1
|
Simoes-da-Silva MM, Barisic M. How does the tubulin code facilitate directed cell migration? Biochem Soc Trans 2025; 53:BST20240841. [PMID: 39998313 DOI: 10.1042/bst20240841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Besides being a component of the cytoskeleton that provides structural integrity to the cell, microtubules also serve as tracks for intracellular transport. As the building units of the mitotic spindle, microtubules distribute chromosomes during cell division. By distributing organelles, vesicles, and proteins, they play a pivotal role in diverse cellular processes, including cell migration, during which they reorganize to facilitate cell polarization. Structurally, microtubules are built up of α/β-tubulin dimers, which consist of various tubulin isotypes that undergo multiple post-translational modifications (PTMs). These PTMs allow microtubules to differentiate into functional subsets, influencing the associated processes. This text explores the current understanding of the roles of tubulin PTMs in cell migration, particularly detyrosination and acetylation, and their implications in human diseases.
Collapse
Affiliation(s)
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Teoh J, Bartolini F. Emerging roles for tubulin PTMs in neuronal function and neurodegenerative disease. Curr Opin Neurobiol 2025; 90:102971. [PMID: 39862522 PMCID: PMC11839326 DOI: 10.1016/j.conb.2025.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Neurons are equipped with microtubules of different stability with stable and dynamic domains often coexisting on the same microtubule. While dynamic microtubules undergo random transitions between disassembly and assembly, stable ones persist long enough to serve as platforms for tubulin-modifying enzymes (known as writers) that attach molecular components to the α- or β-tubulin subunits. The combination of these posttranslational modifications (PTMs) results in a "tubulin code," dictating the behavior of selected proteins (known as readers), some of which were shown to be crucial for neuronal function. Recent research has further highlighted that disturbances in tubulin PTMs can lead to neurodegeneration, sparking an emerging field of investigation with numerous questions such as whether and how tubulin PTMs can affect neurotransmission and synaptic plasticity and whether restoring balanced tubulin PTM levels could effectively prevent or mitigate neurodegenerative disease.
Collapse
Affiliation(s)
- JiaJie Teoh
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA.
| |
Collapse
|
3
|
Jang EH, Choi H, Hur EM. Microtubule function and dysfunction in the nervous system. Mol Cells 2024; 47:100111. [PMID: 39265797 PMCID: PMC11474369 DOI: 10.1016/j.mocell.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Microtubules are core components of the neuronal cytoskeleton, providing structural support for the complex cytoarchitecture of neurons and serving as tracks for long-distance transport. The properties and functions of neuronal microtubules are controlled by tubulin isoforms and a variety of post-translational modifications, collectively known as the "tubulin code." The tubulin code exerts direct control over the intrinsic properties of neuronal microtubules and regulates the repertoire of proteins that read the code, which in turn, has a significant impact on microtubule stability and dynamics. Here, we review progress in the understanding of the tubulin code in the nervous system, with a particular focus on tubulin post-translational modifications that have been proposed as potential contributors to the development and maintenance of the mammalian nervous system. Furthermore, we also discuss the potential links between disruptions in the tubulin code and neurological disorders, including neurodevelopmental abnormalities and neurodegenerative diseases.
Collapse
Affiliation(s)
- Eun-Hae Jang
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Comparative Medicine Disease Research Center, Seoul National University, Seoul, South Korea
| | - Harryn Choi
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; BK21 Four Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Eun-Mi Hur
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Comparative Medicine Disease Research Center, Seoul National University, Seoul, South Korea; BK21 Four Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
4
|
Bak J, Brummelkamp TR, Perrakis A. Decoding microtubule detyrosination: enzyme families, structures, and functional implications. FEBS Lett 2024; 598:1453-1464. [PMID: 38811347 DOI: 10.1002/1873-3468.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Microtubules are a major component of the cytoskeleton and can accumulate a plethora of modifications. The microtubule detyrosination cycle is one of these modifications; it involves the enzymatic removal of the C-terminal tyrosine of α-tubulin on assembled microtubules and the re-ligation of tyrosine on detyrosinated tubulin dimers. This modification cycle has been implicated in cardiac disease, neuronal development, and mitotic defects. The vasohibin and microtubule-associated tyrosine carboxypeptidase enzyme families are responsible for microtubule detyrosination. Their long-sought discovery allows to review and summarise differences and similarities between the two enzymes families and discuss how they interplay with other modifications and functions of the tubulin code.
