1
|
Twomey JD, George S, Zhang B. Fc gamma receptor polymorphisms in antibody therapy: implications for bioassay development to enhance product quality. Antib Ther 2025; 8:87-98. [PMID: 40177643 PMCID: PMC11959696 DOI: 10.1093/abt/tbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 04/05/2025] Open
Abstract
The effectiveness of therapeutic antibodies is often associated with their Fc-mediated effector functions, such as antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. These functions rely on interactions between Fc gamma receptors (FcγRs) on immune cells and the Fc region of antibodies. Genetic variations in these receptors, known as FcγR polymorphisms, can influence therapeutic outcomes by altering receptor expression levels, affinity, and function. This review examines the impact of FcγR polymorphisms on antibody therapy, emphasizing their role in developing and optimizing functional bioassays to assess product quality. Understanding these polymorphisms is essential for refining bioassays, which are crucial for accurately characterizing antibody products and ensuring consistency in manufacturing processes.
Collapse
Affiliation(s)
- Julianne D Twomey
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Sasha George
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Baolin Zhang
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| |
Collapse
|
2
|
Maskalenko NA, Zahroun S, Tsygankova O, Anikeeva N, Sykulev Y, Campbell KS. The FcγRIIIA (CD16) L48-H/R Polymorphism Enhances NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity by Promoting Serial Killing. Cancer Immunol Res 2025; 13:417-429. [PMID: 39666369 PMCID: PMC11879761 DOI: 10.1158/2326-6066.cir-24-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/10/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
Many tumor-specific monoclonal antibody therapies stimulate antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells through FcγRIIIa (CD16). The efficacy of these ADCC-based immunotherapies is potentiated in patients with the common CD16 polymorphic variant F158-V that increases the binding affinity between the receptor and the IgG Fc domain. However, other CD16 variants are less well characterized. Here, we report that CD16 L48-H and L48-R variants both significantly enhance in vitro ADCC responses in primary NK cells and NK-92 cells. During ADCC responses, NK cells expressing CD16 48-H killed and disengaged from target cells faster than those expressing CD16 48-L, resulting in improved serial killing of tumor cells. We found that CD16 48-H also formed an immunologic synapse with a more compact interface, as well as more robust intracellular calcium signaling and quicker polarization of cytolytic vesicles. The ADCC response observed occurs due to increased cytolytic signaling and target cell disengagement, which drives NK cell-mediated serial killing of tumor cells. The L48-H/R polymorphism has potential to benefit patient responses to cancer antibody therapies and may also potentiate antitumor ADCC responses if incorporated into adoptive NK cell therapeutic platforms.
Collapse
Affiliation(s)
| | - Sam Zahroun
- Institute for Cancer Research, Fox Chase Cancer Center,
Philadelphia, PA USA 19111
| | - Oxana Tsygankova
- Department of Microbiology & Immunology, Sidney Kimmel
Medical College, Thomas Jefferson University, Philadelphia, PA USA 19107
| | - Nadia Anikeeva
- Department of Microbiology & Immunology, Sidney Kimmel
Medical College, Thomas Jefferson University, Philadelphia, PA USA 19107
| | - Yuri Sykulev
- Department of Microbiology & Immunology, Sidney Kimmel
Medical College, Thomas Jefferson University, Philadelphia, PA USA 19107
| | - Kerry S. Campbell
- Institute for Cancer Research, Fox Chase Cancer Center,
Philadelphia, PA USA 19111
| |
Collapse
|
3
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024; 328:65-97. [PMID: 39345014 PMCID: PMC11659932 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Edward J. Hollox
- Department of Genetics, Genomics and Cancer SciencesCollege of Life Sciences, University of LeicesterLeicesterUK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Jonathan C. Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
4
|
Freitas Monteiro M, Papaserafeim M, Andreani M, Réal A, Kouklas A, Reis Galvão D, Seebach JD, Puga Yung GL. NK Cytotoxicity Mediated by NK-92 Cell Lines Expressing Combinations of Two Allelic Variants for FCGR3. Antibodies (Basel) 2024; 13:55. [PMID: 39051331 PMCID: PMC11270249 DOI: 10.3390/antib13030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
