty Laboratory, Tehran, Iran
- Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| |
Collapse
|
2
|
Blanco E, Camps C, Bahal S, Kerai MD, Ferla MP, Rochussen AM, Handel AE, Golwala ZM, Spiridou Goncalves H, Kricke S, Klein F, Zhang F, Zinghirino F, Evans G, Keane TM, Lizot S, Kusters MA, Iro MA, Patel SV, Morris EC, Burns SO, Radcliffe R, Vasudevan P, Price A, Gillham O, Valdebenito GE, Stewart GS, Worth A, Adams SP, Duchen M, André I, Adams DJ, Santili G, Gilmour KC, Holländer GA, Davies EG, Taylor JC, Griffiths GM, Thrasher AJ, Dhalla F, Kreins AY. Dominant negative variants in ITPR3 impair T cell Ca2+ dynamics causing combined immunodeficiency. J Exp Med 2025; 222:e20220979. [PMID: 39560673 PMCID: PMC11577440 DOI: 10.1084/jem.20220979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/09/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
The importance of calcium (Ca2+) as a second messenger in T cell signaling is exemplified by genetic deficiencies of STIM1 and ORAI1, which abolish store-operated Ca2+ entry (SOCE) resulting in combined immunodeficiency (CID). We report five unrelated patients with de novo missense variants in ITPR3, encoding a subunit of the inositol 1,4,5-trisphosphate receptor (IP3R), which forms a Ca2+ channel in the endoplasmic reticulum (ER) membrane responsible for the release of ER Ca2+ required to trigger SOCE, and for Ca2+ transfer to other organelles. The patients presented with CID, abnormal T cell Ca2+ homeostasis, incompletely penetrant ectodermal dysplasia, and multisystem disease. Their predominant T cell immunodeficiency is characterized by significant T cell lymphopenia, defects in late stages of thymic T cell development, and impaired function of peripheral T cells, including inadequate NF-κB- and NFAT-mediated, proliferative, and metabolic responses to activation. Pathogenicity is not due to haploinsufficiency, rather ITPR3 protein variants interfere with IP3R channel function leading to depletion of ER Ca2+ stores and blunted SOCE in T cells.
Collapse
Affiliation(s)
- Elena Blanco
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Carme Camps
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sameer Bahal
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mohit D. Kerai
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Immunology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Matteo P. Ferla
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adam M. Rochussen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Adam E. Handel
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Zainab M. Golwala
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Helena Spiridou Goncalves
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Susanne Kricke
- SIHMDS-Haematology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fabian Klein
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Fang Zhang
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Federica Zinghirino
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Grace Evans
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Thomas M. Keane
- Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sabrina Lizot
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Maaike A.A. Kusters
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Mildred A. Iro
- Department of Paediatric Infectious Diseases and Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine and Institute of Life Sciences, University of Southampton, Southampton, UK
| | - Sanjay V. Patel
- Department of Paediatric Infectious Diseases and Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Emma C. Morris
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
- Institute for Immunity and Transplantation, University College London, London, UK
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
- Institute for Immunity and Transplantation, University College London, London, UK
| | - Ruth Radcliffe
- Department of Immunology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Pradeep Vasudevan
- Department of Clinical Genetics, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Arthur Price
- Department of Immunology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Olivia Gillham
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, London, UK
| | - Gabriel E. Valdebenito
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, London, UK
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Austen Worth
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stuart P. Adams
- SIHMDS-Haematology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Michael Duchen
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, London, UK
| | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | | | - Giorgia Santili
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Kimberly C. Gilmour
- Immunology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Georg A. Holländer
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - E. Graham Davies
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jenny C. Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gillian M. Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Adrian J. Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fatima Dhalla
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexandra Y. Kreins
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
3
|
Raimondi F, Siow KM, Wrona D, Fuster-García C, Pastukhov O, Schmitz M, Bargsten K, Kissling L, Swarts DC, Andrieux G, Cathomen T, Modlich U, Jinek M, Siler U, Reichenbach J. Gene editing of NCF1 loci is associated with homologous recombination and chromosomal rearrangements. Commun Biol 2024; 7:1291. [PMID: 39384978 PMCID: PMC11464842 DOI: 10.1038/s42003-024-06959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
CRISPR-based genome editing of pseudogene-associated disorders, such as p47phox-deficient chronic granulomatous disease (p47 CGD), is challenged by chromosomal rearrangements due to presence of multiple targets. We report that interactions between highly homologous sequences that are localized on the same chromosome contribute substantially to post-editing chromosomal rearrangements. We successfully employed editing approaches at the NCF1 gene and its pseudogenes, NCF1B and NCF1C, in a human cell line model of p47 CGD and in patient-derived human hematopoietic stem and progenitor cells. Upon genetic engineering, a droplet digital PCR-based method identified cells with altered copy numbers, spanning megabases from the edited loci. We attributed the high aberration frequency to the interaction between repetitive sequences and their predisposition to recombination events. Our findings emphasize the need for careful evaluation of the target-specific genomic context, such as the presence of homologous regions, whose instability can constitute a risk factor for chromosomal rearrangements upon genome editing.