Collapse
Affiliation(s)
- Jitske Bak
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Ziak J, Dorskind JM, Trigg B, Sudarsanam S, Jin XO, Hand RA, Kolodkin AL. Microtubule-binding protein MAP1B regulates interstitial axon branching of cortical neurons via the tubulin tyrosination cycle. EMBO J 2024; 43:1214-1243. [PMID: 38388748 PMCID: PMC10987652 DOI: 10.1038/s44318-024-00050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Regulation of directed axon guidance and branching during development is essential for the generation of neuronal networks. However, the molecular mechanisms that underlie interstitial (or collateral) axon branching in the mammalian brain remain unresolved. Here, we investigate interstitial axon branching in vivo using an approach for precise labeling of layer 2/3 callosal projection neurons (CPNs). This method allows for quantitative analysis of axonal morphology at high acuity and also manipulation of gene expression in well-defined temporal windows. We find that the GSK3β serine/threonine kinase promotes interstitial axon branching in layer 2/3 CPNs by releasing MAP1B-mediated inhibition of axon branching. Further, we find that the tubulin tyrosination cycle is a key downstream component of GSK3β/MAP1B signaling. These data suggest a cell-autonomous molecular regulation of cortical neuron axon morphology, in which GSK3β can release a MAP1B-mediated brake on interstitial axon branching upstream of the posttranslational tubulin code.
Collapse
Affiliation(s)
- Jakub Ziak
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Joelle M Dorskind
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
- Novartis Institutes for BioMedical Research, Boston, MA, USA
| | - Brian Trigg
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Sriram Sudarsanam
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Xinyu O Jin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Randal A Hand
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
- Prilenia Therapeutics, Boston, MA, USA
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Li X, Liang Z. Causal effect of gut microbiota on pancreatic cancer: A Mendelian randomization and colocalization study. J Cell Mol Med 2024; 28:e18255. [PMID: 38526030 PMCID: PMC10962122 DOI: 10.1111/jcmm.18255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
The causal relationship between gut microbiota (GM) and pancreatic cancer (PC) remains unclear. This study aimed to investigate the potential genes underlying this mechanism. GM Genome-wide association study (GWAS) summary data were from the MiBioGen consortium. PC GWAS data were from the National Human Genome Research Institute-European Bioinformatics Institute (NHGRI-EBI) GWAS Catalogue. To detect the causal relationship between GM and PC, we implemented three complementary Mendelian randomization (MR) methods: Inverse Variance Weighting (IVW), MR-Egger and Weighted Median, followed by sensitivity analyses. Furthermore, we integrated GM GWAS data with blood cis-expression quantitative trait loci (eQTLs) and blood cis-DNA methylation QTL (mQTLs) using Summary data-based Mendelian Randomization (SMR) methods. This integration aimed to prioritize potential GM-affecting genes through SMR analysis of two molecular traits. PC cis-eQTLs and cis-mQTLs were summarized from The Cancer Genome Atlas (TCGA) data. Through colocalization analysis of GM cis-QTLs and PC cis-QTLs data, we identified common genes that influence both GM and PC. Our study found a causal association between GM and PC, including four protective and five risk-associated GM [Inverse Variance Weighted (IVW), p < 0.05]. No significant heterogeneity of instrumental variables (IVs) or horizontal pleiotropy was found. The gene SVBP was identified as a GM-affecting gene using SMR analysis of two molecular traits (FDR<0.05, P_HEIDI>0.05). Additionally, two genes, MCM6 and RPS26, were implicated in the interaction between GM and PC based on colocalization analysis (PPH4>0.5). In summary, this study provides evidence for future research aimed at developing suitable therapeutic interventions and disease prevention.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, The First Affiliated HospitalGuangxi Medical UniversityNanningChina
| | - Zhihai Liang
- Department of Gastroenterology, The First Affiliated HospitalGuangxi Medical UniversityNanningChina
| |
Collapse
|
7
|
McKenna ED, Sarbanes SL, Cummings SW, Roll-Mecak A. The Tubulin Code, from Molecules to Health and Disease. Annu Rev Cell Dev Biol 2023; 39:331-361. [PMID: 37843925 DOI: 10.1146/annurev-cellbio-030123-032748] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Microtubules are essential dynamic polymers composed of α/β-tubulin heterodimers. They support intracellular trafficking, cell division, cellular motility, and other essential cellular processes. In many species, both α-tubulin and β-tubulin are encoded by multiple genes with distinct expression profiles and functionality. Microtubules are further diversified through abundant posttranslational modifications, which are added and removed by a suite of enzymes to form complex, stereotyped cellular arrays. The genetic and chemical diversity of tubulin constitute a tubulin code that regulates intrinsic microtubule properties and is read by cellular effectors, such as molecular motors and microtubule-associated proteins, to provide spatial and temporal specificity to microtubules in cells. In this review, we synthesize the rapidly expanding tubulin code literature and highlight limitations and opportunities for the field. As complex microtubule arrays underlie essential physiological processes, a better understanding of how cells employ the tubulin code has important implications for human disease ranging from cancer to neurological disorders.