Natural killer (NK) cells play an important role in the surveillance of viral infections and cancer. NK cell antibody-dependent cellular cytotoxicity (ADCC) and direct cytotoxicity are mediated by the recognition of antibody-coated target cells through the Fc gamma receptor IIIA (FcγRIIIa/CD16) and by ligands of activating/inhibitory NK receptors, respectively. Allelic variants of the FCGR3A gene include the high-affinity single-nucleotide polymorphism (SNP) rs396991 (V176F), which is associated with the efficacy of monoclonal antibody (mAb) therapies, and the SNP rs10127939 (L66H/R). The contribution of FCGR3A SNPs to NK cell effector functions remains controversial; therefore, we generated a panel of eight NK-92 cell lines expressing specific combinations of these SNPs and tested their cytotoxicities. NK-92 cells were stably transfected with plasmids containing different combinations of FCGR3A SNPs. Messenger RNA and FcγRIIIa/CD16 cell surface expressions were detected using new generation sequencing (NGS) and flow cytometry, respectively. All FcγRIIIa/CD16-transfected NK-92 cell lines exhibited robust ADCC against three different target cell lines with minor differences. In addition, enhanced direct NK cytotoxicity against K562 target cells was observed, suggesting a mechanistic role of FcγRIIIa/CD16 in direct NK cytotoxicity. In conclusion, we generated eight FcγRIIIa/CD16-transfected NK-92 cell lines carrying different combinations of two of the most studied FCGR3A SNPs, representing the major genotypes described in the European population. The functional characterization of these cell lines revealed differences in ADCC and direct NK cytotoxicity that may have implications for the design of adoptive cancer immunotherapies using NK cells and tumor antigen-directed mAbs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jörg D. Seebach
- Laboratory of Translational Immunology, Department of Medicine, Division of Immunology and Allergology, University Hospitals Geneva, Medical Faculty, CH-1211 Geneva, Switzerland
| | - Gisella L. Puga Yung
- Laboratory of Translational Immunology, Department of Medicine, Division of Immunology and Allergology, University Hospitals Geneva, Medical Faculty, CH-1211 Geneva, Switzerland
| |
Collapse
|
5
|
Coënon L, Villalba M. From CD16a Biology to Antibody-Dependent Cell-Mediated Cytotoxicity Improvement. Front Immunol 2022; 13:913215. [PMID: 35720368 PMCID: PMC9203678 DOI: 10.3389/fimmu.2022.913215] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) is a potent cytotoxic mechanism that is mainly mediated in humans by natural killer (NK) cells. ADCC mediates the clinical benefit of several widely used cytolytic monoclonal antibodies (mAbs), and increasing its efficacy would improve cancer immunotherapy. CD16a is a receptor for the Fc portion of IgGs and is responsible to trigger NK cell-mediated ADCC. The knowledge of the mechanism of action of CD16a gave rise to several strategies to improve ADCC, by working on either the mAbs or the NK cell. In this review, we give an overview of CD16a biology and describe the latest strategies employed to improve antibody-dependent NK cell cytotoxicity.
Collapse
Affiliation(s)
- Loïs Coënon
- Institute for Regenerative Medicine and Biotherapy (IRMB), Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- *Correspondence: Loïs Coënon,
| | - Martin Villalba
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- Institute for Regenerative Medicine and Biotherapy, Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Centre national de la recherche scientifique (CNRS), Centre hospitalier universitaire (CHU) Montpellier, Montpellier, France
| |
Collapse
|
6
|
Amiah MA, Ouattara A, Okou DT, N'Guetta SPA, Yavo W. Polymorphisms in Fc Gamma Receptors and Susceptibility to Malaria in an Endemic Population. Front Immunol 2020; 11:561142. [PMID: 33281811 PMCID: PMC7689034 DOI: 10.3389/fimmu.2020.561142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Repeated infections by Plasmodium falciparum result in a humoral response that could reduce disease symptoms and prevent the development of clinical malaria. The principal mechanism underlying this humoral response is that immunoglobulin G (IgG) binds directly to the parasites, thus causing their neutralization. However, the action of antibodies alone is not always sufficient to eliminate pathogens from an organism. One key element involved in the recognition of IgG that plays a crucial role in the destruction of the parasites responsible for spreading malaria is the family of Fc gamma receptors. These receptors are expressed on the surface of immune cells. Several polymorphisms have been detected in the genes encoding these receptors, associated with susceptibility or resistance to malaria in different populations. In this review, we describe identified polymorphisms within the family of Fc gamma receptors and the impact of these variations on the response of a host to infection as well as provide new perspectives for the design of an effective vaccine for malaria.