Collapse
Affiliation(s)
- Federica Raimondi
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich (Schlieren Campus), Schlieren, Switzerland
| | - Kah Mun Siow
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich (Schlieren Campus), Schlieren, Switzerland
| | - Dominik Wrona
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich (Schlieren Campus), Schlieren, Switzerland
| | - Carla Fuster-García
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Oleksandr Pastukhov
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich (Schlieren Campus), Schlieren, Switzerland
| | - Michael Schmitz
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Katja Bargsten
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Lucas Kissling
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Daan C Swarts
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Geoffroy Andrieux
- Institute for Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ute Modlich
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich (Schlieren Campus), Schlieren, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Ulrich Siler
- School of Life Sciences, Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Janine Reichenbach
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich (Schlieren Campus), Schlieren, Switzerland.
- Department of Somatic Gene Therapy, University Children's Hospital Zurich, Zurich, Switzerland.
- The Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Siow KM, Güngör M, Wrona D, Raimondi F, Pastukhov O, Tsapogas P, Menzi T, Schmitz M, Kulcsár PI, Schwank G, Schulz A, Jinek M, Modlich U, Siler U, Reichenbach J. Targeted knock-in of NCF1 cDNA into the NCF2 locus leads to myeloid phenotypic correction of p47 phox -deficient chronic granulomatous disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102229. [PMID: 38952440 PMCID: PMC11215332 DOI: 10.1016/j.omtn.2024.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/22/2024] [Indexed: 07/03/2024]
Abstract
p47 phox -deficient chronic granulomatous disease (p47-CGD) is a primary immunodeficiency caused by mutations in the neutrophil cytosolic factor 1 (NCF1) gene, resulting in defective NADPH oxidase function in phagocytes. Due to its complex genomic context, the NCF1 locus is not suited for safe gene editing with current genome editing technologies. Therefore, we developed a targeted NCF1 coding sequence knock-in by CRISPR-Cas9 ribonucleoprotein and viral vector template delivery, to restore p47 phox expression under the control of the endogenous NCF2 locus. NCF2 encodes for p67 phox , an NADPH oxidase subunit that closely interacts with p47 phox and is predominantly expressed in myeloid cells. This approach restored p47 phox expression and NADPH oxidase function in p47-CGD patient hematopoietic stem and progenitor cells (HSPCs) and in p47 phox -deficient mouse HSPCs, with the transgene expression following a myeloid differentiation pattern. Adeno-associated viral vectors performed favorably over integration-deficient lentiviral vectors for template delivery, with fewer off-target integrations and higher correction efficacy in HSPCs. Such myeloid-directed gene editing is promising for clinical CGD gene therapy, as it leads to the co-expression of p47 phox and p67 phox , ensuring spatiotemporal and near-physiological transgene expression in myeloid cells.