Collapse
Affiliation(s)
- Elizabeth D McKenna
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Stephanie L Sarbanes
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Ziak J, Dorskind J, Trigg B, Sudarsanam S, Hand R, Kolodkin AL. MAP1B Regulates Cortical Neuron Interstitial Axon Branching Through the Tubulin Tyrosination Cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560024. [PMID: 37873083 PMCID: PMC10592918 DOI: 10.1101/2023.10.02.560024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Regulation of directed axon guidance and branching during development is essential for the generation of neuronal networks. However, the molecular mechanisms that underlie interstitial axon branching in the mammalian brain remain unresolved. Here, we investigate interstitial axon branching in vivo using an approach for precise labeling of layer 2/3 callosal projection neurons (CPNs), allowing for quantitative analysis of axonal morphology at high acuity and also manipulation of gene expression in well-defined temporal windows. We find that the GSK3β serine/threonine kinase promotes interstitial axon branching in layer 2/3 CPNs by releasing MAP1B-mediated inhibition of axon branching. Further, we find that the tubulin tyrosination cycle is a key downstream component of GSK3β/MAP1B signaling. We propose that MAP1B functions as a brake on axon branching that can be released by GSK3β activation, regulating the tubulin code and thereby playing an integral role in sculpting cortical neuron axon morphology.
Collapse
Affiliation(s)
- Jakub Ziak
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
| | - Joelle Dorskind
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
- Novartis Institutes for BioMedical Research, Boston, MA
| | - Brian Trigg
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
| | - Sriram Sudarsanam
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
| | - Randal Hand
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
- Prilenia Therapeutics, Boston, MA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
| |
Collapse
|
9
|
Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S. Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231155635. [PMID: 36844983 PMCID: PMC9944228 DOI: 10.1177/11795514231155635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder. The aim of the present investigation was to identify gene signature specific to T2DM. Methods The next generation sequencing (NGS) dataset GSE81608 was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA (micro RNA)-hub gene regulatory network construction and TF (transcription factor)-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the prognostic value of hub genes. Results A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins, and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1 were screened out as the critical genes. ROC analysis provides prognostic value of hub genes. Conclusion The potential crucial genes, especially APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, might be linked with risk of T2DM. Our study provided novel insights of T2DM into genetics, molecular pathogenesis, and novel therapeutic targets.
Collapse
Affiliation(s)
- Varun Alur
- Department of Endocrinology, J.J.M
Medical College, Davanagere, Karnataka, India
| | - Varshita Raju
- Department of Obstetrics and
Gynecology, J.J.M Medical College, Davanagere, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry,
K.L.E. College of Pharmacy, Gadag, Karnataka, India
| | | | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E.
College of Pharmacy, Belagavi, Karnataka, India
| | | |
Collapse
|
10
|
Pero ME, Chowdhury F, Bartolini F. Role of tubulin post-translational modifications in peripheral neuropathy. Exp Neurol 2023; 360:114274. [PMID: 36379274 PMCID: PMC11320756 DOI: 10.1016/j.expneurol.2022.114274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Peripheral neuropathy is a common disorder that results from nerve damage in the periphery. The degeneration of sensory axon terminals leads to changes or loss of sensory functions, often manifesting as debilitating pain, weakness, numbness, tingling, and disability. The pathogenesis of most peripheral neuropathies remains to be fully elucidated. Cumulative evidence from both early and recent studies indicates that tubulin damage may provide a common underlying mechanism of axonal injury in various peripheral neuropathies. In particular, tubulin post-translational modifications have been recently implicated in both toxic and inherited forms of peripheral neuropathy through regulation of axonal transport and mitochondria dynamics. This knowledge forms a new area of investigation with the potential for developing therapeutic strategies to prevent or delay peripheral neuropathy by restoring tubulin homeostasis.