Collapse
Affiliation(s)
- Mireille Ahou Amiah
- Malaria Research and Control Center, National Public Health Institute, Abidjan, Côte d'Ivoire.,Laboratory of Genetics, Unité de Formation et de Recherche (UFR) BIOSCIENCES, Félix Houphouët-Boigny University, Abidjan, Côte d'Ivoire
| | - Amed Ouattara
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - David Tea Okou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Simon-Pierre Assanvo N'Guetta
- Laboratory of Genetics, Unité de Formation et de Recherche (UFR) BIOSCIENCES, Félix Houphouët-Boigny University, Abidjan, Côte d'Ivoire
| | - William Yavo
- Malaria Research and Control Center, National Public Health Institute, Abidjan, Côte d'Ivoire.,Department of Parasitology and Mycology, Faculty of Pharmacy, Félix Houphouët-Boigny University, Abidjan, Côte d'Ivoire
| |
Collapse
|
7
|
Paul P, Pedini P, Lyonnet L, Di Cristofaro J, Loundou A, Pelardy M, Basire A, Dignat-George F, Chiaroni J, Thomas P, Reynaud-Gaubert M, Picard C. FCGR3A and FCGR2A Genotypes Differentially Impact Allograft Rejection and Patients' Survival After Lung Transplant. Front Immunol 2019; 10:1208. [PMID: 31249568 PMCID: PMC6582937 DOI: 10.3389/fimmu.2019.01208] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Fc gamma receptors (FcγRs) play a major role in the regulation of humoral immune responses. Single-nucleotide polymorphisms (SNPs) of FCGR2A and FCGR3A can impact the expression level, IgG affinity and function of the CD32 and CD16 FcγRs in response to their engagement by the Fc fragment of IgG. The CD16 isoform encoded by FCGR3A [158V/V] controls the intensity of antibody-dependent cytotoxic alloimmune responses of natural killer cells (NK) and has been identified as a susceptibility marker predisposing patients to cardiac allograft vasculopathy after heart transplant. This study aimed to investigate whether FCGR2A and FCGR3A polymorphisms can also be associated with the clinical outcome of lung transplant recipients (LTRs). The SNPs of FCGR2A ([131R/H], rs1801274) and FCGR3A ([158V/F], rs396991) were identified in 158 LTRs and 184 Controls (CTL). The corresponding distribution of genotypic and allelic combinations was analyzed for potential links with the development of circulating donor-specific anti-HLA alloantibodies (DSA) detected at months 1 and 3 after lung transplant (LTx), the occurrence of acute rejection (AR) and chronic lung allograft dysfunction (CLAD), and the overall survival of LTRs. The FCGR3A [158V/V] genotype was identified as an independent susceptibility factor associated with higher rates of AR during the first trimester after LTx (HR 4.8, p < 0.0001, 95% CI 2.37-9.61), but it could not be associated with the level of CD16- mediated NK cell activation in response to the LTR's DSA, whatever the MFI intensity and C1q binding profiles of the DSA evaluated. The FCGR2A [131R/R] genotype was associated with lower CLAD-free survival of LTRs, independently of the presence of DSA at 3 months (HR 1.8, p = 0.024, 95% CI 1.08-3.03). Our data indicate that FCGR SNPs differentially affect the clinical outcome of LTRs and may be of use to stratify patients at higher risk of experiencing graft rejection. Furthermore, these data suggest that in the LTx setting, specific mechanisms of humoral alloreactivity, which cannot be solely explained by the complement and CD16-mediated pathogenic effects of DSA, may be involved in the development of acute and chronic lung allograft rejection.