Collapse
Affiliation(s)
- Kah Mun Siow
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Merve Güngör
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Dominik Wrona
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Federica Raimondi
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Oleksandr Pastukhov
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Panagiotis Tsapogas
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Timon Menzi
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Michael Schmitz
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Péter István Kulcsár
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, 89075 Ulm, Germany
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Ute Modlich
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Ulrich Siler
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
- School of Life Sciences, Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Janine Reichenbach
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
- Department of Somatic Gene Therapy, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Whittaker TE, Moula SE, Bahal S, Bakri FG, Hayajneh WA, Daoud AK, Naseem A, Cavazza A, Thrasher AJ, Santilli G. Multidimensional Response Surface Methodology for the Development of a Gene Editing Protocol for p67 phox-Deficient Chronic Granulomatous Disease. Hum Gene Ther 2024; 35:298-312. [PMID: 38062734 PMCID: PMC7615834 DOI: 10.1089/hum.2023.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Replacing a faulty gene with a correct copy has become a viable therapeutic option as a result of recent progress in gene editing protocols. Targeted integration of therapeutic genes in hematopoietic stem cells has been achieved for multiple genes using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system and Adeno-Associated Virus (AAV) to carry a donor template. Although this is a promising strategy to correct genetic blood disorders, it is associated with toxicity and loss of function in CD34+ hematopoietic stem and progenitor cells, which has hampered clinical application. Balancing the maximum achievable correction against deleterious effects on the cells is critical. However, multiple factors are known to contribute, and the optimization process is laborious and not always clearly defined. We have developed a flexible multidimensional Response Surface Methodology approach for optimization of gene correction. Using this approach, we could rapidly investigate and select editing conditions for CD34+ cells with the best possible balance between correction and cell/colony-forming unit (CFU) loss in a parsimonious one-shot experiment. This method revealed that using relatively low doses of AAV2/6 and CRISPR/Cas9 ribonucleoprotein complex, we can preserve the fitness of CD34+ cells and, at the same time, achieve high levels of targeted gene insertion. We then used these optimized editing conditions for the correction of p67phox-deficient chronic granulomatous disease (CGD), an autosomal recessive disorder of blood phagocytic cells resulting in severe recurrent bacterial and fungal infections and achieved rescue of p67phox expression and functional correction of CD34+-derived neutrophils from a CGD patient.
Collapse
Affiliation(s)
- Thomas E. Whittaker
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Shefta E Moula
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Sameer Bahal
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Faris Ghalib Bakri
- Division of Infectious Diseases, Department of Medicine, Jordan University Hospital, Amman, Jordan
- Infectious Diseases and Vaccine Center, University of Jordan, Amman, Jordan
| | - Wail Ahmad Hayajneh
- Division of Infectious Diseases, Department of Pediatrics, Jordan University of Science & Technology, Irbid, Jordan
| | - Ammar Khaled Daoud
- Division of Immunology, Department of Internal Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Asma Naseem
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, United Kingdom
| |
Collapse
|
6
|
Romano A, Mortellaro A. The New Frontiers of Gene Therapy and Gene Editing in Inflammatory Diseases. Hum Gene Ther 2024; 35:219-231. [PMID: 38323580 DOI: 10.1089/hum.2023.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Inflammatory diseases are conditions characterized by abnormal and often excessive immune responses, leading to tissue and organ inflammation. The complexity of these disorders arises from the intricate interplay of genetic factors and immune responses, which challenges conventional therapeutic approaches. However, the field of genetic manipulation has sparked unprecedented optimism in addressing these complex disorders. This review aims to comprehensively explore the application of gene therapy and gene editing in the context of inflammatory diseases, offering solutions that range from correcting genetic defects to precise immune modulation. These therapies have exhibited remarkable potential in ameliorating symptoms, improving quality of life, and even achieving disease remission. As we delve into recent breakthroughs and therapeutic applications, we illustrate how these advancements offer novel and transformative solutions for conditions that have traditionally eluded conventional treatments. By examining successful case studies and preclinical research, we emphasize the favorable results and substantial transformative impacts that gene-based interventions have demonstrated in patients and animal models of inflammatory diseases such as chronic granulomatous disease, cryopyrin-associated syndromes, and adenosine deaminase 2 deficiency, as well as those of multifactorial origins such as arthropathies (osteoarthritis, rheumatoid arthritis) and inflammatory bowel disease. In conclusion, gene therapy and gene editing offer transformative opportunities to address the underlying causes of inflammatory diseases, ushering in a new era of precision medicine and providing hope for personalized, targeted treatments.