Collapse
Affiliation(s)
- Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University, New York, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Farihah Chowdhury
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
11
|
Landskron L, Bak J, Adamopoulos A, Kaplani K, Moraiti M, van den Hengel LG, Song JY, Bleijerveld OB, Nieuwenhuis J, Heidebrecht T, Henneman L, Moutin MJ, Barisic M, Taraviras S, Perrakis A, Brummelkamp TR. Posttranslational modification of microtubules by the MATCAP detyrosinase. Science 2022; 376:eabn6020. [PMID: 35482892 DOI: 10.1126/science.abn6020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The detyrosination-tyrosination cycle involves the removal and religation of the C-terminal tyrosine of α-tubulin and is implicated in cognitive, cardiac, and mitotic defects. The vasohibin-small vasohibin-binding protein (SVBP) complex underlies much, but not all, detyrosination. We used haploid genetic screens to identify an unannotated protein, microtubule associated tyrosine carboxypeptidase (MATCAP), as a remaining detyrosinating enzyme. X-ray crystallography and cryo-electron microscopy structures established MATCAP's cleaving mechanism, substrate specificity, and microtubule recognition. Paradoxically, whereas abrogation of tyrosine religation is lethal in mice, codeletion of MATCAP and SVBP is not. Although viable, defective detyrosination caused microcephaly, associated with proliferative defects during neurogenesis, and abnormal behavior. Thus, MATCAP is a missing component of the detyrosination-tyrosination cycle, revealing the importance of this modification in brain formation.
Collapse
Affiliation(s)
- Lisa Landskron
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Jitske Bak
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Athanassios Adamopoulos
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Konstantina Kaplani
- Department of Physiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Maria Moraiti
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Lisa G van den Hengel
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Ji-Ying Song
- Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Joppe Nieuwenhuis
- Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, Netherlands
| | - Tatjana Heidebrecht
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Linda Henneman
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Marie-Jo Moutin
- Université Grenoble Alpes, INSERM, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), 2100 Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Anastassis Perrakis
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, Netherlands
| |
Collapse
|
12
|
Mathias TJ, Ju JA, Lee RM, Thompson KN, Mull ML, Annis DA, Chang KT, Ory EC, Stemberger MB, Hotta T, Ohi R, Vitolo MI, Moutin MJ, Martin SS. Tubulin Carboxypeptidase Activity Promotes Focal Gelatin Degradation in Breast Tumor Cells and Induces Apoptosis in Breast Epithelial Cells That Is Overcome by Oncogenic Signaling. Cancers (Basel) 2022; 14:1707. [PMID: 35406479 PMCID: PMC8996877 DOI: 10.3390/cancers14071707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Post-translational modifications (PTMs) of the microtubule network impart differential functions across normal cell types and their cancerous counterparts. The removal of the C-terminal tyrosine of α-tubulin (deTyr-Tub) as performed by the tubulin carboxypeptidase (TCP) is of particular interest in breast epithelial and breast cancer cells. The recent discovery of the genetic identity of the TCP to be a vasohibin (VASH1/2) coupled with a small vasohibin-binding protein (SVBP) allows for the functional effect of this tubulin PTM to be directly tested for the first time. Our studies revealed the immortalized breast epithelial cell line MCF10A undergoes apoptosis following transfection with TCP constructs, but the addition of oncogenic KRas or Bcl-2/Bcl-xL overexpression prevents subsequent apoptotic induction in the MCF10A background. Functionally, an increase in deTyr-Tub via TCP transfection in MDA-MB-231 and Hs578t breast cancer cells leads to enhanced focal gelatin degradation. Given the elevated deTyr-Tub at invasive tumor fronts and the correlation with poor breast cancer survival, these new discoveries help clarify how the TCP synergizes with oncogene activation, increases focal gelatin degradation, and may correspond to increased tumor cell invasion. These connections could inform more specific microtubule-directed therapies to target deTyr-tubulin.
Collapse
Affiliation(s)
- Trevor J. Mathias
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
- Medical Scientist Training Program (MSTP), University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Julia A. Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Rachel M. Lee
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Keyata N. Thompson
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Makenzy L. Mull
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - David A. Annis
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Epidemiology and Human Genetics, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Katarina T. Chang
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Eleanor C. Ory
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Megan B. Stemberger
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Biochemistry & Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; (T.H.); (R.O.)