Collapse
Affiliation(s)
- Pascale Paul
- Department of Hematology, Hopital de la Conception, INSERM CIC-1409, Assistance Publique-Hôpitaux Marseille (AP-HM), Marseille, France.,INSERM 1263, INRA, C2VN, Aix-Marseille Université (AMU), INSERM, Marseille, France
| | - Pascal Pedini
- Établissement Français du Sang PACA-Corse 13005, Marseille, France
| | - Luc Lyonnet
- Department of Hematology, Hopital de la Conception, INSERM CIC-1409, Assistance Publique-Hôpitaux Marseille (AP-HM), Marseille, France
| | - Julie Di Cristofaro
- "Biologie des Groupes Sanguins", UMR 7268 ADÉS Aix-Marseille Université/EFS/CNRS, Marseille, France
| | - Anderson Loundou
- Département de santé Publique - EA 3279, Assistance Publique-Hôpitaux Marseille (AP-HM), Aix-Marseille Université, Marseille, France
| | - Mathieu Pelardy
- Établissement Français du Sang PACA-Corse 13005, Marseille, France
| | - Agnes Basire
- Établissement Français du Sang PACA-Corse 13005, Marseille, France
| | - Françoise Dignat-George
- Department of Hematology, Hopital de la Conception, INSERM CIC-1409, Assistance Publique-Hôpitaux Marseille (AP-HM), Marseille, France.,INSERM 1263, INRA, C2VN, Aix-Marseille Université (AMU), INSERM, Marseille, France
| | - Jacques Chiaroni
- Établissement Français du Sang PACA-Corse 13005, Marseille, France.,"Biologie des Groupes Sanguins", UMR 7268 ADÉS Aix-Marseille Université/EFS/CNRS, Marseille, France
| | - Pascal Thomas
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, CHU Nord Assistance Publique-Hôpitaux Marseille (AP-HM), Aix-Marseille Université, Marseille, France
| | - Martine Reynaud-Gaubert
- Service de Pneumologie et Transplantation Pulmonaire, CHU Nord Assistance Publique-Hôpitaux Marseille (AP-HM) - IHU Méditerranée Infection Aix-Marseille-Université, Marseille, France
| | - Christophe Picard
- Établissement Français du Sang PACA-Corse 13005, Marseille, France.,"Biologie des Groupes Sanguins", UMR 7268 ADÉS Aix-Marseille Université/EFS/CNRS, Marseille, France
| |
Collapse
|
8
|
Heneberg P, Riegerová K, Říhová A, Šimčíková D, Kučera P. Updates on the surface antigens of basophils: CD16 on basophils of patients with respiratory or insect venom allergy and the rejection of CD203c and CD63 externalization decoupling by bisindolylmaleimides. Clin Exp Allergy 2018; 49:54-67. [PMID: 30288810 DOI: 10.1111/cea.13288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/06/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND CD16 was previously suggested to be a new marker of basophils that is subject to downregulation by FcεRI crosslinking. Certain compounds, including supraoptimal concentrations of the PKC inhibitors, bisindolylmaleimides, decouple the release of granules containing CD203c, CD63 and histamine, and may thus help to identify the mechanisms related to the CD16 externalization. OBJECTIVE We hypothesized that CD16 is differentially expressed on the surface of basophils in patients with birch pollen or insect venom allergy and is subject to a regulation in response to allergens. We also employed CD203c and CD63 externalization decoupling by bisindolylmaleimides. METHODS We performed a basophil activation test coupled with CD16 and histamine detection using cells isolated from patients with allergy to birch pollen or insect venom and negative controls. We employed two PKC inhibitors, bisindolylmaleimide II and Ro 31-8220 at their supraoptimal concentrations and, after difficulties reproducing previously published data, we analyzed the fluorescence of these inhibitors alone. We identified the CD16 isoforms by sequencing nested RT-PCR amplicons from flow cytometry sorted basophils and by cleaving the CD16b GPI anchor using a phospholipase C. RESULTS We provide the first evidence that CD16a is expressed as a surface antigen on a small subpopulation of human basophils in patients with respiratory and insect venom allergy, and this antigen shows increased surface expression following allergen challenge or FcεRI crosslinking. We rejected the apparent decoupling of the surface expression of basophil activation markers following the administration of bisindolylmaleimides. CONCLUSIONS & CLINICAL RELEVANCE The inclusion of αCD16 in negative selection cocktails selects against a subset of basophils that are CD16+ or CD16dim . Using CD16dim basophils and unstained leucocytes, we show that previous studies with supraoptimal concentrations of bisindolylmaleimides are likely flawed and are not associated with the differential expression of CD203c and CD63.
Collapse
Affiliation(s)
- Petr Heneberg
- 2nd Department of Internal Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Riegerová
- Department of Immunology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adéla Říhová
- Department of Immunology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniela Šimčíková
- 2nd Department of Internal Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Kučera
- Department of Immunology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|