Collapse
Affiliation(s)
- Alessandro Romano
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Lu B, Lim JM, Yu B, Song S, Neeli P, Sobhani N, K P, Bonam SR, Kurapati R, Zheng J, Chai D. The next-generation DNA vaccine platforms and delivery systems: advances, challenges and prospects. Front Immunol 2024; 15:1332939. [PMID: 38361919 PMCID: PMC10867258 DOI: 10.3389/fimmu.2024.1332939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Vaccines have proven effective in the treatment and prevention of numerous diseases. However, traditional attenuated and inactivated vaccines suffer from certain drawbacks such as complex preparation, limited efficacy, potential risks and others. These limitations restrict their widespread use, especially in the face of an increasingly diverse range of diseases. With the ongoing advancements in genetic engineering vaccines, DNA vaccines have emerged as a highly promising approach in the treatment of both genetic diseases and acquired diseases. While several DNA vaccines have demonstrated substantial success in animal models of diseases, certain challenges need to be addressed before application in human subjects. The primary obstacle lies in the absence of an optimal delivery system, which significantly hampers the immunogenicity of DNA vaccines. We conduct a comprehensive analysis of the current status and limitations of DNA vaccines by focusing on both viral and non-viral DNA delivery systems, as they play crucial roles in the exploration of novel DNA vaccines. We provide an evaluation of their strengths and weaknesses based on our critical assessment. Additionally, the review summarizes the most recent advancements and breakthroughs in pre-clinical and clinical studies, highlighting the need for further clinical trials in this rapidly evolving field.
Collapse
Affiliation(s)
- Bowen Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Ming Lim
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Boyue Yu
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Praveen Neeli
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Navid Sobhani
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Pavithra K
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rajendra Kurapati
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Arlabosse T, Booth C, Candotti F. Gene Therapy for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1592-1601. [PMID: 37084938 DOI: 10.1016/j.jaip.2023.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
In the early 1990s, gene therapy (GT) entered the clinical arena as an alternative to hematopoietic stem cell transplantation for forms of inborn errors of immunity (IEIs) that are not medically manageable because of their severity. In principle, the use of gene-corrected autologous hematopoietic stem cells presents several advantages over hematopoietic stem cell transplantation, including making donor searches unnecessary and avoiding the risks for graft-versus-host disease. In the past 30 years or more of clinical experience, the field has witnessed multiple examples of successful applications of GT to a number of IEIs, as well as some serious drawbacks, which have highlighted the potential genotoxicity of integrating viral vectors and stimulated important progress in the development of safer gene transfer tools. The advent of gene editing technologies promises to expand the spectrum of IEIs amenable to GT to conditions caused by mutated genes that require the precise regulation of expression or by dominant-negative variants. Here, we review the main concepts of GT as it applies to IEIs and the clinical results obtained to date. We also describe the challenges faced by this branch of medicine, which operates in the unprofitable sector of human rare diseases.
Collapse
Affiliation(s)
- Tiphaine Arlabosse
- Pediatric Immuno-Rheumatology of Western Switzerland, Division of Pediatrics, Women-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Sick Children NHS Foundation Trust, London, United Kingdom.
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Beaumel S, Verbrugge L, Fieschi F, Stasia MJ. CRISPR-gene-engineered CYBB knock-out PLB-985 cells, a useful model to study functional impact of X-linked chronic granulomatous disease mutations: application to the G412E X91+-CGD mutation. Clin Exp Immunol 2023; 212:156-165. [PMID: 36827093 PMCID: PMC10128165 DOI: 10.1093/cei/uxad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/24/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic granulomatous disease (CGD) is a rare primary immune disorder caused by mutations in one of the five subunits of the NADPH oxidase complex expressed in phagocytes. Two-thirds of CGD cases are caused by mutations in CYBB that encodes NOX2 or gp91phox. Some rare X91+-CGD point mutations lead to a loss of function but with a normal expression of the mutated NOX2 protein. It is therefore necessary to ensure that this mutation is indeed responsible for the loss of activity in order to make a safe diagnosis for genetic counselling. We previously used the X-CGD PLB-985 cell model of M.C. Dinauer obtained by homologous recombination in the original PLB-985 human myeloid cell line, in order to study the functional impact of such mutations. Although the PLB-985 cell line was originally described by K.A. Tucker et al. in1987 as a distinct cell line isolated from a patient with acute nonlymphocytic leukemia, it is actually identified as a subclone of the HL-60 cells. In order to use a cellular model that meets the quality standard for the functional study of X91+-CGD mutations in CGD diagnosis, we developed our own model using the CRISPR-Cas9 technology in a certified PLB-985 cell line from DSMZ-German Collection of Microorganisms and Cell Cultures. Thanks to this new X-CGD model, we demonstrated that the G412E mutation in NOX2 found in a X91+-CGD patient prohibits access of the electron donor NADPH to its binding site explaining the absence of superoxide production in his neutrophils.