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; (T.H.); (R.O.)
| | - Michele I. Vitolo
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Marie-Jo Moutin
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France;
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Bär J, Popp Y, Bucher M, Mikhaylova M. Direct and indirect effects of tubulin post-translational modifications on microtubule stability: Insights and regulations. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119241. [PMID: 35181405 DOI: 10.1016/j.bbamcr.2022.119241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
Abstract
Microtubules (MTs) mediate various cellular functions such as structural support, chromosome segregation, and intracellular transport. To achieve this, the pivotal properties of MTs have to be changeable and tightly controlled. This is enabled by a high variety of tubulin posttranslational modifications, which influence MT properties directly, via altering the MT lattice structurally, or indirectly by changing MT interaction partners. Here, the distinction between these direct and indirect effects of MT PTMs are exemplified by acetylation of the luminal α-tubulin K40 resulting in decreased rigidity of MTs, and by MT detyrosination which decreases interaction with depolymerizing proteins, thus causing more stable MTs. We discuss how these PTMs are reversed and regulated, e.g. on the level of enzyme transcription, localization, and activity via various signalling pathways including the conventional calcium-dependent proteases calpains and how advances in microscopy techniques and development of live-sensors facilitate the understanding of MT PTM interaction and effects.
Collapse
Affiliation(s)
- Julia Bär
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Yannes Popp
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Michael Bucher
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Marina Mikhaylova
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
14
|
Peris L, Parato J, Qu X, Soleilhac JM, Lanté F, Kumar A, Pero ME, Martínez-Hernández J, Corrao C, Falivelli G, Payet F, Gory-Fauré S, Bosc C, Blanca Ramirez M, Sproul A, Brocard J, Di Cara B, Delagrange P, Buisson A, Goldberg Y, Moutin MJ, Bartolini F, Andrieux A. OUP accepted manuscript. Brain 2022; 145:2486-2506. [PMID: 35148384 PMCID: PMC9337816 DOI: 10.1093/brain/awab436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/04/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL). Here we show that TTL heterozygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density and both synaptic plasticity and memory deficits. We further report decreased TTL expression in sporadic and familial Alzheimer’s disease, and reduced microtubule dynamics in human neurons harbouring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid-β peptide toxicity and that expression of TTL, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid-β peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid-β peptide-induced synaptic damage and that this balance is lost in Alzheimer’s disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer’s disease.
Collapse
Affiliation(s)
- Leticia Peris
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Julie Parato
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Natural Sciences, SUNY ESC, Brooklyn, NY 11201, USA
| | - Xiaoyi Qu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jean Marc Soleilhac
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Fabien Lanté
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Atul Kumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - José Martínez-Hernández
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Charlotte Corrao
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Giulia Falivelli
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Floriane Payet
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marian Blanca Ramirez
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jacques Brocard
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | | | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Yves Goldberg
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marie Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| |
Collapse
|
15
|
Sanyal C, Pietsch N, Ramirez Rios S, Peris L, Carrier L, Moutin MJ. The detyrosination/re-tyrosination cycle of tubulin and its role and dysfunction in neurons and cardiomyocytes. Semin Cell Dev Biol 2021; 137:46-62. [PMID: 34924330 DOI: 10.1016/j.semcdb.2021.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022]
Abstract
Among the variety of post-translational modifications to which microtubules are subjected, the detyrosination/re-tyrosination cycle is specific to tubulin. It is conserved by evolution and characterized by the enzymatic removal and re-addition of a gene-encoded tyrosine residue at the C-terminus of α-tubulin. Detyrosinated tubulin can be further converted to Δ2-tubulin by the removal of an additional C-terminal glutamate residue. Detyrosinated and Δ2-tubulin are carried by stable microtubules whereas tyrosinated microtubules are present on dynamic polymers. The cycle regulates trafficking of many cargo transporting molecular motors and is linked to the microtubule dynamics via regulation of microtubule interactions with specific cellular effectors such as kinesin-13. Here, we give an historical overview of the general features discovered for the cycle. We highlight the recent progress toward structure and functioning of the enzymes that keep the levels of tyrosinated and detyrosinated tubulin in cells, the long-known tubulin tyrosine ligase and the recently discovered vasohibin-SVBP complexes. We further describe how the cycle controls microtubule functions in healthy neurons and cardiomyocytes and how deregulations of the cycle are involved in dysfunctions of these highly differentiated cells, leading to neurodegeneration and heart failure in humans.
Collapse
Affiliation(s)
- Chadni Sanyal
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Niels Pietsch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sacnicte Ramirez Rios
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Leticia Peris
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Marie-Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
16
|
Bodakuntla S, Janke C, Magiera MM. Tubulin polyglutamylation, a regulator of microtubule functions, can cause neurodegeneration. Neurosci Lett 2021; 746:135656. [PMID: 33482309 DOI: 10.1016/j.neulet.2021.135656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases lead to a progressive demise of neuronal functions that ultimately results in neuronal death. Besides a large variety of molecular pathways that have been linked to the degeneration of neurons, dysfunctions of the microtubule cytoskeleton are common features of many human neurodegenerative disorders. Yet, it is unclear whether microtubule dysfunctions are causative, or mere bystanders in the disease progression. A so-far little explored regulatory mechanism of the microtubule cytoskeleton, the posttranslational modifications of tubulin, emerge as candidate mechanisms involved in neuronal dysfunction, and thus, degeneration. Here we review the role of tubulin polyglutamylation, a prominent modification of neuronal microtubules. We discuss the current understanding of how polyglutamylation controls microtubule functions in healthy neurons, and how deregulation of this modification leads to neurodegeneration in mice and humans.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| |
Collapse
|
17
|
van der Laan S, Lévêque MF, Marcellin G, Vezenkov L, Lannay Y, Dubra G, Bompard G, Ovejero S, Urbach S, Burgess A, Amblard M, Sterkers Y, Bastien P, Rogowski K. Evolutionary Divergence of Enzymatic Mechanisms for Tubulin Detyrosination. Cell Rep 2020; 29:4159-4171.e6. [PMID: 31851940 DOI: 10.1016/j.celrep.2019.11.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/10/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
The two related members of the vasohibin family, VASH1 and VASH2, encode human tubulin detyrosinases. Here we demonstrate that, in contrast to VASH1, which requires binding of small vasohibin binding protein (SVBP), VASH2 has autonomous tubulin detyrosinating activity. Moreover, we demonstrate that SVBP acts as a bona fide activator of both enzymes. Phylogenetic analysis of the vasohibin family revealed that regulatory diversification of VASH-mediated tubulin detyrosination coincided with early vertebrate evolution. Thus, as a model organism for functional analysis, we used Trypanosoma brucei (Tb), an evolutionarily early-branched eukaryote that possesses a single VASH and encodes a terminal tyrosine on both α- and β-tubulin tails, both subject to removal. Remarkably, although detyrosination levels are high in the flagellum, TbVASH knockout parasites did not present any noticeable flagellar abnormalities. In contrast, we observed reduced proliferation associated with profound morphological and mitotic defects, underscoring the importance of tubulin detyrosination in cell division.
Collapse
Affiliation(s)
- Siem van der Laan
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France.
| | - Maude F Lévêque
- Université Montpellier-CNRS, "MiVEGEC," Faculté de Medicine and Centre Hospitalier Universitaire, 39 avenue Charles Flahault, 34295 Montpellier Cedex 5, France.
| | - Guillaume Marcellin
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Lubomir Vezenkov
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS-Université Montpellier-ENSCM, 34093 Montpellier Cedex 5, France
| | - Yoann Lannay
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Geronimo Dubra
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Guillaume Bompard
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Sara Ovejero
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Serge Urbach
- Functional Proteomics Platform (FPP), IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Andrew Burgess
- ANZAC Research Institute, Gate 3 Hospital Rd., Concord, Sydney, NSW 2139, Australia; The University of Sydney Concord Clinical School, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS-Université Montpellier-ENSCM, 34093 Montpellier Cedex 5, France
| | - Yvon Sterkers
- Université Montpellier-CNRS, "MiVEGEC," Faculté de Medicine and Centre Hospitalier Universitaire, 39 avenue Charles Flahault, 34295 Montpellier Cedex 5, France
| | - Patrick Bastien
- Université Montpellier-CNRS, "MiVEGEC," Faculté de Medicine and Centre Hospitalier Universitaire, 39 avenue Charles Flahault, 34295 Montpellier Cedex 5, France
| | - Krzysztof Rogowski
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
18
|