Collapse
Affiliation(s)
- Sylvain Beaumel
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle Biologie, CDiReC, Grenoble, France
| | - Lucile Verbrugge
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle Biologie, CDiReC, Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
- Institut Universitaire de France (IUF), Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation, Paris, France
| | - Marie José Stasia
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle Biologie, CDiReC, Grenoble, France
- Univ. Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
10
|
Mudde A, Booth C. Gene therapy for inborn error of immunity - current status and future perspectives. Curr Opin Allergy Clin Immunol 2023; 23:51-62. [PMID: 36539381 DOI: 10.1097/aci.0000000000000876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Development of hematopoietic stem cell (HSC) gene therapy (GT) for inborn errors of immunity (IEIs) continues to progress rapidly. Although more patients are being treated with HSC GT based on viral vector mediated gene addition, gene editing techniques provide a promising new approach, in which transgene expression remains under the control of endogenous regulatory elements. RECENT FINDINGS Many gene therapy clinical trials are being conducted and evidence showing that HSC GT through viral vector mediated gene addition is a successful and safe curative treatment option for various IEIs is accumulating. Gene editing techniques for gene correction are, on the other hand, not in clinical use yet, despite rapid developments during the past decade. Current studies are focussing on improving rates of targeted integration, while preserving the primitive HSC population, which is essential for future clinical translation. SUMMARY As HSC GT is becoming available for more diseases, novel developments should focus on improving availability while reducing costs of the treatment. Continued follow up of treated patients is essential for providing information about long-term safety and efficacy. Editing techniques have great potential but need to be improved further before the translation to clinical studies can happen.
Collapse
Affiliation(s)
- Anne Mudde
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital, London, UK
| |
Collapse
|
11
|
Pinto MV, Neves JF. Precision medicine: The use of tailored therapy in primary immunodeficiencies. Front Immunol 2022; 13:1029560. [PMID: 36569887 PMCID: PMC9773086 DOI: 10.3389/fimmu.2022.1029560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies (PID) are rare, complex diseases that can be characterised by a spectrum of phenotypes, from increased susceptibility to infections to autoimmunity, allergy, auto-inflammatory diseases and predisposition to malignancy. With the introduction of genetic testing in these patients and wider use of next-Generation sequencing techniques, a higher number of pathogenic genetic variants and conditions have been identified, allowing the development of new, targeted treatments in PID. The concept of precision medicine, that aims to tailor the medical interventions to each patient, allows to perform more precise diagnosis and more importantly the use of treatments directed to a specific defect, with the objective to cure or achieve long-term remission, minimising the number and type of side effects. This approach takes particular importance in PID, considering the nature of causative defects, disease severity, short- and long-term complications of disease but also of the available treatments, with impact in life-expectancy and quality of life. In this review we revisit how this approach can or is already being implemented in PID and provide a summary of the most relevant treatments applied to specific diseases.