Tubulin modifying enzymes as target for the treatment oftau-related diseases. Pharmacol Ther 2020; 218:107681. [PMID: 32961263 DOI: 10.1016/j.pharmthera.2020.107681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/09/2020] [Indexed: 01/17/2023]
Abstract
In the brain of patients with Alzheimer's disease (AD), the number and length of microtubules (MTs) are significantly and selectively reduced. MTs are involved in a wide range of cellular functions, and defects of the microtubular system have emerged as a unifying hypothesis for the heterogeneous and variable clinical presentations of AD. MTs orchestrate their numerous functions through the spatiotemporal regulation of the binding of specialised microtubule-associated proteins (MAPs) and molecular motors. Covalent posttranslational modifications (PTMs) on the tubulin C-termini that protrude at the surface of MTs regulate the binding of these effectors. In neurons, MAP tau is highly abundant and its abnormal dissociation from MTs in the axon, cellular mislocalization and hyperphosphorylation, are primary events leading to neuronal death. Consequently, compounds targeting tau phosphorylation or aggregation are currently evaluated but their clinical significance has not been demonstrated yet. In this review, we discuss the emerging link between tubulin PTMs and tau dysfunction. In neurons, high levels of glutamylation and detyrosination profoundly impact the physicochemical properties at the surface of MTs. Moreover, in patients with early-onset progressive neurodegeneration, deleterious mutations in enzymes involved in modifying MTs at the surface have recently been identified, underscoring the importance of this enzymatic machinery in neurology. We postulate that pharmacologically targeting the tubulin-modifying enzymes holds promise as therapeutic approach for the treatment of neurodegenerative diseases.
Collapse
|
19
|
Moutin MJ, Bosc C, Peris L, Andrieux A. Tubulin post-translational modifications control neuronal development and functions. Dev Neurobiol 2020; 81:253-272. [PMID: 33325152 PMCID: PMC8246997 DOI: 10.1002/dneu.22774] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/26/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Microtubules (MTs) are an essential component of the neuronal cytoskeleton; they are involved in various aspects of neuron development, maintenance, and functions including polarization, synaptic plasticity, and transport. Neuronal MTs are highly heterogeneous due to the presence of multiple tubulin isotypes and extensive post‐translational modifications (PTMs). These PTMs—most notably detyrosination, acetylation, and polyglutamylation—have emerged as important regulators of the neuronal microtubule cytoskeleton. With this review, we summarize what is currently known about the impact of tubulin PTMs on microtubule dynamics, neuronal differentiation, plasticity, and transport as well as on brain function in normal and pathological conditions, in particular during neuro‐degeneration. The main therapeutic approaches to neuro‐diseases based on the modulation of tubulin PTMs are also summarized. Overall, the review indicates how tubulin PTMs can generate a large number of functionally specialized microtubule sub‐networks, each of which is crucial to specific neuronal features.
Collapse
Affiliation(s)
- Marie-Jo Moutin
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Christophe Bosc
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Leticia Peris
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Annie Andrieux
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| |
Collapse
|
20
|
Li F, Li Y, Ye X, Gao H, Shi Z, Luo X, Rice LM, Yu H. Cryo-EM structure of VASH1-SVBP bound to microtubules. eLife 2020; 9:58157. [PMID: 32773040 PMCID: PMC7449697 DOI: 10.7554/elife.58157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The dynamic tyrosination-detyrosination cycle of α-tubulin regulates microtubule functions. Perturbation of this cycle impairs mitosis, neural physiology, and cardiomyocyte contraction. The carboxypeptidases vasohibins 1 and 2 (VASH1 and VASH2), in complex with the small vasohibin-binding protein (SVBP), mediate α-tubulin detyrosination. These enzymes detyrosinate microtubules more efficiently than soluble αβ-tubulin heterodimers. The structural basis for this substrate preference is not understood. Using cryo-electron microscopy (cryo-EM), we have determined the structure of human VASH1-SVBP bound to microtubules. The acidic C-terminal tail of α-tubulin binds to a positively charged groove near the active site of VASH1. VASH1 forms multiple additional contacts with the globular domain of α-tubulin, including contacts with a second α-tubulin in an adjacent protofilament. Simultaneous engagement of two protofilaments by VASH1 can only occur within the microtubule lattice, but not with free αβ heterodimers. These lattice-specific interactions enable preferential detyrosination of microtubules by VASH1.
Collapse
Affiliation(s)
- Faxiang Li
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuecheng Ye
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Haishan Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Zhubing Shi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuelian Luo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Luke M Rice
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
21
|
The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 2020; 21:307-326. [PMID: 32107477 DOI: 10.1038/s41580-020-0214-3] [Citation(s) in RCA: 477] [Impact Index Per Article: 95.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Microtubules are core components of the eukaryotic cytoskeleton with essential roles in cell division, shaping, motility and intracellular transport. Despite their functional heterogeneity, microtubules have a highly conserved structure made from almost identical molecular building blocks: the tubulin proteins. Alternative tubulin isotypes and a variety of post-translational modifications control the properties and functions of the microtubule cytoskeleton, a concept known as the 'tubulin code'. Here we review the current understanding of the molecular components of the tubulin code and how they impact microtubule properties and functions. We discuss how tubulin isotypes and post-translational modifications control microtubule behaviour at the molecular level and how this translates into physiological functions at the cellular and organism levels. We then go on to show how fine-tuning of microtubule function by some tubulin modifications can affect homeostasis and how perturbation of this fine-tuning can lead to a range of dysfunctions, many of which are linked to human disease.
Collapse
|
22
|
Pagnamenta AT, Heemeryck P, Martin HC, Bosc C, Peris L, Uszynski I, Gory-Fauré S, Couly S, Deshpande C, Siddiqui A, Elmonairy AA, Jayawant S, Murthy S, Walker I, Loong L, Bauer P, Vossier F, Denarier E, Maurice T, Barbier EL, Deloulme JC, Taylor JC, Blair EM, Andrieux A, Moutin MJ. Defective tubulin detyrosination causes structural brain abnormalities with cognitive deficiency in humans and mice. Hum Mol Genet 2019; 28:3391-3405. [PMID: 31363758 PMCID: PMC6891070 DOI: 10.1093/hmg/ddz186] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins (VASHs) one or two with small VASH-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of VASH detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical magnetic resonance imaging showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioural defects, including mild hyperactivity, lower anxiety and impaired social behaviour. They do not, however, show prominent memory defects. Thus, SVBP-deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- NIHR Oxford BRC, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pierre Heemeryck
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Christophe Bosc
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Leticia Peris
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Ivy Uszynski
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Sylvie Gory-Fauré
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Simon Couly
- MMDN, Université de Montpellier, INSERM, EPHE, UMR_S1198, Montpellier, France
| | - Charu Deshpande
- South East Thames Regional Genetics Unit, Guys and St Thomas NHS Trust, London, UK
| | - Ata Siddiqui
- Department of Neuroradiology, Kings College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Alaa A Elmonairy
- Ministry of Health, Kuwait Medical Genetics Center, Sulaibikhat 80901, Kuwait
| | | | | | - Sandeep Jayawant
- Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | | | - Ian Walker
- Clinical Biochemistry, Wexham Park Hospital, Slough, UK
| | - Lucy Loong
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Frédérique Vossier
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Eric Denarier
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Tangui Maurice
- MMDN, Université de Montpellier, INSERM, EPHE, UMR_S1198, Montpellier, France
| | - Emmanuel L Barbier
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Jean-Christophe Deloulme
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Jenny C Taylor
- NIHR Oxford BRC, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Edward M Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Annie Andrieux
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Marie-Jo Moutin
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| |
Collapse
|
23
|
Structural basis of tubulin detyrosination by vasohibins. Nat Struct Mol Biol 2019; 26:583-591. [PMID: 31235910 PMCID: PMC6609488 DOI: 10.1038/s41594-019-0242-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
Microtubules are regulated by posttranslational modifications (PTMs) of tubulin. The ligation and cleavage of the C-terminal tyrosine of α tubulin impact microtubule functions during mitosis, cardiomyocyte contraction, and neuronal processes. Tubulin tyrosination and detyrosination are mediated by tubulin tyrosine ligase (TTL) and the recently discovered tubulin detyrosinases, vasohibin 1 and 2 (VASH1 and VASH2) bound to the small vasohibin-binding protein (SVBP). Here, we report the crystal structures of human VASH1–SVBP alone, in complex with a tyrosine-derived covalent inhibitor, and bound to the natural product parthenolide. The structures and subsequent mutagenesis analyses explain the requirement for SVBP during tubulin detyrosination, and reveal the basis for the recognition of the C-terminal tyrosine and the acidic α tubulin tail by VASH1. The VASH1–SVBP–parthenolide structure provides a framework for designing more effective chemical inhibitors of vasohibins, which can be valuable for dissecting their biological functions and may have therapeutic potential.
Collapse
|