Collapse
Affiliation(s)
- Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- Centro de Investigação Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Quinta da Granja, Monte da Caparica, Caparica, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- CHRC, Comprehensive Health Research Centre, Nova Medical School, Lisbon, Portugal
| |
Collapse
|
12
|
XU L, SONG Q, OUYANG Z, ZHENG M, ZHANG X, ZHANG C. Efficacy of silymarin in treatment of COPD via P47phox signaling pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.52821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lin XU
- Guizhou University, China; Guizhou Provincial People’s Hospital, China
| | - Qingying SONG
- Guizhou College of Traditional Chinese Medicine, China
| | | | | | - Xiangyan ZHANG
- Guizhou University, China; Guizhou Provincial People’s Hospital, China
| | - Cheng ZHANG
- Guizhou University, China; Guizhou Provincial People’s Hospital, China
| |
Collapse
|
13
|
Schejtman A, Vetharoy W, Choi U, Rivat C, Theobald N, Piras G, Leon-Rico D, Buckland K, Armenteros-Monterroso E, Benedetti S, Ashworth MT, Rothe M, Schambach A, Gaspar HB, Kang EM, Malech HL, Thrasher AJ, Santilli G. Preclinical Optimization and Safety Studies of a New Lentiviral Gene Therapy for p47 phox-Deficient Chronic Granulomatous Disease. Hum Gene Ther 2021; 32:949-958. [PMID: 33740872 PMCID: PMC8575060 DOI: 10.1089/hum.2020.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic granulomatous disease (CGD) is an inherited blood disorder of phagocytic cells that renders patients susceptible to infections and inflammation. A recent clinical trial of lentiviral gene therapy for the most frequent form of CGD, X-linked, has demonstrated stable correction over time, with no adverse events related to the gene therapy procedure. We have recently developed a parallel lentiviral vector for p47phox-deficient CGD (p47phoxCGD), the second most common form of this disease. Using this vector, we have observed biochemical correction of CGD in a mouse model of the disease. In preparation for clinical trial approval, we have performed standardized preclinical studies following Good Laboratory Practice (GLP) principles, to assess the safety of the gene therapy procedure. We report no evidence of adverse events, including mutagenesis and tumorigenesis, in human hematopoietic stem cells transduced with the lentiviral vector. Biodistribution studies of transduced human CD34+ cells indicate that the homing properties or engraftment ability of the stem cells is not negatively affected. CD34+ cells derived from a p47phoxCGD patient were subjected to an optimized transduction protocol and transplanted into immunocompromised mice. After the procedure, patient-derived neutrophils resumed their function, suggesting that gene correction was successful. These studies pave the way to a first-in-man clinical trial of lentiviral gene therapy for the treatment of p47phoxCGD.
Collapse
Affiliation(s)
- Andrea Schejtman
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Winston Vetharoy
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine Rivat
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Narda Theobald
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Giuseppa Piras
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Diego Leon-Rico
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Karen Buckland
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Elena Armenteros-Monterroso
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sara Benedetti
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Michael T Ashworth
- Department of Histopathology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | | | - Elizabeth M Kang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Giorgia Santilli
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
14
|
Houghton BC, Booth C. Gene Therapy for Primary Immunodeficiency. Hemasphere 2021; 5:e509. [PMID: 33403354 PMCID: PMC7773329 DOI: 10.1097/hs9.0000000000000509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Over the past 3 decades, there has been significant progress in refining gene therapy technologies and procedures. Transduction of hematopoietic stem cells ex vivo using lentiviral vectors can now create a highly effective therapeutic product, capable of reconstituting many different immune system dysfunctions when reinfused into patients. Here, we review the key developments in the gene therapy landscape for primary immune deficiency, from an experimental therapy where clinical efficacy was marred by adverse events, to a commercialized product with enhanced safety and efficacy. We also discuss progress being made in preclinical studies for challenging disease targets and emerging gene editing technologies that are showing promising results, particularly for conditions where gene regulation is important for efficacy.
Collapse
Affiliation(s)
- Benjamin C. Houghton
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
15
|
Abstract
Primary immunodeficiencies (PIDs) are a group of rare inherited disorders of the immune system. Many PIDs are devastating and require a definitive therapy to prevent progressive morbidity and premature mortality. Allogeneic haematopoietic stem cell transplantation (alloHSCT) is curative for many PIDs, and while advances have resulted in improved outcomes, the procedure still carries a risk of mortality and morbidity from graft failure or graft-versus-host disease (GvHD). Autologous haematopoietic stem cell gene therapy (HSC GT) has the potential to correct genetic defects across haematopoietic lineages without the complications of an allogeneic approach. HSC GT for PID has been in development for the last two decades and the first licensed HSC-GT product for adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) is now available. New gene editing technologies have the potential to circumvent some of the problems associated with viral gene-addition. HSC GT for PID shows great promise, but requires a unique approach for each disease and carries risks, notably insertional mutagenesis from gamma-retroviral gene addition approaches and possible off-target toxicities from gene-editing techniques. In this review, we discuss the development of HSC GT for PID and outline the current state of clinical development before discussing future developments in the field.
Collapse
Affiliation(s)
- Thomas A Fox
- University College London (UCL) Institute of Immunity and Transplantation, UCL, London, UK.,Department of Clinical Haematology, UCL Hospitals NHS Foundation Trust, London, UK.,Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK.,Department of Paediatric Immunology, GOS Hospital for Sick Children NHS Foundation Trust, London, UK
| |
Collapse
|